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1 Aims and introduction

Applying mathematical logic in foundations of relativity theories is not a new idea at all,

it goes back to such leading mathematicians and philosophers as Hilbert, Reichenbach,

Carnap, Gödel, Tarski, Suppes and Friedman among others. The work of our school of

Logic and Relativity led by Andréka and Németi is continuation to their research. My

thesis is a direct continuation of the works by Andréka, Madarász, Németi and their

contributors [1].

Our research is strongly related to Hilbert’s sixth problem of axiomatization of

physics. Moreover, it goes beyond this problem since its general aim is not only to ax-

iomatize physical theories but to investigate the relationship between basic assumptions

(axioms) and predictions (theorems).

Our other general aims are to axiomatize relativity theories within pure first-order

logic using simple, comprehensible and transparent basic assumptions only; to prove the

surprising predictions of relativity theories from a few convincing axioms; to eliminate

tacit assumptions from relativity by replacing them with explicit axioms formulated

in first-order logic (in the spirit of the first-order logic foundation of mathematics and

Tarski’s axiomatization of geometry); and to provide a foundation for physics similar

to that of mathematics.

For good reasons, the foundation of mathematics was performed strictly within first-

order logic. One of the reasons is that staying within first-order logic helps to avoid

tacit assumptions. Another reason is that first-order logic has a complete inference

system while second-order logic (and thus any higher-order logic) cannot have one.

If we have an axiom system, we can ask which axioms are responsible for a certain

consequence of our theory. This kind of reverse thinking can help us to answer the

why-type questions of relativity. For example, we can take the twin paradox and check

which axiom of special relativity was and which one was not needed to derive it. The

weaker an axiom system is, the better answer it offers to the question: “Why is the

twin paradox true?”. For details on answering why-type questions of relativity by the

methodology of the present work, see [14]. In my thesis there are several predictions of

relativity investigated in this manner.
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2 Methods used

The thesis was basically built by using standard techniques of first-order logic including

some results of model theory, such as Gödel’s completeness theorem; however, to achieve

our results on accelerated observers, we had to redevelop some tools and methods of

real analysis over arbitrary ordered fields in order to keep our investigation within

first-order logic.

3 Results

To formulate our results, we present our first-order logic language that we used in our

investigation. First we fix a natural number d ≥ 2 for the dimension of spacetime. Our

language contains the following non-logical symbols:

{B, Ob, IOb, Ph, Q, +, ·, <, W },

where B (bodies), Ob (observers), IOb (inertial observers), Ph (light signals or photons)

and Q (quantities) are unary relation symbols; + and · are binary function symbols

and < is a binary relation symbol (for field operations and ordering on Q); and W

(world-view relation), the key relation of our theory, is a 2 + d-ary relation symbol.

B(x), Ob(x), IOb(x), Ph(x) and Q(x) are translated as “x is a body,” “x is an

observer,” “x is an inertial observer,” “x is a photon” and “x is a quantity,” respec-

tively. We use the world-view relation W to speak about coordinatization by trans-

lating W(x, y, z1, . . . , zd) as “observer x coordinatizes body y at spacetime location

〈z1, . . . , zd〉,” (i.e., at space location 〈z2, . . . , zd〉 and at instant z1). Our first axiom

expresses very basic assumptions, such as: both photons and observers are bodies,

inertial observers are also observers, etc.

AxFrame Ob∪Ph ⊆ B, IOb ⊆ Ob, W ⊆ Ob×B×Qd, B∩Q = ∅; + and · are binary

operations, and < is a binary relation on Q.

To be able to add, multiply and compare measurements of observers, we provide an

algebraic structure for the set of quantities with the help of our next axiom.

AxEOF The quantity part 〈Q; +, ·, <〉 is a Euclidean ordered field, i.e., a linearly

ordered field in which positive elements have square roots.

We treat AxFrame and AxEOF as part of our logic frame. Hence without any further

mentioning, they are always assumed and are part of each axiom system we propose

here.
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3.1 Results on Clock Paradox

First we give a geometrical characterization of the clock paradox (a linear approxima-

tion of the twin paradox) within an axiom system of kinematics containing the following

four axioms only:

AxSelf An inertial observer coordinatizes itself at a coordinate point iff its space

component is the origin, i.e., space location 〈0, . . . , 0〉.

