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Paul Erdos

Perhaps the title "Ramanujan and the birth of Prebabilistie
Number Theory"™ would have been more appropriate 'and personal, but
aince Ramanujan's work influenced me greatly in other subjeects too, 1
decided on this somewhat immodest title.

Perhaps I should start at the beginning and relate how I firat
found ocut about Ramanuejan's existence. In March 1931 I found a simple
proocf of the following old and well-kKnown thecoram of Tchebychev:
"Given any integer n, there is always & prime p such that
n<p+<in." My paper was not very well written. HKalmar rewrote my
paper and said in the introduction that Ramanujan found a somewhat
similar proof. In fact the two proofs were very similar; my proof had
perhaps the advantage of being more arithmetical. He asked me to look
it up in the Collected Works of Ramanujan which I immediately read
with great interest. I wery much anjoyed the beautiful obituary of
Hardy in this volume [23]. I am not competent to write about much of
Ramanujan's work on identities and on the =<-function since I never
was good at finding identities. 8o I will ignore this aspact of
Ramanujan's work here and many of my colleagues who are much more
compatent to write about it than I will do sep. I will therefore write
about Ramanujan's work on partitions and on prime numbers and here too
I will restriet myself to the asymptotic theory.

My paper [7] on Tchebychev's theorem, which was actually my very

first, appeared im 1932. One of the key lemmas was the proof that

np <«a™, (1)
pen



In 1939, Kalmar and I independently and almost simultaneously
found a new and simple proof of (1) which comes straight from The
Book! We use induction. Clearly (1) holds for n = 2 and 3 and we
will prove that it holds for n + 1 by assuning that it holds for all
integers < n. If n + 1 is even, there is nothing to prove. Thus
assume n + 1 = 2m + l. Observe that {2:+1] < 4™ and that [2;+1] is
a multiple of all primes p satisfying m + 2 < p &« Zm + 1. ‘Now we
evidently have

Np < [2E+1} np < 4™ np ¢ 42Fl
pe2m+l pem+l pem+l
by the induction assumption.

By more complicated arguments it can be shown that nep e« 3“.

pe<n
As is well-known, the Prime Number Theorem is egquivalent to

1/n

[ m el + g ag n + m, (2)

Psn
but it is wvery dovbtful if (2) can be proved by such methods.

I hope the reader will forgive me (a wvery old manl) for some
personal reminiscenses. Denote by w(n) the number primes not
exceeding n. The Prime Humber Theorem states that for every > 0 and
n > nD{E]

4]

¢ win) < (1+e)-2—. {3)

logn logn

{1-¢)

It was generally believed that for every fizxed e * 0, (3} can be
proved by using the elementary methods of Tchebychev but that an
elemantary proof is not possible for every e. In 1937 Kalmar and I
found such an elementary proof. Roughly speaking cur proof was baged
cn the follewing Lemma: "For every e* 0 thers is an integer m

such that for every t satisfyingm ¢ t < m? we have



| & wtm)| < ot (4)
nst
whera u 1s the Moblus function." It is well-known that the Prime

Bumber Theorem is eguivalent to

£ pin) = alz). (5)
nLx

Thus if we know the Prime HNumber Theorem; then a value satisfying (4)
can be found by a finite computatiocn. But without assuming tha Prime
Humber Theoram, we certainly cannot he sure that such an m can bae
found. It is perhaps an interesting fact that such a curious
situation can be found in "normal" mathematics, which has nothing to
do with mathematical logicl

