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INTRODUCTION

One of the best known extremal results involving paths is the following one proved
more than 25 years ago.

THEOREM [2]: A graph G, on m vertices with at least [m{k — 1) + 1]/2 edges
containg a path Py, on & + 1 vertices. Furthermore, when m = kit the graph (1£;
contains the maximal number of edges inan m vertex graph with no Py, and is the
unique such graph.

There are many other results in the literature that use that a graph with many
edges or with high-degree vertices has a long path. Several such results are given in the
references [1-4].

The problem we address here is of & similar nature, Let m, #, and & be fixed positive
integers with wr = n = & We wish to determing the minimum value / such that each
graph on v vertices with [ vertices of degree at least n containsa Py .

A plausible minimum valoue for [ is suggested by the following graph. Let m -
fh+ 1)+ 0=r<=n+1,withk < 2n + 1. Then the graph consisting of 1 vertex
disjoint copies.of H = Ky, (p-nyuy + Koy contains Lk — 13/2] vertices of
degree nn and ne Py, When & is even and r + L{k = 1)/2] = n, the number of
vertices of degree = # in this graph can be increased by 1 tortL (k — 13/2] + I without
forcing the graphs to contain a P, Simply take one of the vertices of degree
L{k — 1)/2] and make it adjacent 1o the r vertices in no copy of H.

Thus we have the following conjecture.

CONJECTURE: Let m, n, and & be fised positive integers withm = n= kand set § = 2
when kis even and d — | when & is odd. If G, 15 a graph on m vertices and at least { -
Lk — 13720 Lmjtn + 1) + & vertices of degree = n, then @, contains a .,
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Although we do not prove the conjectured result, we do show that the value of [
given in the conjecture is “essentially” correct. Much attention is given to the special
case when m + 1 = m=2n + 1. In this case we show that approximately &/ 2 vertices of
degree = nis enough to guarantee that (7, containsa Py, . Unfortunately, even for this
interval of values we are not able (o prove the exact statement of the conjeciure,

It should be mentioned that the problem considered is not of much interast when
k= n + 1. In fact if wris such that there exist Iy, £, . . ., Lwitha + | = [ = & for each §
and Z_ L = m, then K, | K )« + « LI K, isa graph that has all its vertices of
degree = n, vet contains no Py, . This can always be done if m is large encugh.

RESULTS

Before presenting the results we introduce some nonstandard notation. The symbol
Gy, will always represent the graph of interest, which is assumed to have m vertices.
The vertices of G, will be partitioned into two classes, those of degree = n, which will
be called high-depree vertices, and the remaining vertices, which will be called
low-degree vertices. A path is called a high—{ow path il it begins and ends with
high-degree vertices and alternates between high- and low-degree vertices as one
moves from one end of the path to the other. Further a path is called a high-end path if
it is simply a path beginning and ending with high-degree vertices; nothing is assumed
about the degree of the internal vertices of the path. Also degenerate paths are allowed,
s0 that a single high-degree vertex is thought of as both a high-end path and a high-low
path. Whenever £ is affixed as a superseript on the usual symbol for a path, it is
assumed the path is high-end. Thus P will denote a high-end path on 7 vertices,

A principal result of the paper establishes that the conjecture is approximately
correct when m = 21 + 1. In order 10 prove this we need two lemmas.

Lemma 1z Let P, PR P e g vertex disjoint collection of high-end paths in
G, 1= 20 + 1. Then there exists a high-end path P containing each of the paths P!,
PR, ..., P,

CoroLLARY 1: There exists a high-end path Pin G, m = 2n + 1, containing all
high-degree vertices of G,

A bit more notation is needed to state the second lemma. Consider a vertex digjoint
Family P, P2, L, P of high-low paths in &, Partition the vertices of these paths
into two sets H and L, where B consists of all the high-degree vertices of 1, P and
L all low-degree vertices, Thinking of the vertices of each path P as numbered from
lelt to right, let 8 denote the set of right-hand end-vertices of the ¢ paths, Let H' be
those high-degree vertices that are not right-hand end-vertices of some P*, that is, let
H' = H — R.Foreach &' &= ' let I* be that low-degree vertex in L that follows &' on
some path PY A vertex b ol His good ifh = Roril h = #" & H and ["is adiacent to
at least three vertices of R. As usual F{G) will denote the vertex set of the graph G.