AxLinTime The world-lines of inertial observers are lines on which time is elapsing

uniformly.

AxEv Every inertial observer coordinatizes the very same events (meetings of bodies).

AxShift Any inertial observer observing another inertial observer with a certain time-

unit vector also observes still another inertial observer, with the same time-unit

vector, at each coordinate point of its coordinate domain.

Kinem:= {AxSelf, AxLinTime, AxEv, AxShift }

Situations in which clock paradox can occur (i.e., in which one inertial observer

leaves another (stay-at-home observer), then meets a third one with whom it synchro-

nizes its clock and who returns to the stay-at-home observer) are called clock paradox

situations.

CP In every clock paradox situation, every inertial observer observes that the stay-

at-home observer measures more time than the other two do together.

NoCP In every clock paradox situation, every inertial observer observes that the stay-

at-home observer measures the same amount of time as the other two do together.

AntiCP In every clock paradox situation, every inertial observer observes that the

stay-at-home observer measures less time than the other two do together.

Minkowski sphere of observer m, in symbols MS‡
m, is defined as the set of time-unit

vectors (reflected to the origin if they point towards the past) of observers. We have

given the following geometrical characterization of clock paradox and its variants:
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Theorem 3.1. Assume Kinem. Then

CP ⇐⇒ ∀m ∈ IOb MS‡
m is convex,

NoCP ⇐⇒ ∀m ∈ IOb MS‡
m is flat,

AntiCP ⇐⇒ ∀m ∈ IOb MS‡
m is concave.

This characterization has several surprising consequences. To formulate them we

need the following axioms:

AxThExp+
Inertial observers can move in any direction at any finite speed.

AxThExp∗
Inertial observers can move in any direction at a speed which is arbitrarily

close to any finite speed.

AbsTime All inertial observers measure the same elapsed time between any two events.

By the following theorem, NoCP logically implies AbsTime if AxThExp+ and Kinem

are assumed; however, if we assume the more experimental axiom AxThExp∗ instead

of AxThExp+, AbsTime does not follow from NoCP, which is an astonishing fact since

it means that without the theoretical assumption AxThExp+ we would not be able

to conclude that time is absolute in the Newtonian sense even if there were no clock

paradox in our world.

Theorem 3.2.

AbsTime |= NoCP, and (1)

Kinem + AxThExp+ + NoCP |= AbsTime, but (2)

Kinem + AxThExp∗ + NoCP 6|= AbsTime. (3)

To formulate consequences of our characterization on special relativity, we introduce

an axiom system of special relativity.

AxPh For every inertial observer, the speed of photons is 1.

AxSymDist Inertial observers agree as to the spatial distance between events if they

are simultaneous for both of them.

AxThExp Inertial observers can move in any direction at any speed slower than 1, i.e.,

the speed of light.
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SpecRel:= {AxSelf, AxPh, AxEv, AxSymDist }

The following statement is a consequence of our axiom system SpecRel:

SlowTime Relatively moving observers’ clocks slow down.

We cannot logically compare SlowTime and CP within SpecRel since both of them

are its consequences. Therefore we compare them within Kinem extended with AxPh.

The following theorem shows that SlowTime is logically stronger than CP.

Theorem 3.3. Let d ≥ 3. Then

Kinem + AxPh + SlowTime |= CP, but (4)

Kinem + AxPh + AxThExp + CP 6|= SlowTime. (5)

Like the similar results of [12] and [13], the following theorem also answers Question

4.2.17 of Andréka–Madarász–Németi [1]. It shows that CP is logically weaker than

axiom AxSymDist of SpecRel.

Theorem 3.4. Let d ≥ 3. Then

Kinem + AxPh + AxSymDist |= CP, but (6)

Kinem + AxPh + AxThExp + CP 6|= AxSymDist. (7)

These results are based on [12], [13] and [10].

