
Reprinted from JOURNAL OF APPROXIMATIOPI THEORY 
All Rights Reserved by Academic Press. New York and London 

Vol. 58, No. 2. August 1989 
F’rinled in Belgiunt 

On Convergent lnterpolatory Polynomials 

P. ERD~S, A. KRO&* AND J. SZABADOS* 

Mathematical Institute, Hungnrian Academv of Scznces, 
Recikunodu u. 13-1.5. Budapest H-1053, Hungary 

Commumcnred by Owd Shisha 

Received December 1. 1987 

Let 

AT,: -lsXnn<Xn-,,n< ... <X,,,Sl (n = 1, 2, .*.) (1) 

be a system of nodes of interpolation. We are interested in finding 
necessary and sufficient conditions on (1) in order that for every 
{I~:E Cc-l, l] and E>O there exist polynomials P~(x)EI~~,(~,,,, such 

Pnbkn) = f(Xkn) (k = 1, . ..) n; n = 1, 2, . ..) (2) 

and 

lim IIf - p,(x)li = 0. 
n-co (3) 

Here l7, is the set of algebraic polynomials of degree at most m, C[ - 1, l] 
is the space of continuous functions on the interval [I - 1, 11, and II ‘11 is the 
maximum (over [ - 1, 1 ] ) norm. 

Let xkn = cos tkn, 0 2 t,, < f2,, < . < t,,, 5 rc, and for an arbitrary inter- 
val 1~ [O. n], denote 

In this paper we shall prove the following 

THEOREM. For eueryf(x) E C[ - 1, l] and E > 0 there exists a sequence of 
polynomials p,(x) E Z7c,(1 + ell such that (2) and 

!IfCx) - Pn(X)l’ = WE,,,,,+,,](f)) (4) 
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hold, if and only if 

and 

Here the 0 sign refers to n + E and indicates a constant depending only 
on E; E,(f) is the best uniform approximation of f(x) by polynomials of 
degree at most n. 

This theorem, in a slightly weaker form ((4) replaced by (3)) was stated 
in [ 1, Theorem 41. There was no proof given, only an indication that it is 
a simple modification of the proof of Theorem 3. While we wcrc unable to 
reconstruct this “simple modification” (it was probably not that simple at 
all), we found a proof which we think worthwhile to publish, since the 
above theorem is a fundamental and frequently quoted result of the theory 
of interpolation. 

The proof is long and sophisticated, and in order to make it more under- 
standable we break it into a series of lemmas. First we aim at the suf- 
ficiency of conditions (5 F( 6). 

LEMMA 1. Under conditions (5), (6) f or arty E > 0 there exists a system 
of nodes (in not necessarily decreasing order) 

Y, : yk = }‘kn = cos Ijk. 

2k-l+dkz 
Y]k = qkm = -> m 2 

k = 1, . . . . in= [n(l +E)]; nzn, (7) 

such that 

(a) the xI)s are among the yk’s; 

(b) dqk+l - flk) 2 c > 0 (k = 1, .,.) m; n In,) lvith an absolute con- 
stant c, and 

(C) IC”k=r dkl s:A (S = 1, . ..) m) with a constant A = A(&). 
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ProoJ: Condition (5) implies that for any E > 0, there exist d(z) and 
no(s) such that 

Wl<~+E 
nlI] =rt 

whenever rt(l) 2 A(E) and 12 2 no(&). (8) 

Let 

,=max(,(i),:) 

and consider the intervals 

JL=[z,q) (i=O ,..., [:1-l). 

By (8) and njJ,J =d, 

N,(J,E(~f$)A (i=o,...,[y]-1). 
The number of equidistant nodes 

e =2k-h 
k 

-- 

m+l2 
(k= 1, . . . . m+ 1) 

in J, is > (d(m + l))/~n > (A/71)( 1 + E), i.e., at least dE( l/n - l/4) > 3 more 
than N,(J,). 

We shall construct the ylk)s in two phases. In the first phase, in each Jj 
where at least one tk occurs, replace the Bj’s by these tk’s, and leave the 
remaining Qj’s unchanged. According to the previous argument, there is at 
least one such unchanged 0, in each Ji (call them free nodes). This system 
fulfils so far only (a). We would like to ensure (b). By (6) we may assume 
that 

t 1+1 - t,$ (c < 1, i= 1, . . . . n - 1). (9) n 

Consider those remaining 0,‘s for which there exists a ti such that 

(10) 

and move these 0,‘s alternatively to the left or to the right with a distance 
2c/(7n). Then these translated 0;s will be farther than c/(7n) from any t, 
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(see (9)), and the distance of adjacent new 0;s will be at least 
n/(m + 1) - 4c/(7n) > (n/2 - 4/7)( l/n). Thus the change in the contribution 
of the dk’s will be O(l), and (b) is satisfied. After completing these steps, 
at least one free node remains in each J,, 

