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Abstract

We construct an infinite dimensional quasi-polyadic equality algebra
A such that its cylindric reduct is representable, while A itself is not
representable. 1

The most well known generic examples of algebraizations of first order logic
are Tarski’s cylindric algebras (CA) and Halmos’ polyadic equality algebras
(PEA). The theory of cylindric algebras is well developed in the treatise [10],
[11], [12] and is still an active part of research in algebraic logic. The generic
examples of CA’s are set algebras. More precisely, let α be an ordinal. Let U
be a set. Then we define for i, j ∈ α and X ⊆ αU :

ciX = {s ∈ αU : ∃t ∈ X, s(j) = t(j) for all i ̸= j},

dij = {s ∈ αU : s(i) = s(j)}.
For a set X, let B(X) = ⟨℘(X),∪,∩,∼, ∅, X⟩ be the full Boolean set algebra
with universe ℘(X). A cylindric set algebra of dimension α is a subalgebra of
an algebra of the form

⟨B(αU), ci, dij⟩i,j<α.

The class of representable cylindric algebras of dimension α, or RCAα for
short, is the class of subdirect products of set algebras of dimension α. These
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are the standard models, so to speak, of cylindric algebras. The operations ci
of cylindrifications can be generalized and new operations called substitutions
can be introduced on set algebras as follows: For Γ ⊆ α, τ ∈ αα and X ⊆ αU
set:

c(Γ)X = {s ∈ αU : ∃t ∈ X, s(j) = t(j) for all j /∈ Γ},

SτX = {s ∈ αU : s ◦ τ ∈ X}.

A full polyadic equality set algebra of dimension α is an algebra of the form

⟨B(αU), c(Γ), Sτ , dij⟩Γ⊆α,i,j∈α,τ∈αα,

and the class of representable polyadic algebras consists of all subdirect prod-
ucts of these. The class of polyadic equality algebras of a given dimension is
obtained from set algebras (of the same dimension) by a process of an abstrac-
tion. An axiomatization of polyadic equality algebras is given in [10] 5.3.1.
which we now recall.

Definition 1 . Let α be an ordinal. By a polyadic equality algebra of
dimension α, or a PEAα for short, we understand an algebra of the form

A = ⟨A,+, ·,−, 0, 1, c(Γ), sτ , dij⟩i,j∈α,Γ⊆α,τ∈αα

where c(Γ) (Γ ⊆ α) and sτ (τ ∈ αα) are unary operations on A, dij ∈ A
(i, j ∈ α), such that postulates 1-15 below hold for x, y ∈ A, τ, σ ∈ αα,
Γ,∆ ⊆ α and all i, j ∈ α.

1. ⟨A,+, ·,−, 0, 1⟩ is a Boolean algebra

2. c(Γ)0 = 0

3. x ≤ c(Γ)x

4. c(Γ)(x · c(Γ)y) = c(Γ)x · c(Γ)y

5. c(0)x = x

6. c(Γ)c(∆)x = c(Γ∪∆)x

7. sIdx = x

8. sσ◦τ = sσ ◦ sτ

9. sσ(x+ y) = sσx+ sσy

10. sσ(−x) = −sσx

11. if σ � (α ∼ Γ) = τ � (α ∼ Γ), then sσc(Γ)x = sτc(Γ)x
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12. if τ−1Γ = ∆ and τ � ∆ is one to one, then c(Γ)sτx = sτc(∆)x

13. dii = 1

14. x · dij ≤ s[i|j]x

15. sτdij = dτ(i)τ(j)

Polyadic equality algebras are proper expansions of cylindric algebras.
That is if A ∈ PEAα then the cylindric reduct of A obtained by discarding the
operations not in the similarity type of CAα is a CAα. In polyadic equality
algebras all substitution operations are available. That is if A ∈ PEAα and
τ ∈ αα is a transformation on α, then sAτ is a unary (substitution) operation
on A, that happens to be, among other things, a Boolean endomorphism of A.
Morever (generalized) cylindrifications c(Γ) are defined for every Γ ⊆ α. Quasi-
polyadic equality algebras of dimension α (QEAα) on the other hand, are ob-
tained from PEAα by restricting the similarity type and axiomatization of the
latter to finite cylindrifications and substitutions corresponding to finite trans-
formations only. A finite transformation is one for which {i ∈ α : τ(i) ̸= i}
is finite. For the finite dimensional case, polyadic equality algebras coincide
of course with quasi-polyadic equality algebras, but in the infinite dimensional
case, the distinction is highly significant. For example PEAω has uncountably
many operations while QEAω has countably many operations. Furthermore,
the equational theory of RPEAω is extremely complex [15].