Lemma 2: Let PV, PR P be a vertex-disjoint Family of high-low paths in
Gy and let &y, by & H be a pair of good vertices. Then there exist 1 vertex-disjoint
high~low paths ', @, . ., , @™ such that |} ', P(Q'"™) = 1L, F(P") with h, and
#iy end-vertices of some 0 and QY respectively, | # /.
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THEOREM 1: Let &, contain &t least k high-depree vertices, with m = 2n + 1. Then
F,, contains

Pi_a when k = nf2 4 3
PE., wheninm+ 132+ 3=k=n
PE. whenk=n + 1.
CoroLLaky 2: Under the conditions of the theorem, &, contains a

Pgse when k = n/2 + 3
Foits when{n+ 1)/2+3=k=n
P whenk=n + 1.

CoroLLARY 3: Lel G, contain at least k high-degree vertices, m = 2n, Then &,
contains a € where

=2k -7, whenk = n/2 + 3
f=n-—1 when (n + 1)/2 4 3=k=n
I=k whenn + 1 = k.

The graph (K, + K,,,.4) | K,_._ shows (when k= n) that these results are
close ta the best possible. For k = n + 1 the graph K, shows Py is the longest path
possible.

As more evidence that the conjecture is correct we prove the following theorem.

THEOREM 2: Let k be a positive integer. Then there exists a constant ¢ such that if s
is large enough with respect to &, each graph G, m = n, with at least [m/(n + 1)]
[(k — 1)/2] + ¢ vertices of degree =n contains a Py, ;.

In the proof of the theorem we in fact show ¢ = 4 works when n = k% — 3k + 1.

PROOFS
Proaf af Lemma |: Let P™, P™, ., P" be a vertex disjoint family of high-end
paths in G, Consider a vertex disjoint family @, @Y, ..., @Y of high-end paths
whose vertex set includes all vertices of the family PV, P™, . . ., P'" and is chosen such

that jis minimal, We need only prove j = 1,
Suppose j = | and let

O e X By =y and OF oy Vaviao Py =y
Let L' and Lf; be the set of vertices adjacent to w, and u,, respectively, and set
r1= {:|:Z = x.if.t“l = Q“: m Uy,
= ¥4 ir."rr &= Qm n U;.. ar
= L": - {Q{l] u Q!I]-H_
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Since j is minimal, it is easy ta check that wy, y, U, | U4, |L5] = | U3, and £ 7
U5 = o Therefore, | £ L) U5} = U + |05 =m — 2 = 2n — |, contradicting that
[ £ |, | ] = m Hence, f = 1 and the proof is complete. [0

Mote that Corollary | is an immediate consequence of Lemma |, since single
high-degree vertices are eonsidered to be high—low paths,

Froof of Lemma 2: Let P, P2 P be g vertex disjoint family of high-low

paths in & and let ky, hy; = H be a pair of good vertices. There are several cases to
consider.

Case 1; by, hy = H' and lie on the same path.

Without loss of generality assume that #, and A, are vertices of " and that /, and
{1 (the successors of f; and A, respectively) are adjacent to the right-hand end-vertices
of P and P, respectively. (Note that a good vertex in H' requires 1 = 1.) Sel
PO e, oy o ¥ = Rae X = e Xiigies v =Ry X = L X X
F'I.-'tl S T TR
PY g sy iy B
Replace these three paths by
Q“I = Xy Xy er oy #r.
Q1”-_1"|1_]-"11 i l}"r;l l:I - xr-l le-o!l' C *-tj_ "rll
e T R S S D e R S
These three paths together with P, ., P" give the required family.
Case 2: by, hy = H' and lie on different paths,

Withou! loss of generality assume f, is on path P, ko ison path P™, and let , and

{; be the successors of #, and kg, respectively, If £, and {; are adjacent 1o different
right-hand end-vertices among the paths 2%, PY¥, | PY four new paths are found
in a fashion similar to that described in Case 1. The only other possibility is that both [,
and /; are adjacent 1o the right-hand end-vertices of the first three paths and 1o no
others. Thus in this case we can assume that

PV XXy = I’II.'l Ky = 'rh P T

PIH = FraFae oo #_b".r = '&11 _P;-!I = 'rll .F,lq-ll voin Ve

3
PP e g Baina Iy

Then replace these paths by
O = xp s axp =y,
O~y P ¥ = by

1) " =
Q it U Y B "Il'}'r;n cosa Viv =f2lzn1"r3_:1 S B

These paths together with P, ., ., P" again give the required family.
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Case 3: hy = H'and by = Rand lie on the same path,