3.2 Results on Relativistic Dynamics

Here we extend our approach to dynamics. The idea is that we use collisions for

measuring relativistic mass. We could say that the relativistic mass of a body is a

quantity that shows the magnitude of its influence on the state of motion of the other

bodies it collides with. The bigger the relativistic mass of a body is, the more it changes

the motion of the bodies colliding with it. To be able to formulate that, let us extend

our first-order logic language by a new (d + 3)-ary relation M for relativistic mass. We

use this relation to speak about the relativistic masses of bodies according to observers

by translating M(b, ~p, x, k) as “the relativistic mass of body b at coordinate point ~p is x

according to observer k.” Since there can be more than one x which is M-related to b,

~p and k, we introduce the following definition: the relativistic mass of body b at ~p ∈ Qd

according to observer k, in symbols mk(b, ~p ), is defined as x if M(b, ~p, x, k) holds and

there is only one such x ∈ Q; otherwise mk(b, ~p ) is undefined.
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AxMass According to any observer, the relativistic mass of a body at any coordinate

point is defined and nonnegative, and it is zero iff the body is not present at the

point.

AxCenter The world-line of the inertial body originated by an inelastic collision of two

inertial bodies is the continuation of the center-line of the masses of the colliding

inertial bodies according to every inertial observer.

The rest mass m0(b) of body b is defined as λ ∈ Q if (1) there is an observer

according to which b is at rest and the relativistic mass of b is λ, and (2) the relativistic

mass of b is λ for every observer according to which b is at rest.

AxSpeed According to any inertial observer, the relativistic masses of two inertial

bodies are the same if both of their rest masses and speeds are equal.

AxSpeed justifies the notation m0(b).

Ax∀inecoll For any inertial observer, any possible kind of inelastic collision of inertial

bodies can be realized.

AxThExp↑ For any inertial observer, in any spacetime location, in any direction, at

any speed slower than that of light it is possible to “send out” an observer whose

time flows “forwards.”

SpecRelDyn:=
{

AxMass, AxCenter, AxSpeed, Ax∀inecoll, AxThExp↑
}

∪ SpecRel

Theorem 3.5. Let d ≥ 3. Assume SpecRelDyn and let k be an inertial observer and

b be an inertial body having rest mass. Then

m0(b) =
√

1 − vk(b)2 · mk(b).

This theorem is stronger than corresponding results in the literature since it requires

fewer assumptions, and it also leads to the Einsteinian insight E = mc2.

Proposition 3.6. SpecRelDyn 6|= ConsMass, and SpecRelDyn 6|= ConsMomentum.

In the spirit of AxCenter, we also formulate a geometrical axiom AxCenter+ which is

equivalent to the conservation of mass and momentum (ConsMass and ConsMomentum).

These results are based on [2], [3] and [9].
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3.3 Results on Twin Paradox

It is clear that SpecRel is too weak to answer any nontrivial question about accelera-

tion since none of its axioms mentions non-inertial observers. So we extend it by the

following natural axiom on accelerated observers:

AxCmv Any accelerated observer at any event encountered coordinatizes the nearby

world for a short while as an inertial observer does.

If we add AxCmv and two auxiliary axioms (AxSelf+
0

, AxEvTr) to our axiom system

SpecRel, we get its following natural extension to accelerated observers:

AccRel0:=SpecRel ∪
{

AxCmv, AxSelf+
0
, AxEvTr

}

AxSelf+
0

An observer coordinatizes itself at a coordinate point iff its space component

is the origin and the observer coordinatizes something there; and the set of time-

instances in which an observer encounters an event is connected and has at least

two distinct elements.

AxEvTr Every observer encounters the events in which it is observed.

Surprisingly, AccRel0 does not imply the formulated version of the twin paradox

(TwP). Moreover, by the following theorem, even adding the whole first-order theory

of real numbers to this natural extension is not enough to get a theory that implies

TwP.

Theorem 3.7. Th(R) + AccRel0 6|= TwP.

At first sight this result suggests that our task cannot be carried out within first-

order logic, which would be depressing as there are weighty methodological reasons for

staying within first-order logic, see, e.g., [1] or Chapter 11. However, by using a trick

from the methodology of approximating second-order theories by first-order ones, we

can formulate an axiom schema (CONT) that says that every nonempty bounded subset

of Q that is definable in our language has a supremum. By the following theorem, if

we add CONT to our theory AccRel0, we get a theory strong enough to imply TwP.