The class of locally finite dimensional quasi-polyadic algebras was intro-
duced by Halmos [6], but the class of quasi-polyadic algebras without the re-
striction of local finiteness has not been studied except relatively recently [8],
[7]. Quasi-polyadic equality algebras are still expansions of cylindric algebras.
Quasi-polyadic equality set algebras are defined as the PEA case, and so is
the class RQEAα of representable algebras of dimension α (by restricting the
signature to the appropriate similarity type). Though RPEAα is not a variety
for infinite α, RQEAα is a variety. The theories of QEAα and CAα for infinite
α are quite close. How close, is a question that remains to be settled, and
indeed our main result does shed light on this rather vague question. Quoting
Henkin Monk and Tarski in [11] p. 266-267: “Quasi-polyadic algebras: These
are like polyadic algebras, except that sτ is allowed only for finite transforma-
tions, and c(Γ) only for finite Γ. Their theory has not been much developed,
but they form an interesting stage between cylindric and polyadic algebras.”

If A ∈ QEAα then its cylindric reduct, in symbols RdcaA, is in CAα. Fur-
ther, if A ∈ RQEAα then RdcaA ∈ RCAα. Subsititutions corresponding to
finite transformations are not term definable in cylindric algebras (except in
some very special cases, like for instance dimension complemented algebras).
That is the theories of cylindric algebras and quasi - polyadic algebras are

3



essentially distinct. The inter-connections between the two theories have been
recently studied by many authors, to mention a few references in this connec-
tion see [17], [14], [10], [16], with similarities and differences illuminating both
theories.

It is known that the class RCAα of representable cylindric algebras for
α > 2 is not axiomatizable by a set of universal formulas containing finitely
many variables [1], same for RQEAα [13], [16]. (A proof of the latter result
for the infinite dimensional case is only sketched in [16], and it seems to us
that there are some serious gaps in this sketch). A striking result of Andréka
[1] is that for finite α > 2 the class RQEAα is not finitely axiomatizable over
RCAα. The analogous result for infinite ordinals is unknown. In this paper, we
address the infinite dimensional case. We do not recover Andréka’s result in
its strongest form, but we prove a necessary condition for the class RQEAω to
be non-finitely axiomatizable over RCAω. We will show that there is an A ∈
QEAω such that its cylindric reduct RdcaA is representable, while A itself is
not representable. This means that the finitely many polyadic axiom schemas
do not define RQEAω over RCAω. (In principal, there could be another finite
schema that defines the quasi-polyadic operations). Our construction is based
on an unpublished construction of Andréka and Németi [3] proving the same
result for finite α > 3. (This construction can be extended to α = 3, see [5].)
This latter result is surpassed by Andréka’s result mentioned above. In our
treatment of cylindric algebras and quasi-polyadic equality algebras we follow
[10], [11]. Thus quasi-polyadic equality algebras of dimension α are polyadic
algebras in the sense of Definition 1 when cylindrifications are restricted to
finite subsets and substitutions considered are only those corresponding to
finite transformations. We shall prove:

Theorem 2 . There exists an A ∈ QEAω such that RdcaA ∈ RCAω, but A
is not representable

Proving the analogous result for polyadic equality algebras is easy since
for any PEAω its cylindric reduct is representable and there are easy exam-
ples of non representable PEAω’s. But for QEAω the proof is much more
intricate. Our example will be constructed from a weak set algebra. A cylin-
dric weak set algebra is an algebra whose unit is a weak space, i.e. a set of
the form αU (p) = {s ∈ αU : |{i ∈ α : si ̸= pi}| < ω} where p is a fixed
sequence in αU . The operations of a weak set algebra with unit V are the
Boolean operations of union, intersection and complementation with respect
to V , and cylindrifications and diagonal elements are defined like in set alge-
bras but relativized to V . We shall need to characterize abstractly (countable)
quasi-polyadic equality weak set algebras where we require that the algebra is
also closed under finite substitutions. This was done for cylindric algebras by
Andréka, Németi and Thompson [2]. It turns out that, in the countable case,
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weak set algebras coincide with the class of weakly subdirect indecomposable
algebras for both CA’s and QEA’s. This follows from the facts that subdi-
rect indecomposability and its weak version are defined for general algebras
via congruences, congruences correspond to ideals, and that for A ∈ QEAα,
I is a quasi-polyadic ideal of A if and only if it is a cylindric ideal of RdcaA.
This ultimately makes the abstract characterization of weak set algebras for
countable quasi-polyadic algebras coincide with that of (countable) cylindric
algebras. Now let WQEAsα denote the class of quasi-polyadic equality set
algebras. Then we have RQEAα = SPWQEAsα. Here SP denotes the oper-
ation of forming subdirect products. This is proved exactly like the cylindric
case. Next, we give the definition of subdirect indecomposability and its weak
version relative to congruences in general algebras.

Definition 3 .

(i) An algebra A is weakly subdirectly indecomposable if |A| ≥ 2 and if the
formulas R, S ∈ CoA and R∩ S = Id � A always imply that R = Id � A
or S = Id � A.

(ii) An algebra A is subdirectly indecomposable if |A| ≥ 2 and if for every
system R of relations satisfying R ∈ ICoA and

∩
i∈I Ri = Id � A, there

is an i such that Ri coincides with the identity relation.

