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Abstract. Here the emphasis is on the main pillars of Tarskian structuralist approach to
logic: relation algebras, cylindric algebras, polyadic algebras, and Boolean algebras with
operators. We also tried to highlight the recent renaissance of these areas and their fusion
with new trends related to logic, like the guarded fragment or dynamic logic. Tarskian
algebraic logic is far too broad and too fruitful and prolific by now to be covered in a short
paper like this. Therefore the overview part of the paper is rather incomplete, we had
to omit important directions as well as important results. Hopefully, this incompleteness
will be alleviated by the accompanying paper of Tarek Sayed Ahmed [81].

The structuralist approach to a branch of learning aims for separating out
the really essential things in the phenomena being studied abstracting from the
accidental wrappings or details (called in computer science “syntactic sugar”). As
a result of this, eventually one associates to the original phenomena (or systems)
being studied streamlined elegant mathematical structures. These streamlined
structures can be algebras in the sense of universal algebra, or other kinds of
elegant well understood mathematical structures like e.g. space-time geometries
in the case of relativity theory. In the present case they will be algebras, but as
we said, this is not essential to the approach, they could be geometric metric
spaces, topologies, etc.

Along the above structuralist lines, one arrives at a kind of duality theory
between the theory describing the original systems (or phenomena) and the cor-
responding streamlined mathematical structures. The important point in calling
this a duality is the requirement that from the streamlined abstract mathemat-
ical structures one should be able to reconstruct the originals up to a certain
equivalence determined by what we consider essential in our first step mentioned
above. So far, two expressions showed up which we will use in the above outlined
sense. These are “structuralist approach to something”, and “duality theory” (in
this structuralist spirit).

Algebraic logic can be regarded as a structuralist approach to the subject
matter of logic. In other words, algebraic logic sets up a duality theory between
the world of logics and the world of classes of algebras.
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The algebraic counterpart of classical propositional logic is the world of Boole-
an algebras (BA’s for short). BA theory was immensely successful in helping and
improving, clarifying classical propositional logic, see e.g. [32]. What happens then
if we want to extend the algebraization of classical propositional logic yielding
BA’s to first-order logic?

Well, BA’s are algebras of unary relations. That is, the elements of a BA
B are unary relations and the operations of B are the natural operations on
unary relations e.g. intersection, complementation. The problem of extending this
approach to predicate logics boils down to the problem of expanding the natural
algebras of unary relations to natural algebras of relations of higher ranks, i.e. of
relations in general, more precisely, algebras of not necessarily binary relations
e.g. algebras of ternary relations. The reason for this is, roughly speaking, the fact
that the basic building blocks of predicate logics are predicates, and the meanings
of predicates can be relations of arbitrary ranks. Indeed, already in the middle of
the last century, when De Morgan wanted to generalize algebras of propositional
logic in the direction of what we would call today predicate logic, he turned to
algebras of binary relations.! That was probably the beginning of the quest for
algebras of relations in general. Returning to this quest, the new algebras will, of
course, have more operations than BA’s, since between relations in general there
are more kinds of connections than between unary relations (e.g. one relation
might be the converse, sometimes called inverse, of the other).

The framework for the quest for the natural algebras of relations is universal
algebra. The reason for this is that universal algebra is the field which investigates
classes of algebras in general, their interconnections, their fundamental properties.
Therefore universal algebra can provide us for our search with a “map and a
compass” to orient ourselves. There is a further good reason for using universal
algebra. Namely, universal algebra is not only a unifying framework, but it also
contains powerful theories. E.g. if we know in advance some general properties of
the kinds of algebras we are going to investigate, then universal algebra can reward
us with a powerful machinery for doing these investigations. Among the special
classes of algebras concerning which universal algebra has powerful theories are
the so called discriminator varieties and the arithmetical varieties. At the same
time, algebras originating from logic turn out to fall in one of these two categories,
in most cases.

Let us return to our task of moving from BA’s of unary relations to expanded
BA’s of relations in general. What are the elements of a BA? They are sets of

! De Morgan illustrated the need for expanding the algebras of unary relations (i.e. BA’s) to algebras
of relations in general (the topic of the present paper) by saying that the scholastics, after two
millennia of Aristotelian tradition, were still unable to prove that if a horse is an animal, then a
horse’s tail is an animal’s tail. (“vo is a tail of v1” is a binary relation.)



“points”. What will be the elements of the expanded new algebras? One thing
about them seems to be certain, they will be sets of sequences. Why? Because
relations in general are sets of sequences. These sequences may be just pairs if
the relation is binary, they may be triples if the relation is ternary, or they may
be longer — or more general kinds of sequences. (There is another consideration
pointing in the direction of sequences. Namely, the semantics of quantifier logics
is defined via satisfaction of formulas in models, which in turn is defined via
evaluations of variables, and these evaluations are sequences. The meaning of a
formula in a model is the set of those sequences which satisfy the formula in
that model. Thus we arrive again at sets of sequences.) So, one thing is clear at
this point, namely that the elements of our expanded BA’s of relations will be
sets of sequences. Indeed, this applies to practically all known algebraizations of
predicate logics or quantifier logics.