Perhaps an explanation is needed why our paper was never
published. We found our theorem in 1237, and we had a complete
manuscript ready in 1938, when I arrived in the United States. At the
megting of the American Mathematical Society at Duke University I met
Barkeley Rosser and I learned from him that he indeperndently and
almost simultaneously found our result and in fact he proved it also
for all arithmetic progressicns. Thus Kalmar and 1 decided not to
publish our result and Rosser stated in his paper that we obtained a
special case of his result by the same method. HNow it so happened
that Rosser's paper also was never published. This is what happened
to Rosser's paper. At that time he worked almost entirely in Logia
and therefore the paper was probably sent te a logician who had
gerious cbjections to some of the arguments which he perhaps did not
understand completely. Thus Rogser lost interest and never published
the paper. A few yvears ago when I told Hareld Dismond of our work he
thought that the result was of sufficient interest to deserve

publication even now after Selberg and I had found a genuinely



elementary procf of the Prime Number Theorem (using the so called
fundamental ineguality of Selberg.)] The manuseripts of Rosser, Kalmar
and myself no longer exisgted, but Diamond and I were able to
reconstruct the proof which appeared in L'Enseignement Mathématigue a
faw years ago [5].

I was immediately impressed when I first saw in 1932 the theorem
of Hardy and Ramanujan [18] which loosely speaking states that almost
all integers have about Jloglogn prime factors. More pracisely, if
gin} tende to infinity as slowly as we please then the density of

integers n for which

|v(n) - loglegn| > gin)/Toglogn (&)

is° 1, where win) is the number of distinct prime factors of n.
The same result holds for G{n), the number of prime factors of
B, multiple factors counted multiply. The original proof of Hardy
and Ramanujan was elementary but fairly complicated and used an
estimate on the number of integers < x having exactly k prime
factors. Landau had such a result for fixed k, and they extended it
for all k.

Hardy ‘and Ramanujan prove by induction that there are absolute

constants k and ¢ such that

kx (loglogx + c]v_l
Tagx tv=I71

r, lx) < PR O D [P 1) P

where =,{x) denctes the number of integers n < x which have v distinet
prime factors. As stated above Landau had obtained for fixed v an
asymptotic formula for nv{x} as ¥ » = and it was a natural guestion to
ask for an asymptotic formula or at least a good inegquality for nv{xﬁ

for every v. In fact Pillai proved that



= x {1oglogx}v_l
¢ logx {v-171

nq{xj * for v € c.loglog x

and later I showed [12] that if

loglog ¥ =-c'¥leglog x ¢ v < loglog x + ¢'¥loglog x (7}
then
w=1
L X {logleg x) o
%y, (%) log x [v-1)1 e S (8)

holds for every o' » 0: so the "critical interval" of wvalues for v is
coveread.

I further conjectured that the seguence is unimodal. That is
nltxj < zztxJ £ nv[x} » nu+lfx} b ﬂv+2{!] B i {a)
holds some v = vi{x). I expected that the main difficulty in proving
(2) will be in the critical interwal (7)) but it turned out to my great
surprise that I was wrong. The unimodality of tv{x} was proved for
all but the very large wvalues of w, that is for

v < c"l{log x}/(loglog x)?

by Balazard . Thus only the large values of v remaln open. I first
thought that the cases v > c"(log x)/{loglog %)% will be easy to

gettle but so far po one has been successful. If we put

£

<
i
b
e
1
A=)
-

*Balazard; to appear in:Seminaire de théorie das nombres de Paris
1987-88, Birkhauser.



where the summation is extended over all the a; which have v distinct
prime factors, then I showed [12] that £ {x) is onimodal but this is
much easier than (9).

In fact (B) became cbsolete almost immediately. I learned from
Chandrasekharan that Sathe [25] obtained by very complicated but
elementary methods an asymptotic formula for ﬂv{x} for v << loglog x.
Upon seeing this Selberg [26] found a much simpler pfcaf of a stronger
result by analytic methods. Later it turned out that the same method
was used by Turfn in his dissertation [28] which appeared only in
Hungarian and was not noticed”, Kolesnik and Straus [21] and Hensley
[19] further extended the rangs of the asymptotic formulas
for :v{xl and currently the strongest results are in a recent paper of
Hildebrand and Tenenbaum [20].

B3 Hardy once told me, their theorem seemed dead for mearly

twenty years, but it came to life in 1934. First Turan proved [27]

that

T {vin) - loglog x)* < c.x loglog x. {10)
n<x
The proof of (19) was guite simple and immediately implied (6). Later
{10) was extended by Kubilius and became the classical Turan-Kubilius
inequality of Probabilistic Number Theaory. Actually (10) was the
well=known Tchebyohev inegquality but we were not aware of this because
we had very little knowledge of Probability Theory.