We shall need to specify ideals in quasi-polyadic equality algebras. Ideals
are congruence classes containing the least element. From now on α will denote
an infinite ordinal and FTα denotes the set of finite transformations on α.
x ⊆ω y denotes that x is a finite subset of y and Sbωα denotes the set of all x
such that x ⊆ω α.

Definition 4 . Let A ∈ QEAα. A subset I of A is an ideal if the following
conditions are satisfied:

(i) 0 ∈ I,

(ii) If x, y ∈ I, then x+ y ∈ I,

(iii) If x ∈ I and y ≤ x then y ∈ I,

(iv) For all Γ ⊆ω α and τ ∈ FTα if x ∈ I then c(Γ)x and sτx ∈ I.

If X ⊆ A ∈ QEAα, then IgAX is the ideal generated by X.

Lemma 5 . Let A ∈ QEAα and X ∈ A. Then IgAX = {y ∈ A : y ≤
c(Γ)(x0 + . . . xk−1)} : for some x ∈ kX, and Γ ⊆ω α}.
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Proof. Let H denote the set of elements on the right hand side. It is easy
to check H ⊆ IgAX. Conversely, assume that y ∈ H, Γ ⊆ ω. It is clear that
c(Γ)y ∈ H. H is closed under substitutions, since for any finite transformation
τ , any x ∈ A there exists finite Γ ⊆ ω such that sτx ≤ c(Γ)x. Now let z, y ∈ H.
Assume that z ≤ c(Γ)(x0 + . . . xk−1) and y ≤ c(∆)(y0 + . . . yl−1), then

z + y ≤ c(Γ∪∆)(x0 + . . . xk−1 + y0 . . .+ yl−1).

The Lemma is proved.
It follows from [11] 2.3.8 that if A ∈ QEAα and I is a cylindric ideal of

RdcaA then I is an ideal of A. Therefore A is (weakly) subdirectly indecom-
posable if and only if RdcaA is (weakly) subdirectly indecomposable. Now we
prove the analogue of a result of Thompson for quasi-polyadic equality alge-
bras. The proof is the same as that given by Andréka, Németi and Thompson
in [2] theorem 3, but for the sake of completeness (and because the proof is
short) we include the proof adapted to the quasi-polyadic equality (present)
case. IK denotes the class of all isomorphic images of algebras in K. We now
have:

Lemma 6 . Let A ∈ RQEAα be countable. Then (i) and (ii) are equivalent

(i) A ∈ IWQEAsα

(ii) A is weakly subdirectly indecomposable.

Proof. We shall only need that (ii) =⇒ (i). So assume that that A is weakly
subdirectly indecomposable quasi-polyadic algebra of dimension α. Then by
[11] 2.4.46 which works for quasi-polyadic algebras, we have that

(∗) (∀x, y ∈ A ∼ {0})(∃∆ ⊆ω α)x · c(∆)y ̸= 0.

Let a : ω → A ∼ {0} be any enumeration of A ∼ {0}. We define Γ : (A ∼
{0}) → Sbωα step by step, so that

(∗∗) bn =
∏

{c(Γam)am : m < n} ̸= 0 for all n ∈ ω, n ̸= 0.

Let Γ(a0) = 0. Let n ∈ ω, n > 0, and assume that Γ(am) has been defined
for each m < n such that bn ̸= 0 holds. By (∗), there is a ∆ ⊆ω α such that
bn · c(∆)an ̸= 0. Set Γ(an) = ∆. Then clearly bn+1 = bn · c(∆)an ̸= 0. Since
A ∼ {0} = {an : n ∈ ω}, the function Γ is defined. By (∗∗) Γ : A → Sbωα
satisfies

(∗ ∗ ∗) (∀A0 ⊆ω (A ∼ {0}))
∏

{c(Γa)a : a ∈ A0} ̸= 0.

Then there is a maximal proper ideal of BlA such that m ⊇ {−c(Γa)a : a ∈ A}.
Let CmA be the canonical embedding algebra of A. CmA is defined like the CA
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case [10] definition 2.7.3. In particular, it has domain ℘(M), which we denote
by EmA, where M is the set of maximal Boolean ideals of A. Substitutions
are defined on Em(A) as follows:

sτX =
∪
I∈X

{J ∈ M : J ⊆ sτI}.

Let z = {m}. Then z ∈ EmA and 0 ̸= z ≤ em(c(Γa)a) for all a ∈ A. Here
em is the map that embeds A into CmA; em(x) = {I ∈ M : x /∈ M}. Let
I = {y ∈ EmA : (∀Γ ⊆ω α)c(Γ)y · z = 0}. Then I is an ideal of CmA and
I ∩ em(A) = {0}. Let B = CmA/I. Then B ∈ RQEAα and A is embeddable
in B. Here we are using that if A ∈ RQEAα, then so is CmA. The proof of
this is identical to the CA case. Also B is subdirectly indecomposable by [10]
2.4.44. By [11] 3.1.86 A is isomorphic to a weak set algebra. Though 2.4.44 in
[10] and 3.1.86 in [11] are formulated for CA’s they are true for QEA’s.

