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§0. Introduction

Let F(X, ¥) e Z[X, Y] be an irreducible binary form of degree n = 3. In
1909, Thue proved that for each integer m the equation F(x, y) = m has
only finitely many solutions in integers x, v, Mahler extended Thue’s result
by proving that the number of solutions of F(x, y) = m can be bounded in
terms of F and the prime divisors of m. Several bounds lor the number of
solutions have been given. Let S = {p,, .. ., p.} be a set of prime numbers,
Evertse solved an old conjecture of Siegel by proving that if £ has non-zero
discriminant, then the number of coprime pairs x, v € Z such that F(x, y)
is composed of primes from § does not exceed exp (n'(4s + 7). In the
proofs of these results S-unit equations are used. An example of an S-unit
equation is the equation x + y = zin coprime positive integers x, y, z each
composed of primes from S. Evertse also showed that this equation has at
most exp (45 + 6) solutions. These results played a key role in the solution
of an old conjecture of Erdés and Turan. Gyory, Stewart and Tijdeman
showed that if 4 and B are finite sets of k and [ positive integers, respectively,
and k = [ = 2, then there exist @ in A and b/ in B such that the greatest
prime factor of @ + b exceeds C log k loglog k where C is some positive
constant,

In this paper we want to prove that there are Diophantine equations of
above mentioned types which have surprisingly many solutions, thereby
showing that some of the above results are not far from being the best
possible ones. In §1 we consider the problem of Erdos and Turén. It follows
from Theorem | that the bound C log k loglog & cannot be replaced
by (log & loglog k). In §2 we turn to S-unit equations. We show in Theo-
rem 4 that the equation x + y = z can have more than exp ((s/log 5)'*)
solutions in coprime positive integers x, v, z each composed of primes
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From &, Finally, we deal with Thue-Mahler equations in §3. It follows from
Theorem 5 that Evertse’s bound exp (#'(4s + 7)) cannot be replaced by
exp (""" log s). not even when F is just a polynomial in one variable.

§1. Prime powers of sums of integers

For any integer 1 > 1 let win) denote the number of distinct prime factors
of n and let P(n) denote the greatest prime factor of . For any set X let |X|
denote the cardinality of X, In 1934 Erdos and Turan [15] proved that if 4
is a finite set of positive integers with |4| = k, then, for & = 2,

w( [T (@ + a'}) = C log k.

& A

They conjectured (cf. [14] p. 36) that for every & there is an f{h) so that if
A and B are finite sets of positive integers with |4| = |B| = & = f{h) then

r..rj( [T (a+ h}) > h.

e A be R

Gyory, Stewart and Tijdeman [23] proved the conjecture. They showed that
the following much stronger assertion is an easy consequence of a result of
Evertse [16]. Let 4 and B be finite sets of positive integers. Put k = |4|,
l=|B.Ifk == 2, then

w( 11 {a+b}):=-leng.i: (1)

gud be B

where (; is an effectively computable positive constant. On combining this
result with the prime number theorem we obtain that there exist ¢ in 4 and
b in B such that

Pla + B} > C; log k loglog k& (2)

where (; is an effectively computable positive constant. Other lower bounds
for max,, . .5 Pla + b) have been given by Balog and Sarkozy [2], Sarkozy
and Stewart [36, 37], Gyéry, Stewart and Tijdeman [23, 24] and Stewart and
Tijdeman [44]. For surveys of these results we refer to Stewart [43] and
Stewart and Tijdeman [44].

In this paragraph we want to show that (1) and (2) are not far from best
possible, when { is small. It follows from Theorem 1 that when !/ = 2 the
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right hand sides of (1) and (2) cannot be replaced by ((1/8) + &) (log kY
loglog & and ((1/4) + e)log & loglog k¥, respectively, for any # = 0.
Theorem | deals with values of [ which are o(log k). It follows from this
theorem that the right hand sides of (1} and (2) cannot be replaced by (log k)
when | = 2 loglog &, In Theorem 2 we consider values of { of the form
d log A with 00 = d < L. It follows from this theorem that, even for such /,
the right hand side of (2) cannot be replaced by &'* for every ¢ = () and
k = ky(d, ). We conjecture, however, that for [ = log & and for every
& = 0 (2) can indeed be replaced by

Pla + B = &

for k = k,(e). The trivial example a; = i, b, = j — | shows that the nght-
hand side of (2) cannot be replaced by & + [,

THEOREM 1. Let 0 < & < 1, Let /5 B, — B be a function such that f{x) — =
as x — oo and that f(x)/log x is monetone and non-increasing. Let & and | be
positive integers such that k exceeds some effectively computable number
depending only on & and { and that 2 < | < (log k)/f{k). Then there exist
distinet positive integers a,, ..., a4, and distinet non-negative integers
Bis . oo b, suich that

3 ! ¢
P(ﬂl_[tr.-+b) ([I+n}%lug(m§k)).
f=1 f=1

It is not hard to derive upper bounds for the numbers a,, ..., a, and
By ooy byin Theorem | from the proof.