In 1934, Turan also proved that if £(x) is an irreducible
polynomial, then for almost all n, £{(n) has about loglogn prime
factors and I proved using the Brun-Titchmarsh thecorem that the same
holds for the integers of the form p-1 [8]. A couple of yearas later

I proved [9], that the density of integers n for which

*Hee the paper of Alladi in this proceedings for more on this,



w(o} » logleg n is 1/2. ©Of course (8) and the thecrem of Hardy-
Ramanujan immediately implies this but (B) was proved only much later
and my original proof is much simpler and does not use the Prime
Humbear Theorem. I used Brun's method and the Central Limit Theorem
for the Binomial distribution. I did not at that time Know the
Central Limit Theorem, but in the Binomial case this was easy. At
that time I could not have formulated even the special case of the
ErdGos-Kac theorem due to my ignorance of Probability.

All these guestions were cleared up when Kac and I met in 193% in
Baltimore and Princeton. All this is described in the excellent two
volume book of Elliott [6] on Probabilistic Mumber Theory but perhaps
1 can be permitted to repeat the story in my own words: "I first met
Kac in Baltimore in the Winter of 1938-39. Later in March 1939, he
lectured on additive number theoretic functions. Among other things
he stated the following conjecture which a few hours later became the
Erdda-Kac Theorem. Suppose f(n] 15 an additive arithmetic function
for which f£{p) = £{p®) for every ua, (this is not essential and is
only assumed for convenience], If{pﬁl < € and L EEéEl diverges to

=, Furthermore, put

2
Afx) = % £ip) and Bf{x] = ¢ E_EEL.
pex F peix B

Then the density of integere n for which £(n) ¢ A({n) + oB{nY is

2
Glg) = —%: {Fa {24,

van

He said he could not prowve this but if we truncate £({n) and put

£.(n} = £{p}, then as %k + =, density of d (e} of integers for
plo. p<k

which f£i.(n) < A(k) + efBlk) approaches Gle).
I was for a long time looking for a theorem like the conjecture

of Kac but due to my lack of knowledge of Probability Theory I could



not even formulate a theorem or conjecture like the above. But
already durlng the-lecture of Kac I realised that by Brun's method I
can deduce the conjecture of Hac from his ﬂ}eorem. After his lecture
we immedidtely got together. Neither of us completely understood what
the other was doing, but we realised that our joint work will give the
theorem and to be a little impudent and conceited, Probabilistic
Nomber Theory was born.” This collaboration is a good example to show
that two brains can be better thap one,; since neither of us could have
done the work alone. Many further theorems were proved by us and
others in this subject (e.g. the Erdés-Wintner Theorem which is based
on Erﬂés-xac] s but I have to refer to the book of Elliott for more
Information. My joint papers with Kac [13] as well as with Wintner
[17] appeared in the American Journal of Mathematics.

et me state one of my favorite problems hare for which our
probabilistic technigue does not apply. Denote by Pln} the largest
prime factor of mn. Is it true that the density of integsrs for
which P{n+l) » P(n) 4is 1/2? The reascn that the probabilistic
approach does not work is that P(n) depends on a single prima factor
and the same will hold if instead of P(n] we consider
Aln) = PE| By (see my joint papers with Alladi [2], [3], for

.| n
cnnnecti;na between A{n) and P(n)). Pomerance and I have soms
weaker results than the conjecture [16], but we both feel that the
problem is unattackable at present.

Hote that Al{n} cannot have a normal order because the order of
magnitude of Al(n) for almest all n is determined by Pln) {(see [2]) and
log P(n) has a distribution function. In this context we point out
that Elliott has shown (see [6], Ch. 15) that if fin) is additive and
£{p) * (log p]l+c. then £ cannot have a normal order; so A(n) cannot

have a normal order. It should be possible to show that by neglecting



a set of ‘density zero the ineguality Af{n+l) » Al{n) will hold if and
only if Pl{a+l}) > Pla).