The following corollary which we shall need is now immediate:

Corollary 7 . Let A ∈ RQEAα be countable such that RdcaA is weakly
subdirectly indecomposable (equivalently isomorphic to a cylindric weak set
algebra). Then A ∈ IWQEAsα.

From the proof of Theorem 2, we have

Corollary 8 . There exists a countable A ∈ QEAω that is weakly subdirectly
irreducible but not representable.

Proof of Theorem 2

Let U = N. Let Z ∈ ω℘(N) be defined by Z0 = Z1 = 3 = {0, 1, 2} and
Zi = {2i − 1, 2i} for i > 1. Let p : ω → ω be defined by p(i) = 2i. Let
V = ωU (p) = {s ∈ ωU : |{i ∈ ω : si ̸= 2i}| < ω}. We will work inside the weak
set algebra with universe ℘(V ) and cylindrifications and diagonal elements for
i, j < ω defined for X ⊆ V by:

ciX = {s ∈ V : ∃t ∈ X, t(j) = s(j) ∀j ̸= i}

and
dij = {s ∈ V : si = sj}.

Let
PZ = {s ∈ V : (∀i ∈ ω)si ∈ Zi}.

Let
t = {s ∈ ω∼2U : |{i ∈ ω ∼ 2 : si ̸= 2i}| < ω, (∀i > 2)si ∈ Zi}.
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Let
X = {s ∈ t : |{i ∈ ω ∼ 2 : s(i) ̸= 2i}| is even },
Y = {s ∈ t : |{i ∈ ω ∼ 2 : s(i) ̸= 2i}| is odd },

R = {(u, v) : u ∈ 3, v = u+ 1(mod3)},
B = {(u, v) : u ∈ 3, v = u+ 2(mod3)},

and

a = {s ∈ PZ : (s � 2 ∈ R and s � ω ∼ 2 ∈ X) or (s � 2 ∈ B and s � ω ∼ 2 ∈ Y )}.

Let Eq(ω) be the set of all equivalence relations on ω. For E ∈ Eq(ω), let
e(E) = {s ∈ V : kers = E}. Note that e(E) may be empty. Let

d = PZ ∩ d01.

π(ω) = {τ ∈ FTω : τ is a bijection }. For τ ∈ FTω and X ⊆ V, recall that the
substitution (unary) operation Sτ is defined by

SτX = {s ∈ V : s ◦ τ ∈ X}.

Let
P ′ = {Sτa : τ ∈ π(ω)}, P = P ′ ∪ {Sδd : δ ∈ π(ω)}.

More concisely,
P = {Sτx : τ ∈ π(ω), x ∈ {a, d}}.

For W ∈ ωRgZ(Z), let

PW = {s ∈ V : (∀i ∈ ω)si ∈ Wi}.

Let

T = {PW · e(E) : W ∈ ωRgZ(Z), (∀δ ∈ π(ω))W ̸= Z ◦ δ, E ∈ Eq(ω)},

At = P ∪ T,

and
A = {

∪
X : X ⊆ At}.

Claim 1 . A is a subuniverse of the full cylindric weak set algebra

⟨℘(V ),+, ·,−, ci, dij⟩i,j∈ω.

Furthermore A is atomic and AtA = At ∼ {0}.

Notice that the Boolean operations of the algebra are denoted by +, ·, −
standing for Boolean join (union), Boolean meet (intersection) and comple-
mentation, respectively.

Proof of Claim 1. Let b = PZ ∼ d01. Then
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(1) a · S[0,1]a = 0, a+ S[0,1]a = b, (∀i ∈ ω)cia = ciS[0,1]a = cib.

It is not difficult to check that (1) holds. One can check first B = S[0,1]R,
B·R = 0, B+R = 23−d01, (∀i ∈ 2)ciR = ciB = ci

23, X ·Y = 0, X∪Y = t,
and (∀i ∈ ω ∼ 2)ciX = ciY = cit. From (1) we immediately get

(2) PZ = a+ S[0,1]a+ d. For, PZ = PZ ∼ d01 + PZ · d01 = b+ d.

(3) SδPW = P(W ◦ δ−1) for every δ ∈ π(ω) and W ∈ ω(RgZ)(Z).

Indeed, we have s ∈ SδPW iff s ◦ δ ∈ PW iff s ◦ δi ∈ Wi ∀i ∈ ω iff
sj ∈ Wδ−1

j
∀j ∈ ω iff s ∈ P(W ◦ δ−1).

(4) PW ∈ A for every W ∈ ω(RgZ)(Z).

Assume W = Z ◦ δ−1 for some δ ∈ π(ω). Then PW = SδPZ = Sδa +
Sδ◦[0,1]a + Sδd ∈ A by (3) and (2). Assume W ̸= Z ◦ δ, ∀δ ∈ π(ω).
Then by V =

∑
{e(E) : E ∈ Eq(ω)} we have PW =

∑
{PW · e(E) : E ∈

Eq(ω)} ∈ A.

(5) (∀x, y ∈ At)(x ̸= y ⇒ x · y = 0) and V =
∑

At.

