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For §= N the sumset P(S) is defined as the set of all sums g, + -+ +4a,,
t arbitrary, a, distinct clements of 5. Let Fik) denote the least n so that if
[n](=1{1,.,n}) is two colored there is a k-set 5§ with P(S)=[n] and
P(S) monochromatic. The existence of F{k) is given by Folkman's
Theorem, see, eg., [1]. Here we give a lower bound for F{k)

THEOREM. Flk) > 27k,

LemMa,  If |8 =k then |P(S)| = k(k+1)/2.

Proof. Let a,< --- <a, denote the eclements of &5 The sums
a+ - +a,l=j<kand a,+ - +a,—a, | <i<j=<k have a canonical
ordering and are distinet.

Lemma. At mast (kn)® u™ k-sets S<[n] have |P(S)| < u.

Progf. Let a,< --- =a, denote the elements of 5. Call i doubling if
Pia,, .., a,} has double the size of P(a,,.. @, ;). There are at most lgu
doubling i, Hence there are al most A" choices for doubling positions |
and at most #'®* choices for the values a,. Il i is not doubling then
a,=x—y, where x, ve Pla,, ., a,_,)= P(5) so there are at most u* choices
for a;.

Proof of Thearem. Two-color [#] randomly. The expected number of
ke-sets § with P{5) monochromatic is then

¥ 3t F (rEtaltl vl
| 5] =& w4 2
Pisr=[n]

with i< 2784 ¢ an appropriately small absolute constant.
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Attempts to remove the lgk factor in the exponent have led to an
intriguing question. Define the (r, 8} sumset game as follows, Player |
selects  distinet a,,...a,eN. Player 2 then selects (seeing ay,...a.)
@y 4 s 8, &N distinct from each other and the previous a,. The payoff,
to Player 1, is |P(a;, ... a, ). Let ¥ir, 5} denote the value of this perfect
information game. Can an exact formula for V{r, ») be found? We conjec-
ture Fir,s)=c'2". Note Fr,s)=(*1?)2° ' as Player2 may select
2iy, i 84 1 )ay. Perhaps Player 1 can pick » numbers sufficiently indepen-
dent so that Player 2 can do no better.

Note. A, Taylor [2] has shown that F{k) is bounded from above by a
tower of threes of height 4k —3. While not Ackermanic, this upper bound
is quite far from our lower bound,
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