Summing up: the key paradigm for moving from BA’s to richer versions of
algebraic logic is replacing sets of points with sets of sequences as the elements
of our algebras?; e.g. in the case of relation algebras, our algebras are complex
algebras of oriented graphs i.e. their elements are sets of “arrows”. This is where
the name “arrow logic” comes from, cf. [16], [62]. In the more general case of
longer sequences, our algebras are like complex algebras of lists in the sense
of the programming language LISP, so we can regard a sequence or a list as a
generalization of an arrow, say like a longer arrow which has points in the middle,
too.

1 Algebras of binary relations

Let us start concentrating on the simplest nontrivial case, namely that of the
algebras of binary relations. Actually, these algebras will be strong enough to be
called a truly first-order (as opposed to propositional) algebraic logic, namely [29],
[87, 85.3] show that the logic captured by binary relation algebras is strong enough
to serve as a vehicle for set theory and hence for ordinary metamathematics.

A binary relation algebra (BRA for short) is an algebra whose elements are
binary relations and whose operations are the operations of taking the union
RUS of two relations R, S, taking the complement —R of R, taking the relation
algebraic composition R o S = {(a,b) : Ie(aRc and ¢Sb)} of two relations R, S

2 When explaining the so-called “holy grail of modern physics” (grand unification theories) in his
video “The Elegant Universe”, Brian Greene said that the key idea was replacing point-like building
blocks by string-like blocks (actually: superstrings), in their paradigm-shift. The motivation he gave
was that strings have more “degrees of freedom” than points do (strings can wriggle while points
cannot). The same can be said about switching from points to sequences which we are describing
here (sequences can wriggle, t0o). So perhaps the two paradigm shifts (the one described here and
the one in cosmology) might turn out to have something in common.



and taking the inverse R™' = {(b,a) : (a,b) € R} of the binary relation R. That
is,

Definition 1. A BRA is an algebra
A= (A;U,—, 0,71 where

(i) A is a nonempty set of binary relations,
(ii) (A;U,—) is a Boolean set algebra, i.e. R,S € A= RUS,—Re€ A, and
(iii) A is closed under taking relation algebraic composition and inverses, i.e.

R,Se A= RoS,R!cA.
BRA denotes the class of all algebras isomorphic to BRA’s. O

Item (ii) in the definition of a BRA above implies that A has a biggest element,
called the unit of A. Let V = [J.A be this unit. Then (iii) above implies that
VoV CVand V! CV, hence V is an equivalence relation. Thus the unit of a
BRA is always an equivalence relation.

Let us return to universal algebra as a unifying framework. If 2 is a BRA
as above, then the similarity type or signature of 2 consists of the function
symbols U, —, 0, 7! where the first two are Boolean join and complementation.?
Homomorphisms, equations etc. are defined accordingly; e.g. homomorphisms
should preserve all four operations, and (xr Uy)oz = (zoz)U(yoz), (xUy)™! =
=t Uy~! are typical equations.* We will often denote by 0 and 1 the Boolean
zero and unit, i.e. the smallest and biggest elements of the Boolean algebra.

Notice that a BRA is a BA enriched with further operations o, 7!, and these
extra-Boolean operations all distribute over U. Such algebras are called Boolean
algebras with operators (BAQO’s for short). A BAO (B;U, —, f; : i € I) is called
normal if the Boolean zero 0 is a zero-element for all the extra-Boolean operations
fi, ie.if fi(z1,...,2,) = 0 whenever one of the arguments x1,...,x, is 0. The
literature of BAO’s is quite extensive, see e.g. [46], [47] to mention two papers.

Having a fresh look at our BRA’s with an abstract algebraic eye, we notice
that they should be very familiar from the abstract algebraic literature. Namely,
a BRA 2l = (A;U, —, 0, 1) consists of two well known algebraic structures,

(R1) a Boolean algebra (A;U, —) and

3 In the literature various other symbols are used for these operations, perhaps the most often used
symbols are +, —,;, . We hope it will not lead to confusion that we use the same symbols for the
operations and the operation symbols denoting these operations.

4 These two equations express that composition and inverse distribute over U.



(R2) an involuted semigroup (A;o, 1)

sharing the same universe. Further, the connection between these two structures
is described by saying that

(R3) A= (A;U,—,0,7!) is a normal BAO.
These properties are all expressible with equations.

The above (R1)-(R3) define a nice equational class V containing BRA and is a
reasonable starting point for an axiomatic study of the algebras of relations. Pos-
tulates like above already appear in De Morgan [23], and since then investigations
of relation algebras have been carried on for almost 130 years.

The question naturally arises whether V equals BRA. It will turn out that
BRA indeed can be defined by a set E of equations, but this set E of equations
cannot be chosen to be finite. Thus V is bigger than BRA since V is defined by a
finite set of equations.