If E ̸= E ′,E,E ′ ∈ Eq(ω) then e(E) ∩ e(E ′) = 0 and if W ̸= W ′,
W,W ′ ∈ ωRgZ(Z) then PW ∩ PW ′ = 0. Thus the elements of T
are disjoint from each other and from the elements of P since (∀x ∈
P )(∃δ ∈ π(ω))x ⊆ SδPZ = P(Z ◦ δ−1) by (3). Let δ, δ′ ∈ π(ω). Clearly
Sδa · Sδ′d = 0 since S′

δa ⊆
∏
{−dij : i < j < ω} while Sδ′d ⊆ dδ′0δ′1.

Let y ∈ {a, d} and assume δ′ ̸= δ. If δ′ ̸= δ ◦ [0, 1] then 2Z ◦ δ′−1 ̸=
Z ◦ δ−1 hence P(Z ◦ δ−1) ∩ P(Z ◦ δ′−1) = 0, thus Sδy · Sδ′y = 0 since
Sσy ⊆ SσPZ = P(Z ◦ σ−1) ∀σ ∈ π(ω) by (3). If δ′ = δ ◦ [0, 1] then
Sδa · Sδ′a = Sδ(a · S[0,1]a) = 0 by (1) and Sδd = SδS[0,1]d = Sδ′d. Thus all
the elements of At are disjoint from each other. By U =

∪
RgZ we have

V =
∑

{PW : W ∈ ωRgZ(Z)} ⊆
∑

At by (4). Thus V =
∑

At.

(6) A is closed under the Boolean operations.

For, (6) is an immediate corollary of (5) and the definition of A.

2For, we show δ ̸= δ′ and Z ◦ δ−1 = Z ◦ δ′−1 imply δ = δ ◦ [0, 1]. Let k ∈ ω ∼ 2 and
j = δk. Then δ−1

j = k /∈ 2, hence Zδ−1
j + Zδ′−1

j implies k = δ−1
j = δ′−1

j , i.e., δ, k = j. We
have seen δ � ω ∼ 2 ⊆ δ′. By this and by δ ̸= δ′ we have δ0 = δ′1 and δ1 = δ′0. Thus
δ = δ′ ◦ [0, 1].

9



(7) Let M denote the minimal subalgebra of ℘(V ), i.e., M = Sg(℘(V ))0.
Then M ⊆ A.

Let i < j < ω. Then dij =
∑

{e(E) : (i, j) ∈ E,E ∈ Eq(ω)} =∑
({PW · e(E) : W ∈ ωRgZ(Z), W ̸= Z ◦ δ ∀δ ∈ π(ω), (i, j) ∈ E ∈

Eq(ω)}
∪
{Sδd : δ ∈ π(ω), {δ0, δ1} = {i, j}}) ∈ A. Let k < ω. Then

c(k)d̄(k × k) ∈ {0, V } ⊆ A by (5). Thus by [10] [2.2.24], and (6) we have

M = Sg(℘(V )){dij : i < j < ω} ⊆ A.

(8) PW ∈ A for every W ∈ ω(RgZ ∪ {U})(Z).

Let ℑ = {i ∈ ω : Wi ̸= U}. Then PW =
∑

{PW ′ : W ′ ∈ ωRgZ,W ′ �
ℑ ⊆ W} by U =

∪
RgZ. Thus PW ∈ A by (4).

(9) SτPW ∈ A for every W ∈ ωRgZ(Z).

For if SτPW = 0, then we are done. Assume that SτPW ̸= 0. Let
z ∈ SτPW be arbitrary. Let η ∈ ωω such that zi ∈ Zη(i). Such an η exists
by U =

∪
RgZ. Now we have

(∗) (∀i ∈ ω)Wi = Wητ(i).

since (∀i ∈ ω)zτ(i) ∈ Wi ∩Wητ(i) by z ∈ SτPW and by the definition of
η, hence Wi = Wητ(i) since the elements of RgZ are disjoint from each
other. Let supτ = {i ∈ ω : τ(i) ̸= i}. Let W ′ ∈ αRgZ(Z) be defined by
(∀i ∈ ω ∼ supτ)W ′

i = Wi and for all (∀i ∈ supτ)W ′
i = Wη(i). Then

SτPW = {s ∈ V : (∀i ∈ ω)sτ(i) ∈ Wi} = PW ′.

(10) Sτx ∈ A for every x ∈ A.

It is enough to show (10) for x ∈ At since Sτ is additive. If τ, δ ∈ π(ω)
then SτSδa = Sτ◦δa ∈ P ⊆ A since τ ◦ δ ∈ π(ω). If τ ∈ FTω ∼ π(ω)
then SτSδa = 0 ∈ A. Note that Sδd = P (Z ◦ δ−1) · dδ0,δ1. By (9) and
the above, to finish the proof (10), it is enough to show Sτg ∈ A for
all g of the form PW · e(E) since Sτ is a Boolean homomorphism. Let
g = PW · e(E). Then by

e(E) =
∏

{dij : (i, j) ∈ E} ·
∏

{−dij : (i, j) /∈ E},

there exists a finite K ⊆ {dij : i < j < ω} ∪ {−dij : i < j < ω} such
that g = PW ·

∏
K. Here we are using that there exists n ∈ ω such that

PW ⊆ −dij for all n ≤ i < j since the elements of RgZ are disjoint from
each other and W ∈ ωRgZ(Z). The rest follows from (9), the fact that
Sτ is a Boolean homomorphism and that Sτdij = dτiτj ∈ A.
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(11) cix ∈ A for every x ∈ A and i ∈ ω.