Without loss of generality assume

P[”-x[lxit-'-rxl_hll-rh! _"lehis'-'lxn- III!r
P[n-ylly1'|""|yf;|

with !, adjacent to y,,. Replace these paths by

O = ey Xpin e Xy =My
Qm “ VB Ve = X Xy oo X = 3
to obtain the desired family.
Case 4: by &= H"and by = R and lic on different paths;

We may assume

Pm =Xy Xg e a Bi= g X = D X o [RE
P‘n-..'rlvylf‘ L= -.I'I-l‘:_-'&ill

Fﬂ] =2 I - dpy
with [, adjacent to =, . Then replace P and P" by

O gy Xpy0 v X =y,

e = =
O = iy Ernsios s B by = K 1e Xpatss o s Xng

1o obtain an appropriate family.
Case 5 hi, by E R,

There is nothing to prove, since the original set of paths P&, P2 PW [ulfill
the required conditions. [

Froof of Theorem I Partition the set of vertices of &7, into two selts H and I where
H denotes the set of high-degree vertices and L the low-degree vertices of the graph.
Form a minimal family {minimal number of paths) of disjoint high-low paths P,
P, P" such that all vertices of H are included in this family of paths. Recall that
this is possible, since single vertices are allowed as high-low paths. Let L, be the subset
of L of low-degree vertices used in the family of paths and let L, = L — L, be the
remaining low-degree vertices.

Observe that |[L;| + r = || and by Lemma 1 that there exists a high-end path Pon
|H| + | Ey| vertices. Sinee |H| + [L| = 2| H|— tand | H| = ¢, it follows that P has at
lgast & vertices. Hence the theorem holds when k= n + 1.

We. assume for the remainder of the proof that 5 = & = o Note that when & = 4
there is nothing to prove. Choose &, and x such that k, + x = &k = |H| with k; =
(m+ 1)f2whenk=(n+ 1)/2 + 3,and x = Iwhen k <nf2 + 3.

Since P has |[H| + |L,| = 2k — ¢ = 2k, + 2x — ¢ vertices, the proof is complete
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=1 when k= (n+ 1)/2 4+ 3
A+ 2x— 1= {1
k-1, when k = nf2 + 3.

This means that we can assume this inequality [ails so that ¢ = 2x 4 3 when & =
(m+ 1)/2 +3,and =8 = 2x + 2whenk = n/2 + 3.

To continue the proof we make some additional observations. Let s bethe number
of good vertices, in the sense of Lemma 2, in the paths P PP P From the
minimality of ¢ it follows from Lemma 2 that each vertex of L, is adjzcent to at most
one of the 5 good vertices. Further, since the good vertices are of high-degree, each of

these vertices has at least n — | L;| — | H| + 1 adjacencies to vertices of £, Hence
sin = |Ly| = [H| + 1) =|L| =m — 2k 4 1. i2)
Also for each vertex b of H that is not good the vertex that follows it on its path P is
adjacent to at most two of the 7 right-hand end-vertices of the paths P, P, ..., P,
But then these ¢ right-hand end-vertices have a total of at least (| H]| — s) (1 — 2) + ¢
{n— | L] — |H| + 1) adjacencies to the vertices of Ly From the minimality of ¢ we
ablain
UHl =53 = 2) + tlm = | L] = | H| + D=L =m -2k + 1 i3

To complete the proof we need only show that under the assumed conditions, r =
x+3whenk=(n+1)/2 +3andt =8 = 2x + 2 when k = nf2 + 3, either
inequality (2) or (3) fails to hold, Checking that this is the case amounts to looking at the
number of good vertices in M. It is straightforward to show that inequality (2) fails
when there are at least (2& + £)/3 good vertices, while inequality (3) Fails when there
are less than (2k + r)/3 good vertices. This completes the proof of the theorem, O

Corollary 2 is an immediate consequence of Theorem 1, since for k = n each of the
end-vertices of the existing high-end path has an additional adjacency off the path.

Proaf of Corollary 3: Consider the high-end path P,
2k—7, whenk=n/2+13
i={m—1, whenin+ 1)/2+ 3=k =n guaranteed by Theorem 1

k, whenk=n+1.