To illuminate the use of universal algebraic methods in algebraic logic, first
we recall some standard material from Universal Algebra.

Subdirect products of algebras, and subdirectly irreducible algebras are de-
fined in practically every textbook on Universal Algebra. An algebra 2 is subdi-
rectly irreducible if it is not (isomorphic to) a subdirect product of algebras all
different from 2 or the one-element algebra. A subdirect product is a subalgebra
of a product of algebras, having a special “economy” property. For our purposes,
this “economy” property will not be needed. By Birkhoft’s classical theorem,
every algebra is a subdirect product of some subdirectly irreducible ones. There-
fore, the subdirectly irreducible algebras are often regarded as the basic building
blocks of all the other algebras. In particular, when studying an algebra 2, it is
often enough to study its subdirectly irreducible building blocks.

For example, the unique (up to isomorphism) subdirectly irreducible BA is the
2-element one. It is not hard to check that the subdirectly irreducible BRA’s are
exactly the isomorphic copies of the BRA’s whose unit element as an equivalence
relation has exactly one equivalence block, i.e. whose unit element is a Descarte
space U x U.

Definition 2. A class K of algebras is called a discriminator class iff conditions

(i), (i1) below hold.

(i) There is a term 7(x,y, z,u) in the language of K such that in every subdirectly
wrreducible member of K we have

{z, if v =y,
T(x,y, z,u) =

u, otherwise.



(i1) Every algebra in K is a subdirect product of subdirectly irreducible members

of K.

The term T in (i) above is called a discriminator term.

A class K of algebras is called a variety if there is a set E of equations such
that K consists of exactly those algebras in which this set E of equations is valid.
By a discriminator variety we understand a discriminator class which is a variety.

Warning: Sometimes instead of the 4-ary T, the ternary discriminator term
t(z,y,2) = 7(x,y,2,2) is used. They are interdefinable, since 7(x,y,z,u) =
t(t(x,y,u),t(x,y, 2),z). Therefore, it does not matter which one is used. O

Having a discriminator term provides us with powerful methods, e.g. the dis-
criminator term can be used to code up any universal formula into an equation
in the subdirectly irreducible members of K.

Theorem 1. (Tarski) BRA is a discriminator variety. In particular, there is a
set E of equations defining the class BRA, i.e. such that an algebra A belongs to
BRA iff the set E of equations is valid in 2.

We outline a proof for Theorem 1 which relies on universal algebraic methods.
This method is widely usable in algebraic logic.

Outline of a proof for Theorem 1: Let Si denote the class of all subdirectly
irreducible members of BRA.

(a) As we mentioned above, the elements of Si are (up to isomorphism) exactly
those BRA’s whose unit element is of form U x U.

(b) BRA is a discriminator class. Let ¢(z) = 1 o x o1 where 1 denotes the
Boolean unit. By (a) then, in every member of Si, ¢(0) = 0 and ¢(z) = 1 whenever
x is nonzero. From this “switching term” ¢ and the Boolean operations it is not
difficult to write up a discriminator term for Si, as follows. Let x & y denote the
symmetric difference of x and y, i.e. x @y = [x N —y] U [y N —z]. Then (x =y
iff c(x®y)=0)and (z # y iff c(x @ y) = 1) for any z,y, in members of Si. Let
T(x,y,z,u) = [z N —c(z®y)|U[unc(z @ y)]. Then 7 is a discriminator term for
Si, and hence for BRA, too.

(¢) It is not hard to show, e.g. by considering BRA’s as many-sorted structures
and collecting the first-order formulas that define this class, that Si is closed under
taking ultraproducts. This is done e.g. in [14, section 1, Lemma 5.



(d) Direct products of BRA’s correspond to “disjoint union of units” just as
in the case of BA’s, i.e. if /A, B are BRA’s with unit elements V, W respectively,
then the direct product 2 x B of 2 and B is (isomorphic to) a subalgebra of
a BRA with unit element the disjoint union of V' and W. The same applies to
more than two algebras.

If K is a class of algebras, then HK, SK, PK, IK, UpK denote the classes of all
homomorphic images, all subalgebras, all direct products, all isomorphic copies
and all ultraproducts of members of K, respectively. The fundamental theorem of
discriminator varieties states that HSPK = ISPUpK whenever K is a discrimi-
nator class.

(e) From (c), (d) and (a) we get that BRA = ISPUpSi. From the fundamental
theorem of discriminator varieties and (b) then we get BRA = HSPSi.

(f) The fundamental theorem of varieties, Birkhoff’s variety theorem, states
that a class V of algebras is a variety iff V. = HSPL for some class L of algebras.
Thus BRA is a variety by (e).

BRA is a discriminator variety by (b) and (f). This finishes the proof of The-
orem 1. ad

We note that Theorem 1 implies that the homomorphic image of a BRA is
again a BRA. We do not know a simple direct proof for this.