Before 1 leave this subject I want to state one of my favorite
theorems which was proved in 1934 and which is a strengthening of the
original theorem of Hardy and Ramanujan: To every = and & * O
thera is a kn{a.ﬁ} such that the lower asymptotlic density of
integers n for which for every k » kntg,ﬁ}

ki{l-e) k{1l+e)
i < pk{n} + 2"

is »(1l-8). Here pil{n) 4s the kth smallest prime factor of n, and
the inequalities are considered vacuously trus for integers n Thaving
fewar than kg prime factors. The proof of this result is not vary
difficult.?

Mext I come to highly composite numbers. Hegall that an
integer n is called highly composite if for every m < n wa have
dlm) ¢ d{n):, where d iz the divisor function. Ramanujan wrote a
long paper [24] on this subject. Hardy rather liked this paper but
parhapa not unjustly called it nice but in the backwaters of
mathematics. Alaoglu and I wrote a long paper on this subject [1]
sharpening and extending many of the results of Ramanujan. If we
denote by D{(x) +the number of highly composite numbers not axceeding
xy then I proved that [11] there exists a © » 0 such that
pix) > (logx)*® sfor x » xg+ Our results were extended by J. L
Nicolas, and later Nicolas and I wrote several papers on this and
related topics.

Ramanujan had a very long manuscript on highly compesite numbers
but some of it was not published due to a papar shortage during the

Pirst World War. WNicolas has studied this unpublished manuscript of

§see my paper, "Some unconventional problems in Number Theory",
Asterigue, 61 (1979), p. T73-8Z.
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Ramanujan and has written about this in an appendix to this paper.
Ramanujan'e paper contains many clever elementary inegualities. The
reason I succeeded in obtaining D{x) » (log x}l+c which is better than
Ramanujan's inequality was that I could use Hoheisel's result on gaps
between primes which was not available during Ramanujan's time.

Let U <« Up € U3 < ... be the seguence of consecutive highly

composite numbers. One would expect that perhaps

Uksy = U ¢ Ug/llog Up) "

but T could never prove this and in fact Wicolas does not belive that

this is true. #s far as I know
o{x) < (log x)%

is not yet known. All these problems connect with deep gquestions on
dlophantine approximations and so, although these problems ‘are not
central, they are not entirely in the backwaters of mathematicas!
Ramanujan in his paper on highly composite numbers obtained upper
and lower bounds for diin}, the kth iterate of din). If we denote
by 1,2,3,3,8,..., the sequence of Fibonacci numbers £;,83:€3:0:04

then Katai and I proved [14] that for every n > nglk.e)
ﬂkfnj <« axp| exp [{Ii + e¢)loglogn] ], k> 2
and that for infinitely many n
dk(n! > exp[exp{[%n - elloglogn}], X 2
k

which iz a fairly satisfactory result. We further conjectured that



"

E (nj} = { + ofl))x log X k» 2

Sy %k (x)

for some constant <> O, where log(y)(x) is the kth iterate of
the logarithm. We could only prove this for kX < 4 [15]. For

¥k =2 this was first proved by Bellman and Shapiro. Finally Katai
and I proved that if h{n) is the smallest integer for which

dprnyind = 2, then
hi{n) << logloglog n

for every n, but that for infinitely many n
hin) * ¢ legloglog n, soma c ¥ 0.

We could not obtain an apymptotic formula or even a good ineguality
for ¥R Y.

hex

Ramanujan investigates the iterates of d(n) only superficially
perhaps to save space. Neither he or anybody alse returned to this
problem until Katai and I settled it to some extent.