Theorem | follows from Lemma 3 which i1s derived from Lemmas | and
2. Lemma | is a combinatorial result which is fundamental for all the results
in this paper.

Lemma 1. Let N be a positive integer and let W be a non-empity subset of
1, ... N} Let | be an integer with | < | < |W|. Then there is a set of
non-negative integers B with 0 € Band |B| = | and a ser A sueh that

W\ [N =1
A4+ B W and |d| = | 'I.‘ L
f —_
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Proof. There are (")) l-element subsets of W. To each such subset {w,, . . .,
w,} with w, < + -+ < w,, associate the (/ — 1)-element subset {w, —
Wyas oWy = wypobfl, o, N — 1}, Thus there is some ({/ — 1)-element
subset {b;, . . ., b, _, | associated toat least k = ("))/(} =) l-element subsets
of W.Leta,. . ... a denote the least elements of these k different Felement
subsets associated to {b,, . . . . h,_,}. Thusa,, . . ., a, are distinct members
of W. The lemma follows with A = {a,, ..., gt B = 0B by_i ¥

O

let tf(x, y) be the number of positive integers not exceeding x which are free
of prime divisors larger than y.

Lemma 2. Let x be a positive integer and w a real number with u = 3. There
exists an effectively computable constant C such that

o oo e <1+ ()

Proof. See Theorem 3.1 of Canfield. Erdds, Pomerance [7].

For any real number = we shall denote the greatest integer less than or equal
to z by | z] and the least integer greater than or equal to z by Tz,

LemMa 3. Let ¢ and & be real constants with c = 1 and 0 < 6 < 1. Let f
be as in Theorem 1. Let N and | be positive integers such that N exceeds
an effectively computable number depending only on ¢, 6 and [ and that
2 <1< (log N)S(N). Put

r : log N log ¢\ 7
m = " {0 - o e (1 + 1)

i
and (= Lc (IE%—F—J)J

Then there exist distinct integers a,, . . ., an L, . .0 N | and there exist
integers by, ... . bywith0 =8, < b, < --- < b < N such that

P(ﬁ ﬁ{a, + bj}) s,

=1 =1
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Proof. Put W = {n < N: P(n) < t}. Then |W| = (N, 1). For N suffi-
ciently large we have

YN, 1) = YN, Le(fIN)Y]) = el f(N)Y/2 > L (3)

By Lemma | there exist sets 4 and B such that 0= B, |B| = [, and
Pla+ b)) <t foral ac 4 and he B. It only remains to prove that
|4| = m. By (3), for large N we have [ < (§(N, 1))"". Hence, by Lemma 1,

YN, O [N =1 N1y -1 N, 1) .
2 ( ! )u"l( ped ) > E oL > G a4 ot

(4)

Here and later in the proof, o(l) refers to N — o, Put x = N, y = 1,
u = (log x)/log y and v = (log N){{. Then v — =0 as N — oo, Hence,

o N log N
" logler']  llogw + log e + ofl)

log N (l log ¢ + ail}) _ log N wllog ¢ + o(l))
flogw\  llogv " llogv fllog vy’

(1 + n{l}jé,

This yields log u = log v — loglog v + o(1) and loglog v = loglog v +
a(l). Now, by Lemma 2,

_log N | vllog ¢ + o(l)}
logw I(log v)

N, 1) = Nexp {( ) (logw — | + u(i}j}.

Hence, by (4),

log N (log N)(log ¢ + n{I}})

N
|4 = (1 + o(l}}TﬂxP {( " Jogw l(log vy

* (logw — 1 + ﬂ‘{l:l]}
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log N (log N)ilog ¢) (lng N)}
i

(1 -+ ofl)) % E.‘xp{

fog v {log v log ©
_iex {{I -|—M[I}|GEN(I i log ¢ }
TR A log o =l !

Observe that

!
{ < log N = exp {”(E:)}

Hence [4| = m for N sufficiently large. |

FProof af Theorem 1. Put w = (log k)/I. Then w — o= as k — =, We
are going to apply Lemma 3 with N = Lexp ((1 + #)(log k)(log w))l,
¢ =1and & = ¢/5. It follows that, for & sufficiently large, k = N and
= (log £)fk) < (log N)Y/f(N). Further

_ [log N)’ ( log k (Iﬂg k))f
__E( 7 Jg (1 + &) 7 log i .