Theorem 1 indicates that BRA is indeed a promising start for developing a nice
algebraization of (at least a part of) first-order logic, or to put it more plainly, for
developing an algebraic theory of relations. After Theorem 1, the question comes
up naturally if we can strengthen the postulates (R1)-(R3) defining V to obtain
a finite set F of equations describing the variety BRA. The answer is

Theorem 2. (Monk [66]) BRA is not finitely aziomatizable, i.e. the set E of
equations in Theorem 1 cannot be chosen to be finite. However, E can be chosen
to be decidable.

Theorem 2 was strengthened in many ways. Maddux [56] proved that the
set of equations containing only one variable and valid in BRA is not finitely
axiomatizable, either. Jonsson [45] proved that no set E of equations containing
only finitely many variables can axiomatize BRA, i.e. if F/ is as in Theorem 1 then
E has to contain infinitely many variables. Andréka [4] proved that besides the
necessity of using infinitely many variables in F/, one has to use all the operation



symbols U, —, o also: for any natural number k there have to be infinitely many
equations e in F such that e contains more than k distinct variables and all the
operation symbols U, —, o. This latter result does not extend to the operation
symbol ~! because, as is proved in [12], converse ~! is finitely axiomatizable
over the other operations in BRA. Venema [89] shows that not all elements of E
can have the shape of the so-called Sahlqvist equations. Hodkinson-Venema [39]
shows that E cannot consist of so-called canonical equations only (though BRA
is a so-called canonical variety).

One can obtain a decidable infinite set E of equations characterizing the
variety BRA, by Monk [67]. Lyndon [51] outlines another recipe for obtaining a
different such E which may work for BRA. However, the structures of these £’s are
rather involved. Hirsch-Hodkinson [37], [38] contain other recursively enumerable
E’s for Thm.1. In this connection, we note that the following is still an important
open problem of algebraic logic:

Problem 1. Find simple, mathematically transparent, decidable sets E of equa-
tions characterizing BRA. (A solution for this problem has to be considerably
simpler than, or at least markedly different from, the E’s discussed above.)

The efforts of trying to get rid of Theorem 2 became known as finitizability
investigations. Why would we want to get rid of Theorem 27 Algebras of unary
relations, i.e. BA’s, admit a nice finite axiomatization. Theorem 2 says that the
same is not possible for BRA’s, binary relation algebras. Since we are in the mid-
dle of the search for the right notion of algebras of (not only unary) relations, the
question naturally comes up whether Theorem 2 was perhaps only a consequence
of an unfortunate choice of the basic operations o and ~! of BRA’s.

Apparently, it is not so easy to get rid of Theorem 2 by moving to reducts
of BRA, e.g. by omitting operations from BRA’s. Axiomatizability of reducts of
BRA’s is a well investigated area even today. As a sample result we mention that
if we have U and o among the operations of the reduct, then the class remains
non-finitely axiomatizable (Andréka [3]). However, if we keep only N and o, then
the so obtained reduct is a finitely axiomatized variety (Bredikhin and Schein
[22]).

One can get very far in doing algebraic logic (for quantifier or predicate logics)
via BRA’s. If we want to investigate nonclassical quantifier logics, we can replace
the Boolean reduct (A;U, —) of (A;U, —, 0, 71) € BRA with the algebras corre-
sponding to the propositional version of the nonclassical logic in question (e.g.
Heyting algebras). By Andréka’s above quoted result, if instead of (A;U, —) we



use (an expansion of, like Heyting algebras) a distributive lattice, then Theorem
2 carries over.

It is a second central open problem?® of algebraic logic to find out whether we
can get rid of Theorem 2 by moving in the direction opposite to taking reducts.
This would mean to expand BRA’s by new, “set-theoretically defined” operations
on relations such that the new class would become finitely axiomatizable. This
quest is motivated by the fact that there are many known examples for a non-
finitely axiomatizable class K of structures such that an expansion K™ of K is
finitely axiomatizable. As an example, here we mention two results of Bredikhin
[20], [21].: If we take as basic operations o, 7!, we get a nonfinite-axiomatizable
but axiomatizable class, just as BRA is. However, if we add the unary operation
dom of taking the domain dom(R) = {(a,a) : 3b{a,b) € R} of a relation R,
and add the binary relation C of inclusion between relations, we get a finitely
axiomatizable class.

The following problem was raised in various forms by Jénsson, Henkin, Monk,
Tarski-Givant [87, lines 9-11 of p. 62, the first sentence of the paragraph preceding
3.5.(ix), and the first page of §3.5 (p. 56)].

Problem 2. Can one add to the operations of BRA finitely many new set-theoretic-
ally defined operations fi, ..., f, on relations such that the class {(, f1,..., fa) :
2 is a BRA} would generate a finitely axiomatizable variety.

The finitization problem is discussed in detail in [70], [81]. About the finiti-
zation problem there is a large number of new positive solutions, e.g. [50], [77],
[78], [79], [83], [84], [85].