Now finally I have to talk about partitions. Hardy and Ramanuian
{and independently Uspensky} found an asymptotic formula far pln),

the number of unreatricted partiticons of n. They proved that

evn

40¢3

pin) ~ , 'whare o = m'2/3 . {11}
In fact Hardy and Ramanujan proved a good deal more; they obtained a
surprisingly acocurate but fairly complicated asymptotic expansion
for p{n) which in fact could be used to calculate pi{n). Later,
Lehmer proved that the series of Hardy and Ramanujan diverges and
Rademacher obtained & convergent series for pin). In 1942, I found

an elementary but very complicated proof [10] of the first term of the
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asymptotic formula of Hardy and Ramanujan. My proof was based on the

simple identity

npin) = § ] slviplin-ke), (12)
]

where g{v}) iz the sum of the divisors of v. I showed that (12}
implies (11) by fairly complicated Tauberian arguments which show some
gimilarity to some of the elementary proofs of the Prime Number
Theaorem. This was perhaps an interssting tour-de-force but no doubt
the analytic proof of Hardy and Ramanujan was both simpler and more
illuminating. In fact, their proof later developed@ into the circle
method of Hardy and Littlewond which was and is dne of our most
powerful tools in additive number theory.

1 think my most important contribution to the theory of
partitions is my jolnt work with Lehner where we investigata the
statistical theory of partitions. Using the asymptotio formula of
Hardy=-Ramanujan the sieve of Eratosthenes and the simplest ideas
involwving ‘Brun's method' we obtain asymptotic formulas for the number
of partitions of n where the larget summand is less than
‘nlogn + efn.Details on this can be found in the book by Andraws [4]
on the Theory of Partitions. These probléms are 8till very much
"alive" and I have some recent joint work on this with Dixmier and
Hicolas and with Szalays.

Some recent work of Ivic and myself (which is not yet published
and will appear in the Proceedings of the 1987 Budapest Conference on
Humbar Theory) leads us to the following conjecture: "The number of
distinct prime factors in the product n pln) is unbounded as
£ + =." Bchinzel proved this conjectur:i:nd Wirsing improved the
rasult which will soon appear in their joint paper. In other words,
they proved that the integera pi(n) ocannot all be composed by a £ixed

finite set of primes. The proof is not at all trivial and I think
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Ramanujan would have been pleased with this result. No doubt much

more is true and presumably

u[ mpla))/yx+ = a8 % + =
n<x

but at the moment this seems to be beyond our reach.

nfortunately I never met Ramanujan. He died when I was seven
years old, but it is clear from my papers that Ramanujan's ifideas had a
great influence on my mathematical. development. I collaborated with
several Indian mathematicians. 5. Chowla, who 1s a little older than
I, has co=-authored many papers with me on Number Theory and I also
have several Jjoint papers with K. Alladi on number-theoretic
functions, I should say a few words about my connections with
Sivasankaranaravana Pillal whom I expected to meet in 1950 in
Cambridge, U.5.A., at the International Congress of Mathematicians.
Unfortunately he never arrived because his plane crashed near Cairo.
I first heard of Pillai in connection with the following result which
he proved: Let £(n) denote the number of times you have to iterate
Buler's function ¢{n) ®o0 a8 to reach 2. Then, there exists

constants. 2;, €5 such that

%Eg% - cl ¢ f{n) < %Eg% + ey
Bhapiro rediscovered these results and alao proved that £({m) is
gasentially an additive function. 1 always wanted to prove that
fin)/logn has a distribution function. In other words the density of
integers n for which £{n) ¢ c.logn exists for every e. I could
get nowhere with this simple and attractive guestion and could not
evan decide whether there is a constant ¢ such that for almost all

n, £ln)/logn + e.
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Denote by gi{x) the number of integers m ¢ x for which
$fn} = m is solvable. Pillai proved that gi{x) = olx) and I proved

that for every k and = * 0O

X K ® .4
Togri1oatogx)™ < glx) < pymmmy o {logx)™,
holds for sufficiently large x. SBubseguently, R. H. Hall and I
strengthened these inegualities and currently the best results on
g{%x) are dues to Maier and Pomerance [22]. They proved that there is
an absolute constant ¢ for which

2
glx) = o;x E{c+oil}{logloglogx} i

We are very far from having a genuine asymptotic formalas for gix)
and it is not even clear vhether such an asymptotic formula exists. 1
conjectured long ago that

lim - 7,

2x)
Hopm %

g
This is still open, but might follow from the work of Maler and
Pomerance.