It therefore only remains to prove that k < m. We have, lor k sufficiently
large,

£ (1 + )log k)(log w)
M Z exp {(I = E) log w + loglog w + log (1 + ﬂ’!}

((I } E) log w
=k 2] + g2 logw/) = k O

For the statement of Theorem 2 we shall require the Dickman function p(u).
glu) is a positive, continuous, non-increasing function defined recursively by

oy = 1| forD £ u <1,

and, for N = L2, ...,

olu) = p(N) — |: v'ply — 1)de forN <u< N+ 1.
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Thus, in particular, o(w) = | — log ufor 1 < u < 2. In general there is no
known simple closed form for g(u) (cf. Appendix of [8]) and several authors
[8]. [29] have studied the problem of numerically approximating g(u). As for
explicit bounds, it is easy to show thatp(u) < 1/T{u + 1) foru = |, see for
example Lemma 4.7 of [35], and Buchstab [6] proved that for u = 6,

¢u) = exp (—wullog v + loglog u + 6(loglog ul/log w)). (5)

Further, de Bruijn [4] obtained the following asymptotic result,

loglog
log u

w2 () 0

THEOREM 2. Let & and 0 be real numbers with) < ¢ < land( < ) < 1. Let
kand [ be positive integers with2 < | < 0 log k such that k exceeds a mumber
which is effectively computable in terms of & and 0. Then there exist distine

plu) = Eﬂ:p(—u(lﬂgu + loglogu — 1 +

PHI'"HI-V-E I‘nf{’g@r‘\' [ R i, ﬂ”dl distinet nﬂﬂ-"t‘gurh'v r‘nl'fgf'l'ﬁ' hl ..... hll
sueh that
Koo oo
P(-[! l] {af . 3 IIIJ }) < kJr(l’JH-.:* {?}
lal ju=l
where
. 1 =81
o) = mlp(#‘m)_
W M

For any real number ## with 0 < @ < | define f(u) for u = 0 by
folu) = (1 — 8 log o(u))ju. Since p(u) is continuous and 0 < p{u) < 1 for
u = 0. fy(u) is also continuous and positive for u > 0. Further, by (6) f,(u)
tends to infinity with & Thus the minimum of f(¢) for 4 = | is attained
and so A(f) is well defined. If we evaluate fj(x) at &« = 1/l and apply
Buchstab’s inequality (5), we find that, for 8 < 1/6.

hO) < (1 + log (1/0) + loglog (1/0) + (6 loglog (1/8)/log (1)0))).
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Plainly fi(1) = 1 so M) =< 1 for 0 < # < 1. In fact, if §§ < 1 then
W) < 1. To see this recall that g(x) = 1| — logwfor | < u < 2. Thus, if
=1+ dwith0 < & =< 1/2, then

fill + 8) (1 —flog(l —log(l + N/ + &)

(1 + 88 + OF NN + 8),

Il

and so for & sufficiently small fi(1 + &) < 1, whence M) < 1, for 0 <
fl < 1. Thus,for2 </ < flogkand0 < # < 1, (7)is an estimate which
is better by a power than the trivial estimate k& + [/ which is realized when
@, = i, b, = j — 1. Certainly (7) also holds with P(IT{_, IT{_, (g, + b,))
replaced by e(ITf_, T} _, (a, + &,)) and in this case the trivial upper bound
is mlk + /). We conjecture that there does not exist a positive real number
ywith y = | and arbitrarily large integers [ and &k with { = log k for which
there exist distinet positive integers @, . . ., a, and distinct non-negative
integers by, .. ., b, such that

i

ru(ﬁ l_ (a, + b,}) = (nlk + )Y,

=1 j=

We are able, however, to make some improvements on the trivial estimate
mik + /) for [ = log k. In particular, there exist positive real numbers fi,
and f, such that for all sufficiently large integers &k there exist positive
integers a;, . . . . apand by, ... bwith! = (1 + f,) log & for which

K )

P(]'[]_I(ﬂ&fﬂ){il — Bk + 1), (8)
d=l fe=

hence, by the prime number theorem, for which

w(l‘l [](a + b;l) < n((l = f)k + 1)) = (1 — B + o))k + 1).

feall fom]

To prove (8) we shall require the following result of independent interest,
Let 2 = p,, ps. py. - - . be the sequence of consecutive prime numbers.

Levma 4. There are effectively computable positive real numbers f§ and ny so
that if n = ny, then

E (Peiy — Pe) = fin

sy <mge ) <2
Peyi—ex =1+ Fhlogna
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Proaf. Let 6 be a positive real number. Let L be the number of indices k with
A=pm<2nand (1 — @ logn < peyy — pp < (1 + 0 log n 1t follows
from Lemmas | and 2 of [13] that there exists an effectively computable
positive constant ¢ such that L < cfn/log n. By the prime number theorem,
the number of indices k withn < p, < Znandp,,, — p. = (1 — D logn
is at most {1 + e(1)n/log v — L. This implies that

M
E {F.lr+1—'PH"£{{1 +u{|}}@_;}

dspp ey <ln
P | =P =i+ 0logn

2 (1l —MNlogn + Ll + Mlogn
= (1 +o(lN(l —0m +2L0logn < {1 — 0 + 2efF + o()}n.