In the second phase we want to ensure (c) by further modifications. 
Divide consecutive J,‘s into groups of 1Od members. In each Ji, the maxi- 
mal contribution of dk’s is -C (l/r+ q’4)4.2(1+ E) A/x <A’ (we may 
assume that E < 1); thus for the whole group it is < 10d3. We would like 
to arrive at a situation where the total contribution of dk’s at the end of 
each group is < 10zt3. We proceed by induction on the number of groups. 
As we have seen, in the first group the contribution is < 10A3. Assume that 
the total contribution of the first a - 1 groups is < 10d3, and, without loss 
of generality we may assume that this contribution is nonnegative. By 
proper changes, we would like to have a contribution in the 0th group 
between - lOA and 0, thus ensuring a totai contribution in the first a 
groups between - lOA and 10d3. In the 0th group, the total contribution 
is between - 10d’ and 10d3. If it is negative, we are done. Thus assume 
that it is between 0 and 10d3, and omit a free node from the (5d + 2)nd 
J, and replace it by the midpoint of any two adjacent nodes in the 
(5d - 2)nd Ji. The result is a decrease of at least 2 .2( 1 + E) A/n and at 
most 4.2( 1 + e) A/n in the contribution of the dk’s in the ath group. If this 
change transforms this contribution below zero, then we are done. If not, 
then omit a free node from the (5A+ 3)rd Ji and replace it by the midpoint 
of any two adjacent nodes in the (5d -3)rd Ji. The result is another 
decrease of at least 4.2(1 + E) A/x and at most 6.2(1 + E) d/n in the con- 
tribution of the d,‘s in the ath group. If this second change transforms this 
contribution below zero, then we are done; otherwise continue this proce- 
dure with the (5d + 4)th and (5d - 4)th Ji)s, etc. Before exhausting all the 
possibilities we must arrive at the desired situation, because the decrease of 
the contribution in the ath group after all the possible changes would be 
at least 

(2+4-t ... +lOA-2)(1+~)A,n>~54(54-l)>y 

which is greater than 10A3, the original maximal contribution in the ath 
group. (Even if we needed the last change here, its maximal contribution 
is ~104~2(1+~)d/~~13d2~10A3, so we never get under -10d3.) 

After making all these changes in each group, we arrive at a situation 
where the total contribution of the dk’s nt the lust Ji in a group will be 
< 10d3. But it is clear from the previous argument that Id,1 < 134*, and 
since the number of dk’s in a group is K 1Od . (A( 1 + E)/R) + 5A < 12d*, the 
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contribution inside a group cannot be higher than 13A2. 12A’, i.e., bounded 
again. Thus Lemma 1 is completely proved. 1 

LEMMA 2. For the fundamental functions of Lagrange interpolation based 
on the nodes (7) vve haue 

Proof Let 

llpm? XIII = O(l) (k = 1, . . . . m). 

2k- 1 
znr:zk=cos---7L 

2m 
(k = 1, . . . . m); 

T,(x) = fj (x -zk), 
k=l 

Q,(x)= fi (x-yJ. 

k=l 

(11) 

Then for a fixed k, the number Ye of y;s for which sgn(yk - yi) = sgn(k - i) 
is evidently V~ = o( 1 ), and thus denoting A, = {i I sgn( yk - JJ~) = sgn(k - i)}, 
B, = ( 1, ,.., m)\A, we have 

=O(l)exp c 
i#k 

zk-Yk+Yi-z~ 

Y/c-Y! . 

Here, using ldk] = Q( 1) (see Lemma 1 (c)), we get for 1 5 k S m/2 
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and using Abel’s transform 

2 sin(d,71/4m) sin((4i-2+d,)/4m)n: 

Yk - 4’i 

=t: 

(d,7~/2m)sin((4i-2+d,)/4m)7r+U(m~~) 

i#k Yk - Yi 

sin((4i+2+di)/4m)7t 

Yl;-Yi+1 

and similarly for m/2 5 k =< m. Hence 

1 Tin(Zk)l = O( IQi,(J-.k)l ) (k = 1, . . . . m). (12) 

Now let 1x1 5 1 be arbitrary and 0 5js m be such that zjtI 5 ~5 zj 
(we take z,=l and z~+~= - 1). Then similarly as before, denoting 
u E (z,, 1, zi) for which T,,,(U) is a local maximum, the number v(x) of ts for 
which sgn((x - y,)/(u - zi)) = - 1 is evidently V(X) = 0( 1). Hence 

+c .2 

i/m’ 
if j IJ - i21/m2 I 

=O(l)expO -$ $+v(.xJ.$ +.j =0(l). i ( > 1 
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Thus using (12) we get 

- 
i.e., using Fejer’s result IIIk(z,,,, u)li 5 ,,6 (k = 1, . . . . m) we get the statement 
of the lemma. 1 

After these preliminaries, the sufficiency of conditions (5), (6) is easily 
proved. Let s = [n&/3], and apply Lemma 1 with c/3 instead of E; then 
m = [n( 1 + s/3)]. Let g(x) E II,,,, +EJ, be the best approximating polyno- 
mial of f(x). Consider 

Pn(x)=q(x)+ i c i 
(fbk) - Wk)) M ym xl 

j=O 2j+ilqs<yks;j,r (zj(z$~Yk)+zj+l(zs9 Yk)12 

2 

x cg-G -xl + (+,(zF1 x) . 

