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Let n be square-free and h a multiplicative function satisfying 0 <h(p) < l/(k - 1) 
on primes p, where k > 2. It is shown that 

2 h(d)<(2k+o(l)) 1 h(d), for k=2, 3,4 ,..., 
din dln,&n”k 

where o(l) is a quantity that tends to zero as C,,, 1= v(n) -+ cx~. Such inequalities 
have applications to Probabilistic Number Theory. C 1989 Academc press, IUC 

1 

At the 1983 Western Number Theory Conference in Asilomar, one of us 
(K.A.) proposed as problem 407 the following: 

CONJECTURE. (i) Given k > 2, there exists ck > 0 such that, fur all mul- 
tiplicative ji*nctions h satisfying 0 < h(p) d ck on primes p, 

c h(d) 4 k c h(d) 

din d)n,dGn’/” 

holds for all square-free n. 

(ii) In part (i) ck = l/(k - 1) is admissible for k = 2, 3, . . . 

(1.1) 
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The purpose of this paper is to prove the stronger part of the conjecture, 
namely (ii). In the first paper under the same title [Z], among other things 
we proved part (i) of the conjecture by establishing the following inequality 
more generally for sub-multiplicative functions ha 0 (these are functions 
satisfying h(mn) <h(m) h(n), for (m, n) = 1). 

THEOREM 1. Let h 2 0 be sub-multiplicative and satisfy 

for all primes p. Then for all square-free n we have 

Clearly Theorem 1 settles Conjecture (i) with any ck< l/(k- 1). On the 
other hand, the conjecture is false with ck > l/(k - 1) For, let r be a large 
integer and p 1, . . . . p, be distinct primes such that pr - p2 N p3 N . . . N p,.. 
So a divisor d of n will satisfy d< n Ilk if d has asymptotically fewer than r/k 
prime factors. Thus 

for the multiplicative function h satisfying h(p) = c on primes p. The 
maximum value of (;)c’ occurs when I - rc/( 1+ c), as r + (30. So the quan- 
tities in (1.2) are unbounded if c > l/(k - 1) and hence (ii) is best possible. 

We had been aware of the validity of (ii) in the case k = 2 and one of us 
(K.A. [ 11) applied this to Probabilistic Number Theory. Such applications 
motivated us to study the more general inequality (1.1). 

We prove Conjecture (ii) in Section 3 by utilising a powerful result of 
Baranyai [3] on hypergraphs. Prior to proving Conjecture (ii) we establish 
in Section 2 a weaker version of (1.1) in the case ck = l/(k - l), because its 
proof sheds some light on the scope of the method we had used earlier to 
prove Theorem 1. 

Throughout, the latters p, q, with or without subscripts will denote 
primes and g, h will represent multiplicative functions. Implicit constants 
are absolute unless dependence is indicated by a subscript. 



MULTIPLICATIVE FUNCTIONS, 11 185 

2 

TI-EOREM 2. Let k > 2. If h satisfies 0 < h(p) < l/(k - 1 ), then we have 

c h(d)<~ C h(d) 
din dln.d<n’ik 

for all square-free n, where v(n) = Cp,,, 1. 

For Theorem 2 and for later use we establish 

LEMMA 1. Let n be square-free, 0 < CI < 1. For fixed CI and n, the quantity 

decreases as h increases. 

Proof: The lemma is trivial if v(n) < 1. So let v(n) 32. 
Define 

x,(x)= ; L 
if X<LX 
if x > ~1. 

Then 

for some pin. Note that 
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and so (2.1) implies that R,,(h) decreases by increasing h(p) and not 
changing the values h(q), for q # p. But then, by increasing the values h(q) 
over the primes q in succession, we see that Lemma 1 is true. 

In view of Lemma 1 it suffices to prove Theorem 2 in the case h(p) = 
l/(k - 1) for all p. We shall now discuss somewhat more generally than 
what is required for Theorem 2, since this will reveal both the scope and 
limitations of the approach. 

Let F(q c, n) denote R,,(h) in the case where h(p) = c, for all p. To get 
a lower bound for F(a, c, n) we could attempt to bound x,(x) from below. 
Here x = log d/log n. It is natural to minorize x,(x) by a polynomial in x. 
The best linear polynomial which minorizes x,(x) is 

y=l-;, 

which is the straight line obtained by joining (0, 1) with (~1, 0) in the (x, y) 
plane and, in fact, using this, Theorem 1 was proved in [2]. 