The natural logical counterpart of BRA’s is classical first-order logic restricted
to three individual variables vy, vy, v2 and without equality ([29],[87]). As shown
in [87, §5.3], [29] this system is an adequate framework for building up set theory
and hence metamathematics in it. One can illustrate most of the main results,
ideas and problems of algebraic logic by using only BRA’s.

BRA’s also play an important role in theoretical computer science (cf. e.g.
the references given in [70]). Jénsson [44] calls a finitely axiomatizable variety
approximating BRA Program Specification Algebras.

If we want to algebraize first-order logic with equality, we have to add an
extra constant Id, representing equality, to the operations. RRA denotes the class

5 This is not really a single problem; it is rather a large circle of problems motivated (and “punc-
tuated”) by many deep results. In a sense, it is a rich theory built around a deep, open, almost
philosophical question.



of so obtained algebras. RRA abbreviates representable relation algebras. RRA
has been investigated more thoroughly than BRA; actually, Theorems 1,2 above
were proved first for RRA. For historical notes on Theorem 1 for RRA see [87,
Thm.8.3(v) on p. 240].

2 Algebras of more general relations

By this point we might have developed some vague picture of how algebras of
binary relations are introduced, investigated etc. One might even sense that they
give rise to a smooth, elegant, exciting and powerful theory. However, our original
intention was to develop algebras of relations in general, which should surely
incorporate not only binary but also ternary, and in general n-ary relations.

Let us see how to generalize our BRA’s to relations of higher ranks. Let us
fix n to be a natural number. Defining composition of n-ary relations for n > 2
is complicated (however, not impossible). Instead, we will single out simple basic
operations on n-ary relations and then show that composition, and all kinds of
other operations on ternary etc. relations are expressible via these basic simple
operations.

From now on for a while, let n be a fixed natural number. Let U be any set.
Then "U denotes the n-th Cartesian power of U, i.e. "U is the set of all U-termed
sequences of length n, i.e. "U = U x - - - x U (n times). An n-ary relation over U is
then just a subset of "U. The following are natural operations on n-ary relations.

Let 1 <7 < nand R C "U. The -th projection or cylindrification of the
relation R is defined as

(R) ={{ar,...,ai_1,u,ais1,...,0,) : (a1,...,a,) € Rand u € U}.

)

The n-ary identity relation over U is defined to be
ldpo ={(u,...,u) ruec U} C"U.

Intuitively, i-th cylindrifying a relation R is “deleting the information content
of the i-th argument”, and Id,, ;; can be used to transfer “information” between
the arguments of a relation.

The relation ¢;(R) is called the smallest i-cylinder containing R. Using n = 3
and U the real numbers, we obtain the greatest element U x U x U of our algebra
as the usual Cartesian space, and i-cylinders appear as “cylinders” parallel with
the i-th axis. Let n =2 and R C U x U. Then ¢y(R) = U x Rg(R) and ¢;(R) =
Dom(R) x U. This example shows that the operations ¢; are natural ones (on
relations). See Figures 1,2.
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Definition 3. A cylindric algebra of n-ary relations over the set U is an algebra

(A;U,—,cV . Y Id, ) where

)N Y

(i) A is a set of n-ary relations on U such that
(ii) A is closed under the specified operations, i.e.
ld,v € Aand R,S€ A= RUS,—R,c{(R),...,cJ(R) € A. 0

Note that (A;U, —) is just the usual Boolean set algebra with universe A.

A cylindric algebra of relations, a Cs in short, is a cylindric algebra of n-
ary relations over some set U. Looking at Cs’s with an abstract algebraic eye,
we notice that Cs’s are normal BAQO’s since the extra-Boolean operations, the
cylindrifications c;, distribute over Boolean join and are “normal”, i.e.

G(RUS)=c¢(R)Ucg(S) and ¢(0)=0.

The cylindrifications have some extra good properties, namely in addition to
being “normal operators”, they are also “closure operators”, i.e.

CiCi(R) = Ci(R>,

moreover they are so-called complemented closure operators and they commute
with each other, i.e.

ci(—ci(R)) = —ci(R), and c;c;(R) = cjci(R).

There are similar natural equations concerning the constant Id,, ;7. These state
that Id,, 7 codes up a “Leibnizian equivalence relation”.: For 1 <7 < j < n define

|dij =C.. . C1Cipr - GGy - cnldn,U.
Then Id;; = {s € "U : s; = s;}. Now the “Leibnizian equivalence axioms” are

|d“ = 1, |d” = ldjia Idzk = Cj(ldij N |d]k) lfj ¢ {l, ]{?}, and

Thus, a Cs is a

(C1) anormal BAO with commuting complemented closure operators c; and
(C2) the constant element Id,, ;; satisfies the Leibnizian equivalence axioms.