It is enough to show (11) for x ∈ At since ci is additive. Now ciSδa =
Sδcδia. Indeed let j = δi. Then cja = cjb = PZ(j/U) · γ where γ = 1
if j ∈ 2 and γ = −d01 if j ∈ ω ∼ 2. Thus ciSδa ∈ A by (10), (8)
and (7). Let x ∈ At ∼ P ′. Then x = PW ·

∏
K for some W ∈

ω(RgZ ∪ {U})(Z) and K ⊆ω {dij : i < j < ω} ∪ {−dij : i < j < ω}.
Assume PW ·

∏
K ̸= 0. We will show ci(PW ·

∏
K) = ciPW ·ci

∏
K. Let

Γ = {j ∈ ω : dij ∈ K} and Ω = {j ∈ ω : −dij ∈ K}. It is enough to show
ciPW · ci

∏
K ⊆ ci(PW ·

∏
K). Let s ∈ ciPW · ci

∏
K. Assume Γ ̸= 0.

Let j ∈ Γ. Then s(i/sj) ∈ PW ·
∏

K since Wi = Wj by PW ·
∏

K ̸= 0.
Assume Γ = 0. Let ∆ = {j ∈ Ω : Wj = Wi}. Then |∆| < |Wi| by
PW ·

∏
K ̸= 0. Let u ∈ Wi ∼ {si : j ∈ ∆}. Then s(i/u) ∈ PW ·

∏
K.

Thus ci(PW ·
∏

K) = ciPW · ci
∏

K = PW (i/U) · ci
∏

K ∈ A by (8)
and (7).

By (6), (7) and (11) we have proved A ∈ Su℘(V ). (A is a subuniverse
of ℘(V )). By (5) then we have AtA = At ∼ {0}.
The construction of B ∈ QEAω:

Let τ, δ ∈ FTω. We say that “τ, δ transpose” iff (δ0− δ1).(τδ0− τδ1) is
negative.

Now we first define sσ : At → A for every σ ∈ FTω.

sσ(Sδa) =

{
Sσ◦δ◦[0,1]a if “σ, δ transpose”

Sσ◦δa otherwise

sσ(x) = Sσx if x ∈ At ∼ P ′.

Then we set:

sσ(
∑

X) =
∑

{sσ(x) : x ∈ X} for X ⊆ At.

We shall first prove that sσ : A → A.

(12) From the definition of sσ we immediately get sσSδa ∈ {Sσ◦δa, Sσ◦δ◦[0,1]a}
for δ ∈ π(ω).

(13) sσx = Sσx for σ ∈ FTω ∼ π(ω) and x ∈ At.

If τ ∈ FTω ∼ π(ω) then Sτa = 0, hence sσSδa = 0 = SσSδa by (12). For
x ∈ At ∼ P ′ we have sσx = Sσx by definition.
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(14) sσ : At → At, is a bijection for σ ∈ π(ω)

By (12) we have sσ : P ′ → P ′. Assume δ ̸= δ′, δ, δ′ ∈ π(ω). If
δ ̸= δ′ ◦ [0, 1] then {σ ◦ δ, σ ◦ δ ◦ [0, 1]} ∩ {σ ◦ δ′, σ ◦ δ′ ◦ [0, 1]} = 0,
hence sσSδa ̸= sσSδ′a. Assume δ = δ′ ◦ [0, 1]. In this case “σ, δ transpose”
iff “σ, δ′ transpose”, hence sσSδa = Sσ◦δ◦[0,1]a ̸= Sσ◦δ′◦[0,1]a = sσSδ′a, by

3

[τ ̸= τ ′ ⇒ Sτa ̸= Sτ ′a] ∀τ, τ ′ ∈ π(ω). We have seen that sσ : P ′ → P ′.
Let τ = σ−1 ◦ δ. Define τ ′ = τ ◦ [0, 1] if “σ, τ transpose”, τ ′ = τ other-
wise. Then “σ, τ transpose” iff “σ, τ ′ transpose”, hence sσSτ ′a = Sσ◦τa =
Sδa. Thus sσ : P ′ → P ′ is onto. By sσSδd = SσSδd then we have
sσ : (P ∼ P ′) → (P ∼ P ′). Next we show sσ : T → T is a bijection.
Let E ∈ Eq(ω). Define E(τ) = {(τi, τj) : (i, j) ∈ E} for any τ ∈ FTω.
Then it is not difficult to check that by σ ∈ π(ω) we have E(σ) ∈ Eq(ω)
and (ker(s ◦ σ) = E iff Kers = E(σ)). Thus Sσe(E) = e(E(σ)). Now
sσ(PW ·e(E)) = Sσ(PW ·e(E)) = SσPW ·Sσe(E) = P(W ◦σ−1)·e(E(σ)) ∈
T if W ̸= Z ◦ δ for any δ ∈ π(ω). If W ̸= W ′ or E ̸= E ′ then
W ◦ σ−1 ̸= W ′ ◦ σ−1 or E(σ) ̸= E ′(σ), thus sσ : T → T is one to
one. The fact that sσ(P(W ◦ σ−1) · e(E(σ−1))) = PW · e(E) shows that
sσ : T → T is onto.

