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One of the most satisfying aspects of the Third International Conference on
Combinatorial Mathematics was the continual exchange of open problems that
occurred. These problems were presented during the course of lectures, during the
discussion periods following lectures, and during the special problem session that
was a major activity of one evening.

The fourteen questions posed below were asked at that special session. For the
benefit of the reader, extra material has been appended to the questions in the form
of “Remarks” in those cases when solutions are known, and by “References” to
provide some background information. The addresses of the posers of the problems
are included so that the readers of this volume can obtain additional current infor-
mation from them or perhaps provide more information to them.

The number of labeled graphs not containing a specific subgraph.
P. ErDOS, The Hungarian Academy of Sciences, Budapest, Hungary

Let G be a graph. Denote by T(n; G) (T for Turan) the largest integer for which
there is a graph on n vertices and T(n; G) edges that does not contain G as a
subgraph. The number f(n; G) of labeled graphs on n vertices that do not contain G
as a subgraph clearly satisfies

f(n; G) > 279,
Also, it is known that
f(n; G) < 201 +otNT: 6) (1)
For G = K(r), (1) was proved by Erdos, Kleitman, and Rothschild [2], and in a
stronger form for G = K(3). In a forthcoming paper, Colaitis, Promel, and Roths-
child proved (1) in a stronger form for G = K(r). Recently, Erdos, Frankl, and Rddl
[1] proved (1) for all G. Kleitman and Winston [3] proved
Flns C )< 2700,
As far as I know
f{ﬂ; C4) = 2{1;2 +o{1)m3iz
is still open.
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The number of triangles that must contain some edge of a graph.

P. ErDGs, The Hungarian Academy of Sciences, Budapest, Hungary

B. ROTHSCHILD, Department of Mathematics, University of California-Los Angeles,
Los Angeles, California 90024

Let G(n; cn?) be a graph on n vertices and cn? edges. Assume that every edge of
our graph is contained in at least one triangle. Denote by f(n; c) the largest integer
for which at least one edge is contained in at least f(n; c) triangles. Estimate f(n; ¢)
as well as possible both from above and below.

Noga Alon proved f(n; ¢) < a,n'?, and Szemerédi proved by his regu!anty
lemma that, for every ¢ > 0, f(n; ¢) = o0 as n — o0.

One could also ask for the largest e, for which there is a G(n; e,) with the
property that every edge is contained in exactly one triangle. This question is identi-
cal with a question of Brown, Sos, and Erdés [1], and was successfully attacked by
Ruzsa and Szemerédi [2], who proved

cnra(n) < e, < o(n?)

where r4(n) is the largest integer t such that there is a sequence of integers a, <
a, < -+- < a, < n that does not contain an arithmetic progression of three terms.
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Complete prime subsets of consecutive integers.
J. L. SELFRIDGE, Department of Mathematics, Northern Illinois University, DeKalb,
Illinois 60115

Find the smallest integer k > 1 and an integer n such that ged(n, n + k) = 1 and
gedin 4+ i,n(n + k)) > 1foreachi, 1 <i<k.

If ged(n, n + k) > 1, the smallest k is 16. Every integer from 2184 to 2200 has a
prime factor in common with 2184 or 2200 [1].
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An extremal set coloring problem.
J. L. SELFRIDGE, Department of Mathematics, Northern Illinois University, DeKalb,
Ilinois 60115

Consider a family of 4-element subsets of a set S that has the property that any
2-coloring of § forces at least one of the 4-sets to be monochromatic. Let m(4)
denote the minimal cardinality that such a family may have.

It is easy to show that 15 < m(4) < 27. Paul Seymour [1] has exhibited a family
of twenty-three 4-element subsets of an 11-element set, thus showing that m(4) < 23.
Aizley and Selfridge [2] have announced that m(4) > 19.

Can you improve the lower or the upper bound?
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Orientably simple graphs.
B. RicHTER, Department of Mathematics, Carleton University, Ottawa, Ontario,
Canada K18 5BC

Every graph that embeds in the torus T can be embedded in the surface with
three crosscaps. Many can also be drawn in the Klein bottle K, that is, the sphere
with two crosscaps. A graph G that embeds in T but not K we call orientably simple.
The problem is to characterize orientably simple graphs, not necessarily by excluded
minors. A number of examples are known, for example, K, but virtually no theory
exists.

An extremal cligue covering problem.

P. ErDOs, The Hungarian Academy of Sciences, Budapest, Hungary

D. B. WEsT, Department of Mathematics, University of Illinois, Urbana, Illinois 61801
Does almost every graph have a collection of cliques such that each vertex

appears in not too many cliques (<f(n) per vertex) and almost all edges are covered

(at most f*(n) uncovered)? If cn cliques per vertex are allowed, we can cover all

edges. Can one find cliques with each vertex in o(n) cliques such that o(n®) edges are

uncovered? The best possible result would be f(n) = O(n/log n). This follows from

results on interval number, and would imply that the interval number of the

random graph is O(n/log n).
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The maximum distance between triangulations of an n-gon.
R. E. TARIAN, Computer Science Department, Princeton University, Princeton, New
Jersey 08544
D. D. SLEaTOR, Mathematical Sciences Research Center, AT&T Bell Laboratories,
Murray Hill, New Jersey 07974

Consider triangulations of a fixed n-gon. Each diagonal cuts a quadrilateral into
two triangles. Call two triangulations adjacent if one is obtained from the other by
changing a single diagonal to cut its quadrilateral the other way. Let f(n) be the
maximum distance between two triangulations. It is easy to show f(n) < 2n— 10
(for n = 8), which is conjectured optimal. Sleator and Tarjan showed f(n) = 1.75n
constructively, and Thurston showed f(n) > 2n — log n nonconstructively.