The above (C1), (C2) define a nice variety called the variety CA, of cylindric
algebras. (The subscript n in CA, refers to the rank n of our relations, fixed ear-
lier.) Advantages of cylindric algebras of relations over BRA’s are the following.
(1) Cs’s contain only unary extra-Boolean operations, and unary operations are
much easier to handle in algebraic investigations than binary ones. (2) The cylin-
drifications and the diagonal constant have very clear geometrical meanings, they
are easy to draw, cf. Figures 1,2. On the other hand, it is not so easy to draw
the geometrical meaning of relation composition of binary relations. (3) Finally,
the logical “content” of the Cs operations are very straightforward (cf. e.g. [81]),
while it is not so transparent how relation composition codes up quantification.

We believe that algebra, geometry, and logic form a coherent unit which lies
at the very heart of algebraic logic. These three subjects - algebra, geometry, logic
- often show up together and give three complementing faces of the same thing.
This “trinity” is very visible in cylindric algebra theory, but it is also very visible
in e.g. space-time theory, too, where all these subjects play important roles, cf.
e.g. [2], [53], [55].

Let RCA, denote the class of all isomorphic copies of subdirect products of
Cs’s. By using the notation introduced in the proof-idea for Theorem 1, RCA, =
ISPCs,, where Cs, denotes the class of all cylindric algebras of n-ary relations.
Algebras in RCA, are isomorphic copies of natural algebras of relations with
greatest element a disjoint union of Cartesian spaces. One can see this by using
step (b) in the proof-idea for Theorem 1.

Theorem 3. (Tarski, Monk [67]) RCA, is a discriminator variety that can be
axviomatized with a decidable set E of equations but if n > 2, then cannot be
axiomatized with a finite set E of equations.

Strengthened versions of Theorem 3, similar to those for Theorem 2, are
known, cf. e.g. [4]. This algebra of n-ary relations can fruitfully be extended
to infinite ordinals n, where we get a similar landscape (however, as expected,
where new kinds of phenomena make the landscape more interesting). We do not
follow up that direction here; we only note the following.

The class RCA,, of infinite-dimensional representable cylindric algebras is the
natural generalization of RCA, where n goes to the least infinite ordinal w. If
we want to treat all finitary relations in one kind of algebras, then we need
RCA, (comprising all the RCA,’s). It is important to emphasize that the logical
counterpart of RCA,, is the schema version of first-order logic, cf. [69]. More
concretely, the formulas of this logic are the first-order formula schemas instead
of being only the first-order formulas themselves. So this schema version of L,



can be seen as a generalization, or extension, of usual first-order logic L,,,. This
formula-schema version of L, was called rank-free version of first-order logic in
[14, pp. 232-234]. For more on the schema-version of L, we refer to [69], [76,
§3.7, especially pp. 361-362], [63, p. 167] and to [82, the last 8 lines on p. 668].

3 Decidability, non-square approach

A class K of algebras is called decidable iff its equational theory Eq(K) = {e: K |=
e, e is an equation} is decidable. In algebraic logic, the question of decidability
of equational theories is an important one. Besides asking whether, say, BRA (or
RCA,,, or whichever algebras of relations we are contemplating) is decidable, it
is also important to ask which varieties contained in BRA or containing BRA are
decidable. Recent works in this direction include [6], [41], [49], [65], [71], [86].

Most of the classes studied so far are undecidable, e.g. the variety V defined
by (R1)-(R3) in section 1 is already undecidable, moreover, it remains such if
we add equations valid in BRA. On the other hand, if we omit the axiom of “o”
distributing over join, then the class becomes decidable (a result of V. Gyuris).
The variety of BAO’s (of any fixed similarity type) is also decidable and has many
decidable subvarieties, cf. e.g. [41].

Some of the reducts of BRA are decidable, while others are not, e.g. omitting
complementation from BRA makes it decidable, cf. [11]. Further, let co(z) = 1ox.
Then e.g. the reduct containing the Booleans, ~!,1d, and ¢, only is decidable (a
version of this is proved in [33], a simpler proof is available from the authors).
Interestingly, most of what are called relativized versions of algebras of relations
turn out to be decidable (even if we add new operators not available in BRA), cf.
e.g. [61], [65], [71]. These “relativized versions” are based on the following idea.

When looking for a natural concept of a (subdirectly irreducible) algebra of
relations, we need not necessarily require the greatest element of an algebra of
relations to be a Cartesian square (i.e. of form U x U, or of form "U for some
n). Of course, this greatest element has to be a relation (since all elements are
supposed to be relations), but perhaps not necessarily of the form U x U. This
approach is called the “non—square approach” by Yde Venema (cf. Venema [88]),
which might be a more suggestive name than the traditional “relativized version”
used e.g. in [34]. The non-square approach still yields algebras consisting of real
relations, so it is a reasonable and healthy part of the quest for natural algebras
of relations outlined in §2. A surprising result in Marx [61] says that all Boolean
Algebras with Operators (BAQ’s) are isomorphic to such non-square algebras of



relations (if there are only finitely many operations in our algebras).® This seems
to point in the direction that the unifying power and circle of applicability of
algebras of relations is considerably greater than we thought (which in turn was
already much greater than what one would naturally expect).