Now we have proved that sσ : A → A. Define

B = ⟨A,+, ·,−, 0, 1, ci, sτ , dij⟩i,j∈ω,τ∈FTω .

Claim 2 . B ∈ QEAω

We shall proceed via several steps.

(15) sτ is a Boolean homomorphism on A, for any τ ∈ FTω.

If τ ∈ π(ω) then (15) follows from (14) and from the definition of sσ. If
τ ∈ FTω ∼ π(ω) then (15) follows from (13).

(16) sτ sσSδa = sτ◦σSδa for δ ∈ π(ω), τ, σ ∈ FTω.

Assume δ0 < δ1.
Case 1: τσδ0 < τσδ1. Then sτ◦σSδa = Sτ◦σ◦δa since “τ ◦ σ, δ do not
transpose ”. If σδ0 < σδ1 then “σ, δ do not transpose ” and “τ, σ ◦ δ
do not transpose ”, hence sσSδa = Sσ◦δa and sτSσ◦δa = Sτ◦σ◦δa and
we are done. Similarly, if σδ0 > σδ1 then sσSδa = Sσ◦δ◦[0,1]a and

3This follows from the proof of (5).
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sτSσ◦δ◦[0,1]a = Sτ◦(σ◦δ◦[0,1])◦[0,1]a = Sτ◦σ◦δa and we are done.

Case 2: τσδ0 > τσδ1. Then sτ◦σSδa = Sτ◦σ◦δ◦[0,1]a. If σδ0 < σδ1 then
sσSδa = Sσ◦δa and sτSσ◦δa = Sτ◦σ◦δ◦[0,1]a and we are done. If σδ0 > σδ1
then sσSδa = Sσ◦δ◦[0,1]a and sτSσ◦δ◦[0,1]a = Sτ◦σ◦δ◦[0,1]a.

The case δ0 > δ1 is completely analogous, hence we omit it.

(17) sσ(Sδa+ Sσ◦[0,1]a) = Sσ(Sδa+ Sσ◦[0,1]a).

“σ, δ transpose ” iff “σ, δ ◦ [0, 1] transpose ”. Hence {sσSδa, sσSδ◦[0,1]a} =
{Sσ◦δa, Sσ◦δ◦[0,1]a} by the definition of sσ.

(18) sτ sσx = sτ◦σx for every τ, σ ∈ FTω and x ∈ A.

It is enough to show (18) for x ∈ At. For x ∈ P ′, (18) is true by (16).
Let x ∈ At ∼ P ′. Then sσx = Sσx by definition. Now Sσx = PW ·

∏
K

for some W ∈ ω(RgZ ∪{U})(Z) and K ⊆ω {dij : i < j < ω}∪{−dij : i <
j < ω}, by the proof of (10). Assume Sδa ⊆ Sσx for some δ ∈ π(ω). We
will show that then Sδ◦[0,1]a ⊆ Sσx, too. Sδa∪Sδ◦[0,1]a ⊆ PZ ◦δ−1 ·e(Idω),
thus Sδa ≤ Sσx implies [PZ ◦ δ−1 · e(Idω)] ∩ PW ·

∏
K ̸= 0. But then

PZ ◦ δ−1 · e(Idω) ⊆ PW ·
∏

K, thus Sδ◦[0,1]a ⊆ Sσx, too. Thus sτ sσx =
SτSσx = Sτ◦σx = sτ◦σx by (17) and by the definition of sτ , sσ, sτ◦σ.

(19) c(Γ)Sδa = c(Γ)(Sδa+ Sδ◦[0,1]a) if Γ ⊆ω ω, Γ ̸= 0.

Let i ∈ ω be arbitrary. Then cia = ci(a + S[0,1]a) holds by (1). Thus
ciSδa = Sδcδia = Sδcδi(a+ S[0,1]a) = ci(Sδa+ Sδ◦[0,1]a).

(20) sσc(Γ)x = Sσc(Γ)x for every x ∈ A if Γ ⊆ω ω,Γ ̸= 0.

Let x ∈ A be arbitrary. Then c(Γ)x =
∑

X for some X ⊆ At, by (11).
Assume Sδa ∈ X. Then c(Γ)Sδa ⊆ c(Γ)x, hence Sδ◦[0,1]a ⊆ c(Γ)x by (19).
Therefore Sδ◦[0,1]a ∈ X, too. Now sσc(Γ)x =

∑
{sσy : y ∈ X} and (17)

finish the proof of (20).

