Note

Monochromatic Sumsets

PAUL ERDÖS AND JOEL SPENCER

Department of Mathematics, State University of New York, Stony Brook, New York 11794-3651

Communicated by the Managing Editors

Received October 11, 1987

For $S \subset N$ the sumset P(S) is defined as the set of all sums $a_1 + \cdots + a_t$, t arbitrary, a_t distinct elements of S. Let F(k) denote the least n so that if $[n] (=\{1, ..., n\})$ is two colored there is a k-set S with $P(S) \subset [n]$ and P(S) monochromatic. The existence of F(k) is given by Folkman's Theorem, see, e.g., [1]. Here we give a lower bound for F(k).

THEOREM. $F(k) > 2^{ck^2/\lg k}$.

LEMMA. If |S| = k then $|P(S)| \ge k(k+1)/2$.

Proof. Let $a_1 < \cdots < a_k$ denote the elements of S. The sums $a_1 + \cdots + a_j$, $1 \le j \le k$ and $a_1 + \cdots + a_j - a_i$, $1 \le i < j \le k$ have a canonical ordering and are distinct.

Lemma. At most $(kn)^{\lg u} u^{2k}$ k-sets $S \subset [n]$ have $|P(S)| \leq u$.

Proof. Let $a_1 < \cdots < a_k$ denote the elements of S. Call i doubling if $P(a_1, ..., a_i)$ has double the size of $P(a_1, ..., a_{i-1})$. There are at most $\lg u$ doubling i. Hence there are at most $k^{\lg u}$ choices for doubling positions i and at most $n^{\lg u}$ choices for the values a_i . If i is not doubling then $a_i = x - y$, where $x, y \in P(a_1, ..., a_{i-1}) \subset P(S)$ so there are at most u^2 choices for a_i .

Proof of Theorem. Two-color [n] randomly. The expected number of k-sets S with P(S) monochromatic is then

$$\sum_{\substack{|S|=k\\P(S)\equiv [n]}} 2^{1-P(S)} \le \sum_{u \ge k(k+1)/2} (kn)^{\lg u} u^{2k} 2^{-u} < 1$$

with $n < 2^{ck^2/\lg k}$, c an appropriately small absolute constant.

Attempts to remove the $\lg k$ factor in the exponent have led to an intriguing question. Define the (r,s) sumset game as follows. Player 1 selects distinct $a_1,...,a_r \in N$. Player 2 then selects (seeing $a_1,...,a_r$) $a_{r+1},...,a_{r+s} \in N$ distinct from each other and the previous a_i . The payoff, to Player 1, is $|P(a_1,...,a_{r+s})|$. Let V(r,s) denote the value of this perfect information game. Can an exact formula for V(r,s) be found? We conjecture $V(r,s) \ge cs^2 2^r$. Note $V(r,s) \le (s+2) 2^{r-1}$ as Player 2 may select $2a_1,...,(s+1)a_1$. Perhaps Player 1 can pick r numbers sufficiently independent so that Player 2 can do no better.

Note. A. Taylor [2] has shown that F(k) is bounded from above by a tower of threes of height 4k-3. While not Ackermanic, this upper bound is quite far from our lower bound.

REFERENCES

- R. L. GRAHAM, B. L. ROTHSCHILD, AND J. H. SPENCER, "Ramsey Theory," Wiley, New York, 1980.
- A. TAYLOR, Bounds for the disjoint union theorem, J. Combin. Theory Ser. A 30 (1981), 339–344.

.....