Pomerance, Spiro and I have a forthecoming paper on the iterations
of the ¢ function but many unsolved problems remain. These problems
on the iterations of arithmetic functions are certainly not cantral
but I have to express strong disagreement with the opinion of
Bombieri, a great mathematician, who said these problems are
absolutely without interest.

Perhaps the mest important work of Plllal was on Waring's
problem, namely on the function gl(n), which is the smallest integer

such that every integer is the sum of al(n) or fewer nth-powers.
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APPENDIX: On Composite Humbers

By

J. L. Nicolas

Highly composite numbers n are positive integers satisfying
d{a) » A(m) for all m < n, (1)

where d is the divisor function. Srinivasa Ramanujan studied highly
composite numbers in great detail and his long paper [3] is guite
famous. But there was much work on highly composite numbers and
related topics that Ramanujan 4id not publish. During his centennial
in December 1987, the first published copy [2] of his Lost Hotebook
and other unpublished papers was releassed and in this impressive
volume a manuscript of Ramanujan on highly composite numbers
(previously unpublished) is included (pages 280-308). It is to be
noted, however, that at the top of page 295 of [2] the words - "Middle
of another paper" is not handwritten by Ramanujan. A short analysis
of this manuscript on highly composite numbers is given in [1] p- 23B-
239.

The table con page 280 of [2] is not a list of highly composite
numbers. This table almost coincides with the list of largely

composite numbers n which satisfy the weaker ineguality
din}) » dim} for all m < n. (23

Note the slight difference between (1) and (2). There are only four
largely composite numbers which were omitted by Ramanujan in this
table, namely, 4200, 151200, 415800, 491400. Also, as J. P. Massias
has pointed out, the number 15080 in this table is not largely

composite.
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In this unpublished manuscript Ramanujan alsc has some very
interesting results on cln), ‘the sum of the diviscrs of n. In this
context we point out a result due to Robin [4] that a{n) < el nloglogn
for n » 5041. Here y is Euler's constant. More precisaly he showed

that

a{ M)

al®) . %
Hiogiogh © ° o=l

201-vZ) + ¢ 400 1 )1, (3)

where /% log x ¥x log™z

e=%+ 2 - log 4 =n.

In (3}, N is a collossaly abundant number of parameter x and for such

n we have

log N= | logp+ O(/F) = x + 0 (VX log’x) (4)
pex
p=prime

under the assumption of the Riemann Hypothesia. Using (4) we may

rewrita (3) as

gl cet(a+ 2B te 4 d e (8)
og o Y1ogl loglogh ¥ 1logh llnglcgﬂ}z

Ramanujan wrote down a similar formula about seventy years earlier
with the notation E_lfﬁl for the maximal order of E%§l (see [2],

. 3031
Iim {z_; () - a¥leglog ¥) +Iogh « o' (2/2 + v - log 4x). (&)

Unfortunately (5) and (6) do not agree; it seems that in formula (382}
of Ramanujan ([2], p- 303) the sign of the term 2(/2-1)/+IogH is wrong

and g0 the right hand side of (6) should read
ef(y-log 4x + 2(2-/2)).

The wrong eign seems to come from Ramanujan's analysis of his formula
(377) of [2]. As Ramanujan explains at the baginning of §71, p. 302
of [2], the term (logH} yﬁ"“floglogﬂ arises from four terms of
formula (377) and in formula (379) the coefficient of this term has

the wrong signl



20

In the same manuscript Ramanujan has:-a very nice estimation of

the maximal order of u{n}fns for all s, which is not &t all ‘easy to

obtain. This result of Ramanujan on the maximal order of

q!n}fns for 8 ¢ 1 under the assumption of the Riemann Hypothesis is

new {pnd has not yet been rediscoveredl) and it will definitely he

worthwhile to look into this further. 1 hope to do this on a later

oocasion.

1)

2)

3)

4)
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