(21) σ � (ω ∼ Γ) = τ � (ω ∼ Γ) ⇒ sσc(Γ)x = sτc(Γ)x for every x ∈ A,
σ, τ ∈ FTω, and Γ ⊆ω ω.

(21) follows from (20).
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(22) c(Γ)sσx = c(Γ)Sσx, for every x ∈ A, σ ∈ FTω, if Γ ⊆ω ω,Γ ̸= 0.

It is enough to check (22) for x ∈ P ′. Let δ ∈ π(ω). Then sσSδa ∈
{Sσ◦δa, Sσ◦δ◦[0,1]a} by definition of sσ and c(Γ)Sσ◦δ◦[0,1]a = c(Γ)Sσ◦δa =
c(Γ)SσSδa by (19).

(23) τ � (τ−1Γ) is one - one then c(Γ)sτx = sτc(∆)x where ∆ = τ−1Γ.

If Γ = 0 then ∆ = 0 and we are done. If Γ ̸= 0 and ∆ = 0 then π /∈ π(ω)
hence we are done by (13). Assume Γ ̸= 0,∆ ̸= 0. Then we are done by
(22) and (20).

Now we are ready to show B ∈ QPEAω. We have to show that (1− 15)
in definition 1 are satisfied in B. (1−6)+13 are satisfied since RdcaB ∈
Wsω. 7 holds because “Idω, δ don’t transpose” ∀δ ∈ FTω. 8, 11, 12 hold
by (18), (22), (23) respectively. 9− 10 are satisfied by (15). 14 holds by
(13) and 15 holds since sτdij = Sτdij by definition of sτ .

We finally show:

Claim 3 . B /∈ RPEAω.

Proof. Assume B ∈ RPEAω. Then by Corollary 7 B is isomorphic to
some weak set algebra C since RdcaB is weakly subdirectly indecompos-
able. Let U ′ be the base of C. The unit of C is of the form αU ′(p) for
some sequence p. Let h : B � C be an isomorphism. Let x = Z0 × U ×
U × U × Z5 × Z6 . . .. That is x = {s ∈ V : s0 ∈ Z0 : (∀i > 4)(si ∈ Zi)}.
Then x ∈ A by (8), and cix = x for i ∈ {1, 2, 3}. So cih(x) = h(x) for
i ∈ {1, 2, 3}, thus h(x) = Z ′ × U ′ × U ′ × U ′ × . . .. for some Z ′ ⊆ U ′.
Let x̄ =

∏
{s[0,i]x : i ∈ 4}. Then x̄ = Z0 × Z0 × Z0 × Z0 × Z5 × Z6 . . . .

For a relation R, recall that d̄(R) =
∏

(i,j)∈R∼Id−dij. Then we have

x̄ · d̄(3 × 3) ̸= 0 and x̄ · d̄(4 × 4) = 0 imply the same for h(x), therefore
|Z ′| = 3.

Let b′ = h(b), a′ = h(a), g = S[0,1]a, g
′ = h(g). Then b ≤ x · s[0,1]x − d01

hence b′ ⊆ h(x) · S[0,1]h(x)− d01, thus

∀s ∈ b′ (s0, s1) ∈ 2Z ′ ∼ d01 and |Z ′| = 3. (⋆)

In A we have a + g = b ̸= 0, a · g = 0, s[0,1]a = a, s[0,1]g = g and cia =
cig = cib ∀i ∈ 2.

Therefore
(∗) a′ + g′ = b′ ̸= 0, a′ · g′ = 0
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(∗∗) S[0,1]a
′ = a′, S[0,1]g

′ = g′ and

(∗ ∗ ∗) cia
′ = cig

′ = cib
′ ∀i ∈ 2

Let q ∈ b′ be arbitrary. q01uv is the function q′ that agrees with q every-
where except that q′(0) = u and q′(1) = v. Define

ā = {(u, v) : q01uv ∈ a′}

and
ḡ = {(u, v) : q01uv ∈ g′}.

Then by (∗)− (⋆) we have

(∗)′ ā+ ḡ = 2Z ′ ∼ d01, ā · ḡ = 0,

(∗∗)′ S[0,1]ā = ā, S[0,1]ḡ = ḡ and

(∗ ∗ ∗)′ c0ā = c0ḡ = c0
2Z ′.

We show that (∗)′ − (∗ ∗ ∗)′ together with |Z ′| = 3 is impossible. By
(∗ ∗ ∗)′ we have Rgā = Rgḡ = Z ′, hence |ā| ≥ 3 and |ḡ| ≥ 3. By (∗′) we
have then |ā| = |ḡ| = 3 by ā · ḡ = 0 and |2Z ′

1 ∼ d01| = 6. But by (∗∗)′
and ā ≤ −d01 we have |ā| ≥ 4, contradiction.

Claims 1-3 prove Theorem 2.

Acknowledgment

This research is supported by the Hungarian Scientific Research Fund for basic
research grant No. T81188.

References
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