So far, the greatest elements of our algebras were Cartesian spaces, i.e. of
the form "U (both in the case of BRA’s and Cs’s). Removing this restriction
motivates the definition of cylindric-relativized set algebras.

Definition 4. Let « be an arbitrary (perhaps infinite) ordinal. Let V' C *U be an
arbitrary a-ary relation. Then by an algebra of subrelations of V' we understand
a structure

(AU, —, ¢, Id}; 14, < )  where

(i) (A;U,—) is a Boolean set algebra with greatest element V|
(ii) the operations c and Idz‘g are defined by
c/(R)=VnNnc/(R) and Idl‘; =Vn Idg, foralli,j <« and R C "U,

(iii) A is closed under the operations c! and Idl‘-;, i.e.

i,j<aand Re A = Id},c/(R) € A
A cylindric relativized algebra of a-ary relations, a Crs, in short, is an algebra
of subrelations of an «-ary relation, and

Crs,, is the class of such algebras (up to isomorphism). O

v

Clearly, Crs’s are normal BAQO’s, but it may happen that c¢; is not a closure

operator.

Theorem 4. (Németi) Let v # 1. Then Crs,, is an arithmetical variety which is
non-finitely axiomatizable when o > 2. The equational theory of Crs, is decidable.

Though Crs, can still not be defined with finitely many equations, in contrast
with BRA and RCA,, it can be defined by a set E of equations which contains
only three variables, a result of Resek [75]. Moreover, CA, N Crs, is a nice finitely
axiomatizable variety of n-ary relations. Actually, adding the two so-called Merry-
Go-Round equations to the equations defining CA, we get an axiomatization for
CA, N Crs,, for a proof see Andréka-Thompson [15]. In some sense, one could say

S This representation becomes especially natural if any two extra-Boolean operators are so called
conjugates of each other (this does not restrict the ranks of these operators).



that CA, N Crs, is the real algebra of n-ary relations, and it was only an accident
that Tarski omitted the so-called Merry-Go-Round equations from the definition
of a cylindric algebra. (The Merry-Go-Round equations are due to Henkin, we
do not recall these simple and elegant equations here.) A sample literature on
cylindric relativized set algebras is [35], [57], [68], [71], [75], [83].

The theory of Crs’s and its methods proved to be very fruitful in applications.
The Amsterdam school used Crs’s very fruitfully in connection with arrow logic,
dynamic logic, and well behaved fragments of first-order logic. The definition of
the bounded and guarded fragments of first-order logic, which proved to be so
successful, grew out from Crs-theory, see Andréka-Benthem-Németi [5].

RCA, is the algebraic counterpart of the n-variable fragment of first-order
logic, while CA, N Crs,, is the algebraic counterpart of the bounded and guarded
fragments of first-order logic.

The guarded fragment is basically the ideal logic of bounded quantifiers. The
basic idea is that instead of unrestricted quantifiers like Vap(x) one allows only
bounded quantifiers like (Vx € y)p(z,y). Intuitively, in the bounded or guarded
fragments one allows only statements like “all dogs are black” instead of uncon-
trollably general statements like “all things are black”. In our opinion, the so
restricted logic is quite natural. Actually, there was a period in the history of
logic where the only quantifiers allowed were guarded ones.

CA, and Crs, turned out to be very useful in giving a new, wider semantics for
first-order logic, and this new semantics made possible a fine-structure analysis
of first-order logic, see [71], [72].

More detailed and more concrete connections between algebraic logic and logic
are in [14], [33], [70] except for new kinds of recent applications of Crs,-theory
to the finite-variable fragments, finite model theory, the bounded fragments, and
the guarded fragment. On the latter see 28], [38], [62].

4 New trends, applications

The above seems to illustrate that history does not repeat itself. Namely, the
algebraization of propositional logic turned out to be an immensely powerful
engine for driving propositional logic in its original form in a very straightforward
way. Were we naive, we would ask the question: how does Tarskian algebraic logic
(CA’s, RA’s, Crs’s) simplify the theory of L, i.e. first-order predicate logic, in
its classical form. This turns out to be the wrong question. The right question



is: what new do the results and tools of Tarskian algebraic logic tell us about
the subject matter of logic and its application areas. Indeed, in the category
theoretic version of algebraic logic this has always been the way of formulating
the question, e.g. in the FOLDS approach of Michael Makkai [59], the definition of
first-order logic is modified according to the patterns emerging naturally from the
ways topos theory behaves. Analogously, an application of the negative behavior
of RCA’s contrasted with the positive behavior of Crs’s is the introduction of the
guarded fragment of first-order logic in [5] yielding many positive results about
the guarded fragment of logic, e.g. [30], [31].