Threshold graph covering and embedding problems.
E. OrDMAN, Mathematics Department, Memphis State University, Memphis, Ten-
nessee 38152 ’
One can ask similar questions to those about embeddings of or coverings by
cliques, using threshold graphs (as defined by Chvatal and Hammer) instead of
cliques. For example, I have a family of graphs such that the nth graph can be
edge-covered by 2n threshold graphs, but requires 3n threshold graphs to edge-
partition it. Is this best possible?
A graph with 2n nodes and n? + 1 edges must contain a threshold graph with
n(1 + ) edges (joint result with Paul Erd&s). We think it need not contain a thresh-
old graph with n(1 + 2) edges. What is the correct multiple of n?

A conjectured ratio of central and bicentral unlabeled n-vertex trees.
T. R. WALsH, Mathematics Department, University of Western Ontario, London,
Ontario, Canada N6A 5B9

ConIECTURE: Let ¢(n) and b(n) be the numbers of central and bicentral unlabeled
n-vertex trees, respectively. Then c(n)/b(n) — 1 as n — co.

Labeled and unlabeled trees have been counted by number of vertices and dia-
meter, and tables of numbers appear in the IBM Journal of Research and Develop-
ment 4 (1960), p. 476, and Mathematics of Computation 25 (1971), p. 632. Since a tree
is central if and only if its diameter is even, ¢(n) and b(n) can be calculated from the
tables. The ratio ¢(n)/b(n) appears to tend to 1 (with an error of less than 1 percent
for n = 20), whence the above conjecture. The corresponding conjecture for labeled
trees has been proved by G. Szekeres, but the unlabeled case is apparently still open.

Interval k-colorings of m-partitions of guaranteed minimum size.
N. ALoN, Department of Mathematics, Tel Aviv University, 69978 Tel Aviv, Israel
D. B. WEsT, Department of Mathematics, University of Illinois, Urbana, Illinois 61801
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An interval k-coloring is a coloring of the unit interval I by k colors, such that
each color forms a measurable set. An m-partition of the coloring is a partition of [
into m disjoint subsets 4,, 4,, ..., 4,,, each a union of intervals, and each capturing
precisely 1/m of the measure of each color. The size of the partition is the number of
cuts that form all these intervals. Let ¢(m, k) be the minimum number ¢ (possibly <o)
such that every interval k-coloring has an m-partition of size at most c.

CONJECTURE: o(m, k) = (m — 1)k.

This conjecture is true for m = 2/ and every k, and for k < 2 and every m (see
[11, [2]). Also, easily c(m, k) = (m — 1)k for every m, k. The smallest unknown case is
m = k = 3. (We do not even know if ¢(3, 3) is finite.)

REMARK: The conjecture has now been proved by Alon.
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Diameters of Cayley graphs.

L. BaBal, Department of Algebra, Eétvos Lorand University, Budapest, Hungary 1088
Let G be a group and T = G a set of generators. The Cayley graph I = T'(G, T)

has V(T') = G for its vertex set and E(T') = {[g, gt]: g € G, t € T} for its edge set.

Prove (or disprove) that there exists a constant ¢ such that for every n and for every

set T of generators of the symmetric group S,, the diameter of I'(S,, T) is less than

n.

The longest simple path with increasing labels in a labeled graph.
R. L. GraHaM, Mathematical Sciences Research Center, AT&T Bell Laboratories,
Murray Hill, New Jersey 07974

Given a labeling A: E(K,)— {1, 2, ..., (3)} of the edges of K, with distinct inte-
gers, denote by I(4) the length of a longest simple path with increasing labels. Deter-
mine f(n) = min,I(4).

It is known that

' < f(n) < g
Is f(n) = o(n)? Is f(n) > n'*?** for some ¢ > 0?

Fast determination of graph diameters.
F. R. K. CHUNG, Department of Mathematics, Bell Communications Research, Mor-
ristown, New Jersey 07960

Find a fast algorithm to determine the diameter of a graph.

Using matrix multiplication one can determine the diameter in time On
[1]. On the other hand, the best known lower bound is O(n log n).

2.496)
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The existence of spanning bipartite subgraphs of specified connectivity.
L. LovAsz, Department of Algebra, Eotvos Lorand University, Budapest, Hungary
1088

Is it true that every (2k — 1)-connected graph has a k-connected spanning bipar-
tite subgraph?

ReEMARK: This is true for k = 1 (trivial) and k = 2 (easy). It is also very easy to
prove the assertion obtained by replacing connectivity by edge-connectivity.
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