Since by the well-known Erdbs-Turan result [2, Lemma IV] 

q-G Yk)+&+l(zJ, Y,)21 (zJ+l<ykszJ), (13) 

the definition of p,(x) makes sense. Now 

degp,=<m-1+2(s-l)<n 1,: +F=n(l +E), 
( > 

and evidently 

Pn(Yi) =f(Yi) (i = 1, . . . . m). 

This proves (2), since by Lemma l(a) the xk)s are among the y,‘s. By the 
definition of q(x), (13), Lemma 2, and the inequality (a + b)2 5 2(a2 + b2) 
we get 

IIf - P,(X)ll s IIf -s(x)ll { 1+ 0 [ 11 i ~j(Z,, XI’ c 
j=O :,+l~vas=, 

= WJqn,, -t ,,,m II 

/ 
i: gz,, xl2 , 

/=o I 

since by Lemma 1 (b 1, C,, , < yk 5 ‘, 1 = O( 1). But here again by Fejer’s result 

II 

and thus (4) is also proved. 
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To prove the necessity of (6), assume that there exists a sequence 
i, < i2 < . . such that 

lim n(fzn+ I,n - t,,,J = 0. H-cc 

Hence passing to monotone subsequences (if necessary), there exists a 
t E [0, n] such that 

and the sequences (tin,,> and { ti,, + I,n } have no points in common. Also, we 
may assume that at least one of these sequences, say {tin.,,), is strictly 
monotone. Then define 

and f is continuous and linear between these nodes Because of (14), this 
defines anf(x) E C[ - 1, 11. By (2) and the Bernstein inequality 

= f p,(cos t) = ~(n)llP,~Il (t E (tr,.,? f,” + d)r 
,=r 

i.e., IIP~II 2 l/J E,, + co as y1 --f crc;, which shows that (4) cannot hold. Hence 
(6) is necessary. 

The proof of the necessity of (5) is more difficult. First we prove the 
following. 

LEMMA 3. Let I,, c [ -71, n] (n E N) and let t,, be a sequence of tri- 
gonometric polynomials of order at most r, such that r,lInl -+ CC and 
IIt,/l GM (n E N) (r, t a3). Denote by Q(m) the number of + 1, - 1, + 1, ,.. 
oscillations oft, on Z,. Then 

ProoJ Assume to the contrary that Q(Z,l),k,,jZ,zl > (1 +6)/n for some 
6> 0 and ncl2 (D c N infinite), where we may take I,,( --a,, a,) and 
0 < a, < rr - 26,. Let now s,, be an even integer such that 
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~/r,a, <s,, < 2 6 and let E, = hfaJ(s, sin S,). Consider the tri- 
gonometric polynomial 

of order at most r,. Evidently, on [-a,, a,], U, has at least Q(1,) - 1 
zeros. If x $ ( -a, - E,, a, + E,) we have for s,, large enough 

Thus U, has at least (271- 2a, - 2~,)( (2r, - s,)/2n) - 4 zeros in 
[ - 7~, 7c] \( -a,, - E,, a, + E,). Therefore 

QUJ + Vn 
2r --s 

-2a,-2E,)+-$<2rn+5, 

i.e., 

a contradiction, since r,a, --t clc and &,/an = c/s, --f 0. 
We now return to the proof of the necessity of (5). Define the continuous 

2n-periodic function F,, by F,(t,,) = ( - l)k ( 1 < k < n), F, is linear in 
between, constant in [0, tin], [t,,,, n], FJt)=F,(-t) (-rc<:tdO), and 
F,(r+2n)=F,(t) (-xl<t<rr;). By (1.5) w(F,, h)<ccnh, hence 
Ef(F,) d cl. Set fn(x) = F,, (arc cos SC). Then by assumption for any E > 0 
there exist pn E IZ,,, + E,n, such that pn(xkn) =f,,(xk,?) = (- l)k (1 <k < n) 
and 
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Thus ~~JJJ <c,* (deg pn = [(l + &)n]); hence by Lemma 3 

Since E > 0 is arbitrary, we can put E = 0 here. 

Using the same arguments, we could have proved the following, slightly 
more general theorem: 

THEOREM A. For every f(x) E C[ - 1, 11, E > 0, and d > 1 there exists a 
sequence of polynomials q,(x) E ZZldncl +Ejl such that (2) and 

llf(x)-4,b)ll = O(E[dn(l +,,,(f)) 

hold, if and only if 

and (6) holds. 
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