When obtaining the strong negative results on non-finitizability of RCA, by
Monk and then by Joénsson, Maddux, Andréka, Venema, Hodkinson-Venema, a
pessimist could have said that Tarskian algebraic logic failed, and this is the end
of the story. This would be analogous to Morley’s attitude to the outcome of
the Michelson-Morley experiment saying that it represents a failure. The right
interpretation of the same experiment e.g. by Einstein was that it is an immense
success, and that it provides us with much more profound insights into the nature
of the world than was ever hoped for by Michelson and Morley, the designers of
the experiment. Analogously, when looking at the strong negative results concern-
ing finitizability of the square version of Tarskian algebraic logic, we should ask
ourselves what do these results teach us about the subject matter of logic and its
applications, related areas. Then we would immediately conclude several useful
insights, e.g. quantifier logic is much more complex than propositional logic, the
formula schema version of quantifier logic is drastically different from the formula
version, the schema version being inherently non-finitizable, and there seems to
be no simple way of extending Godel’s completeness theorem from the formula
version to the schema version of this logic. As a contrast, in propositional logic the
schema version and the formula version practically coincide. Further, the finite
variable fragments of L,,, are inherently non-finitely axiomatizable. However, this
can be helped by switching over to studying the guarded version of first-order
logic. Namely, the finite variable fragments of the guarded version behave well.

The celebrated Resek-Thompson theorem about finitizability of CA, N Crs,
shows that if we are willing to loosen up the squareness of the standard model
theory of L, then we can obtain nice streamlined finite axiomatizations even for
the formula schema version of this logic. Further, all these investigations lead us to
defining very nice and illuminating new logics which are useful for understanding
various kinds of phenomena studied in connection with applying logic. Examples
are e.g. in the semantics of natural language discourse an example of which is the
so called dynamic semantics paradigm for linguistics or in other words, dynamic
logic of natural language semantics, cf. Benthem [16]. More general examples
for such positive applications are summarized in the book on logical dynamics



by van Benthem [17]. Further rich sources of examples of positive applications
of Tarskian algebraic logic are Gabbay-Kurucz-Wolter-Zakharyaschev [28] and
Rybakov [76]. Rybakov completely independently of algebraic logic, investigated
the schema properties of first-order logic motivated by essential considerations
arising from the very nature of logic as such. He found a very rich collection of
algebraic logic results immediately applicable to the questions he investigated.

These kinds of insights have led to a renaissance of Tarskian algebraic logic
centered about e.g. Amsterdam, Budapest, London, Stanford (in alphabetical
order), e.g. [1], [5], [9], [13], [17], [19], [28], [36] - [40], [49], [52], [61] - [65], [72],
[79] - [86]. The new philosophy is summarized as follows. Instead of trying to
use Tarskian algebraic logic as a device designed for studying the rigidly fixed
formalism known as L., and then applying L., to the “world of logic”, we
sidestep L, and ask ourselves what Tarskian algebraic logic and its variations
can tell us about the world of logic in general (and its applications). There are
natural ideas about the world of logic which do not show up at all in the standard
framework of L,,,, and which come up naturally in Tarskian algebraic logic. Such
an idea is illustrated by the category theory motivated approach to logic called
Institutions theory putting an emphasis on the category of theory morphisms
and theories. This structure does show up quite naturally in Tarskian algebraic
logic but not in L. This is one of the reasons why the search for an algebraic
logic version of the Lindstrém theorems (about L,,,) remains an open problem
though it was published by Craig in 1988. (We note that L, and its treatment
in Tarskian algebraic logic are discussed in detail in e.g. [33, Part II], and in [14,
section 7].)

A further rich application area of Tarskian algebraic logic is the direction
known as substructural logics and Lambek calculus, cf. [9], [13], [16], [62].

Actually, the presently suggested strategy for algebraic logic (to sidestep the
standardized forms of L) has been fruitfully followed by the category theoretic
version of algebraic logic, e.g. by topos theory. This attitude of category theoretic
algebraic logic made it very attractive for many application areas beginning with
theoretical computer science and ending with the efforts for generalizing general
relativity to the direction of quantum gravity, cf. e.g. works of Jeremy Butterfield
and Lee Smolin (cosmo-logic). An example for the relativistic applications of
topos theory is to obtain via quantum logic a quantum-first-order logic and then
a quantum set theory. But if this can be done by toposes, then it also can be
done by the orthomodular-lattice valued cylindric algebras. Namely, probabilistic
cylindric algebras have been studied by Ferenczi and others, cf. [25]-[27], [73], [74].
Following the same recipe one can replace Boolean valued cylindric algebras by
orthomodular lattice valued cylindric algebras. Then this can be used as indicated
above.



Almost all application areas of logic can benefit from Tarskian algebraic logic
because the latter provides us with a more refined, more sensitive picture of the
landscape of the subject matter of logic. A relatively new application area of logic
is the logical analysis of relativity theory, cf. [7], [8], [565]. The structuralist spirit
of algebraic logic outlined at the beginning of the present paper has already been
applied in this area in the duality between the streamlined relativistic geometries
and the observational models of relativity theory, cf. [53, §4.].
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