AccRel:=AccRel ∪ CONT

Theorem 3.8. AccRel |= TwP if d ≥ 3.

These results are based on [6] and [13].

7



3.4 Results on Tower Paradox

Now we show that our theory AccRel is also strong enough to make predictions about

gravitation by proving theorems about gravitational time dilation, which is roughly the

same as “gravitation makes time flow slower,” that is to say, clocks in the bottom of a

tower run slower than clocks in its top.

We use Einstein’s equivalence principle to treat gravitation in AccRel. So instead of

gravitation we talk about acceleration and instead of towers we talk about spaceships.

This way the gravitational time dilation becomes the following statement: “Time flows

more slowly in the back of a uniformly accelerated spaceship than in its front.” This

statement can be translated into our language in several ways depending on which

distance and simultaneity concepts we choose.

We define a spaceship, in symbols >
∣

∣b, k, c
〉

, as a triplet of observers b, k and c such

that b, k and c are coplanar and b and c are at (not necessarily the same) constant

distances from k according to k.

In the case of radar simultaneity and radar distance, we prove the following theorem:

Theorem 3.9. Let d ≥ 3. Assume AccRel. Let >
∣

∣b, k, c
〉

rad
be a radar spaceship

(i.e., a spaceship which is determined by radar distance and synchronizes by radar

simultaneity) such that: (i) observer k is positively accelerated, and (ii) the direction

of the spaceship is the same as that of the acceleration of observer k. Then (1) the

clock of b runs slower than the clock of c as seen by k by radar; and (2) the clock of b

runs slower than the clock of c as seen by each of k, b and c by photons.

In the case of Minkowski simultaneity and Minkowski distance, we prove the following

theorem:

Theorem 3.10. Let d ≥ 3. Assume AccRel. Let >
∣

∣b, k, c
〉

µ
be a Minkowski space-

ship (i.e., a spaceship which is determined by Minkowski distance and synchronizes

by Minkowski simultaneity) such that: (i) observer k is positively accelerated, (ii) the

direction of the spaceship is the same as that of the acceleration of observer k, and (iii)

observer b is not too far behind k. Then (1) the clock of b runs slower than the clock

of c as seen by k by Minkowski simultaneity; and (2) the clock of b runs slower than

the clock of c as seen by each of k, b and c by photons.

These results are based on [8], [7] and [11].
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3.5 Results on General Relativity

We derive an axiomatic theory of general relativity from AccRel by “eliminating the

privileged class of inertial reference frames,” which was Einstein’s original recipe for

obtaining general relativity from special relativity, see [5]. So we realized Einstein’s

original program formally and literally, see [4]. We modify the axioms SpecRel and

AxCmv one by one using the following two guidelines:

• let the new axioms not speak about inertial observers, and

• let the new axioms be consequences of the old ones and our theory AccRel.

The modified axioms are marked by a minus sign and instead of AxCmv− we intro-

duce a series of axioms, which are variants of AxCmv− and each of which ensures the

smoothness of world-view transformations to some degree.

AxDiffn The world-view transformations are n-times differentiable functions.

We introduce a finite axiom system of general relativity for each natural number n:

GenRelω:=
{

AxSelf−, AxPh−, AxEv−, AxSymDist−, AxDiffn

}

∪ CONT

We also introduce a smooth version which contains infinitely many axioms:

GenRelω:=
{

AxSelf−, AxPh−, AxEv−, AxSymDist−
}

∪ {AxDiffn : n ≥ 1 } ∪ CONT

The following theorems show that our axiom systems capture general relativity well.

Theorem 3.11. Let d ≥ 3. Then GenReln is complete with respect to n-times differ-

entiable Lorentzian manifolds over real closed fields.

Theorem 3.12. Let d ≥ 3. Then GenRelω is complete with respect to smooth

Lorentzian manifolds over real closed fields.

4 Conclusion

This thesis is a good example that within our flexible first-order logic framework several

questions of relativity can be treated in a nice way; and that there are no unsurmount-

able barriers to extending our axiomatizations to general relativity. Moreover, we can

obtain a simple, comprehensible and transparent first-order axiom system of general

relativity in one natural step from AccRel, which fills the gap between special and

general relativity, and is strong enough to make predictions about gravitation.
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