Let the vertices of this path be w = x|, 5,. .., % = vwith I the set of neighbors of u
and ¥ the sct of neighborsof . Set V' = {z|z = x;,, if x, E Vorz E¥ — Pf|. Itiseasy
to see if V' 7] U/ # ¢, then G, contains a C, / = . Alsa, | ¥'| = | V|, | U] = n with w &
¥ U But then | ¥ 1 Uls m— 1 s 20 — 1, sothat ¥° () U # ¢ and &, contains
the required cycle. [

Proaf of Theorem 20 Assume n is considerably larger than & In fact, we see in what
follows that n= &* — 3k + | will suffice. Corollary 2 implies (he result of this theorem
when s = 2n + 1 and ¢ = 4. Hence we assume »r = 2a + 1 and that the theorem holds
when the graph has less than o vertices.
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Choose a maximal-length high-end path P on [ vertices in G, Let this path P be
M= X, Xyes o0 &= v, We suppose &, contains no path on & + | vertices and reacha
contradiction, Since P is a high-end path, this means [ = & — 2.

Let Mu) and N{v) be the set of neighbors of the high-degree vertices w and v,
respectively. Observe that neither N{u) — P nor N{v) — P contains high-degree
vertices, since Pis a high-end path of maximal length. Further

|N(u) — PLING) — Pl=n—k+ 3.
There are two possibilities to consider,

Case 1: (N(u) = P) (M) (N{v) = £) = . Let G' be the graph obtained from G, by
deleting the vertices of (NM(u) — P) L) (N({v) — P). Note that no vertex outside P of
high-degree in (7, has adjacencies into the set (W{u) — P) L) (N(v) — P). Thus &
has at most m — 2n + 2k — 6 vertices and at least [m/(m + 13] [(k = 13/2] + ¢ -
{k — 2) high-degree vertices. Since n= &% — 3k + 1,

m—2n+2k—-6 -1 " k=1
e

and ' contains a P, & contradiction o the supposition that &, contains no P, .
Case 2: (N{1) — P) M (M) — P) # ¢ Let w E(N{u) — £) (M (N{v) — P).

Then w, = X, X3, « .., Xp= ¥, s a O, in G, Clearly no two consscitive vertices on
C,,, are of high-degree; otherwise, G, contains a high-end pathon [ + 1 vertices. Thus
),y contains at most (/ + 1)/2 = (k — 1}/2 high-degree vertices. Alsoasin Case | no
vertex outside P of high-degree has an adjacency into the set (M{u) —P) L
(N(v) — P). I €, has fewer than (k — 1)/2 vertices of high-degree, then let &' be
the graph abtained from G, by deleting the vertices of N{u) — P, while if Cy., has
precisely (k — 1) /2 vertices of high-degree, then let ¢' be praph obtained by deleting
the vertices of N{u) |_ P. In each case the number of vertices of high-degree in ' is at
least [m/ (s + 1] [{k — 1}/2] + ¢ — = where z is the number of high-degree vertices
on €y, y. This is true since when €, has exactly (k — 1)/2 vertices of high-degree,
each high-degree vertex outside P has no adjacency to vertices of P. But in each of

these two cases
|G ||k =1 & m k—1 .
r= &—z
n+ 1 2 n+ 1 2

so that ' contains a Py, . a contradiction. This contradiction completes the proof of
the theorem, O

QUESTIONS

A natural question concerns the extension of the result of Corollary 3 for cyeles. In
fact, does the graph obtained by identifying appropriate vertices from L(m — 1)/n]
coptesof H = K., | u_nmi + K\ t_1y;2) - one vertex from each copy of H, suggest the
magnitude of the number of vertices of high-degree necessary fora graph &, to contain
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a ! = k7 It is possible that the following holds, If & = n, and G,, contains no C;
(I = k), then G, has at mast L (& - 1},-"2] Lim - l]l.fnj + | vertices of degree =m.

Another question related to the original conjecture occurs when the graph @, is
assumed to be connected. The graph, consisting of Limin+ 1)) copies of H =
KoiiLoanje) + Ky identified at a fixed vertex of each K|y, « contains no
Py.; but does contain Lm/(n + 1) Lk + 1)/4) high-degree vertices. This is
approximately half of the number of high-degree vertices in the original conjecture. Is
there a better extremal example, or does connectivity lower the extremal number of the
conjecture by a factor of 27
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