Next, we experiment with a polynomial of degree 2. Let t satisfy 

--r -2<tta-‘. (2.2) 

Then 

f(x)=tx2- ut+d x+1 
( > 

(2.3) 

minorizes x,(x). Therefore 

tlog*dh(d)- 
log2 n 

( 

where 

H(n) = 2 h(d). 
din 

Note that 

1% P 
= $n log d;p h(pd) n 

H(n) =- c h(p) 1% P cH(n) 

logn p,n I+ h(p) =-ix* (2.5) 
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Similarly 

& c h(d) log2 d din 
=&c W)(E g2 din Pld 

=,;. l”fo;fong q c h(Pqd)+;$f c h(pd) 
dl”l~q dlnlp 

P+4 

H(n) =- c 1% P 1% 4 ml) 
log2 p1 p,q,n (I+ W))(l+ h(q)) 

So (2.3)-(2x5) yield 

Note that 

+(1+c;flog2n;~log2p. 

log p < v(n)‘/2 
112 l=C-, p,nl”gn 

by the Cauchy-Schwartz inequality and so 

Hence (2.8) and (2.7) combine to give 

(2.7) 

(2.8) 

(2.9) 

Obviously we want t as large as possible in (2.9). In Theorem 2, a = l/k 
and so, as permitted by (2.2), we take t = k. Also c = l/(k - 1). With these 
values of t and a, we find that 

C 

f( > 
- =o. 
l-cc 
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That is, the best quadratic polynomial passes through (a, 0). Thus the 
lower bound we get is 

which proves Theorem 2. 

Theoretically, bounds for F(a, c, n) should get better by increasing the 
degree of the minorizing polynomial. But, from a practical point this would 
involve expressions of the form 

LX 
log” n p,n 

log” P, m = 1, 2, 3, ..* 

which would give weaker lower bounds as 112 increases. However, it might 
be worthwhile to pursue this approach by taking into account the 
cancellation among the higher moments. 

3 

THEOREM 3. Let 0 < h(p) < l/(k - 1) for all p. Then, for k = 2,3,4, . . . . 

c h(d)G W+o(l)) 1 h(d), 

where o( 1) tends to zero as v(n) -+ ix;. In particular Conjecture (ii) is true. 

We will deduce Theorem 3 from the following result which is a special 
case of a deep theorem of Baranyai on hypergraphs [3, p. 931. 

LEMMA 2, Let S be a set of km elements. Then the (E) subsets of S, 
comprised of m elements each, can be grouped k at a time, such that the k 
subsets (each of size m) in every such group generate a partition of S. 

Proof of Theorem 3. In view of Lemma I, we may assume that h(p) = 
l/(k- 1) in Theorem 3. 

Let v(n)=km+Z, O<Z<k-1, and n=p,p,e..p,(,,. For some j<m 
consider a particular divisor of n having k(m - j) prime factors-say 
N= PI “‘P/+7-,). Then, according to Lemma 2, the divisors of N having 
eactly m -j prime factors can be grouped k at a time such that in every 
such group the divisors d, are pairwise relatively prime and d, . . dk = N. So 
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there will be at least one divisor among the di that is 6N1jA and in 
particular this divisor is < n ‘jk as well. Thus there are at least 

1 k(m-j) 
i m-j ( ) 

divisors of N that are <nllk which have exactly (m - j) prime factors. 
The number of ways of choosing such divisors N of n is 

However, a divisor d of n with v(d) = m - j could occur as a divisor of 
several such N. The maximum frequency of occurrence of such d will be 

( 

km+l-m+ j 

> (k- l)(m-j) ’ 

This is because v(N) = k(m - j) and so given d, we have freedom in 
choosing the remaining (k- l)(m -j) prime factors of N, and these primes 
are to be chosen from among the remaining km + I- (m -j) prime factors 
of n. Thus we are guaranteed that there are at least 

1 (k::jy;:+;)) 

E 

( 

kmtl-m+j ’ (3.1) 

(k- Mm -A > 

divisors of n which are <n’jk. It turns out that the expression in (3.1) is 
equal to 

and this is a miraculous coincidence! 
From (3.1) and (3.2) we see that 

It is a well-known fact concerning the Binomial distribution that 

(3.2) 

(3.3) 

(3.4) 
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where [ ] is the greatest integer function. With Y = km + Z, c = l/(k - l), we 
have [rc/( 1 + c)] = m. Thus from (3.3) and (3.4) we deduce that 

which is Theorem 3. 

4 

While using Baranyai’s result to construct groups of divisors satisfying 
d, ... dk = N, we noted that one out of every k such divisors has to be 
<NN’lk. However, we should expect about half of such divisors to be <nnik. 
This suggests that (2k + o( 1)) in Theorem 3 could perhaps be replaced by 
4 + o(1). In particular we feel that the implicit constant in Theorem 3 will 
be absolute. 

The use of hypergraphs restricted us in Section 3 to consider only integer 
values k2 2. This was sufficient for Conjecture (ii). But in view of 
Theorems 1 and 2 which hold for all real k 2 2 we feel that Conjecture (ii) 
will hold as stated for all real k > 2 as well. Although the method of Sec- 
tion 2 did not give a proof of Conjecture (ii) but supplied only a partial 
result, still that approach was valid for all real kg 2. It might to 
worthwhile to see if the methods of Sections 2 and 3 could be combined to 
tackle some of these questions. 
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