(%)

On the other hand, since p,., —p, =oln) for n < p, < 2n or
n< p = 2n, see for example [26], we have

LY Pivy — P = (1 + o(1)n. (10)

L TR

A comparison of (9) and (10) reveals that

Py — P = (0 = 2P + o(1)n.
L) :J:-—lu;':::;-:-:';l-lzg "
For  sufficiently small and » sufficiently large we have (# — 2ofF +
a(l1)n = (6/2)n and the result now follows on taking fi = §/2. ]

Suppose now that k is a positive integer, put i, = f2and f, = ((§/49)/(1 +
£)) f and let n be that integer for which (1 + f)n < k < (1 + f.)(n + 1).
Let T be the set of integers 1,.... n together with the integers m with
n<m<2an— (1 + f,) logn for which the closed interval [m,m +
(1 + f) log n] contains no prime numbers. If f is a subscript such that
n<p <py <2mandp,,, — p, > (1 + f) log n. then all integers in the
open interval (p, p, + (p;., — p,)(B/2)/(1 + f)) belong to T. Hence, by
Lemma 4, T has cardinality at least

pi2
n+ | —— + all -,
I. + ﬁ { } r_lﬂ.'lmf.%‘l{ln t'p-r+F PI}
i —r il Nleg e
2
= n+ fn L—l—u{l} &

1+ f
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and plainly this exceeds k if & is sufficiently large. Thus we can choose
... afromT. Put!=|(1 + ) lognland b, = jforj=1,...,1L
Note that / = (1 4+ fi, + o(1)) log k and that by construction,

L !
P(r[]—[{a,+hr})£n+!= ( +ﬂ{l})k.
=1 =]

I+ B

hence (8) follows directly,

Let h be a positive integer. We can prove, by appealing to a result of Maier
{see the main theorem of [34]) and employing a similar construction to the
one given above, that there exists a positive number ¢, which 15 effectively
computable in terms of A, and arbitrarily large integers k and [ with
| = ¢, (log k loglog k loglogloglog k)/(logloglog kY for which there exist
distinct positive integersa,, . . . . a, and distinct positive integers b, . . ., b,
with

& {
m(n 1 o + hﬂ) < #8—

] pasl

On the other hand. perhaps for each positive number ¢ there exists a number
kyte) such that if k > ky(e) and | > (log k¥ then

[ I
a}(]—[ I] (a + f:r,}) = mlk + ),
i=l J=i

for any distinct positive integers a;, . . ., @, and distinct positive integers
B by DAt is true this conjecture will be very deep.
For the proof of Theorem 2 we shall require the following two lemmas.

LeMMA 5, Let w be a real number with u = 1. Then

Wix, ') ~ xo(u).

Praaf. This result is due to Dickman [12], see also de Bruijn [5].

LeMMA 6. Let & and u be real numbers with < 6 < land 1 < w. Let N and
[ be positive integers such that N exceeds a number which is effectively
computable in terms of & and w and such that 2 < | < log N. Pui

rN al
mo= T{“ — Siple)y  and ¢ = N,
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Then there exist distinct integers ay, . . ., a,inil, ... . N} and there exist
integers by, ... . Bwith) = b, < b, < --- < b, < N such that

Ll )
P(]_[ﬂ (a, + b,]) <t

=] =]

Proof. Put W = {1l < n < N: P(n) < t}. Then |W| = y(N. 1. For N
sufficiently large we have

YN, D) == 1.

By Lemma | there exist sets 4 and B of non-negative integers such that
|4 = ("A(F =), 0eB, |Bl=1 and A + B = W, so in particular
Pla + &) = tforallg e 4 and b € B, It remains to prove that | 4| = m. We
have. as in (4),

(N, (1 + e(1))

|A| 2 Igl.q,'.'r-l:

Thus, by Lemma 5,

(No) (1 + of(1})))

41'% IN'-!

and the result follows, [l

Proof of Theorem 2. Suppose that fi(u) = (1 — @ log p(u))/u attains
its minimum value for ¥ = 1 at u = u,. We apply Lemma 6 with
N =Tkl — 2)e(u)) ', § = &2 and v = u,. Since pl,) < 1 we
have N = k, whenee 2 </ = # log & < log N. Further

N i
1T T ((1 — (&/2De(uy)y = k.

Thus. for k sufficiently large in terms of & and 8, there exist distinet integers
PR B 111 e o) D N} and integers by, ..., H with 0 = b, <
by < ~vs < B = Nwith

¥ '
P(U |1 (a4 + b,;) < N,

=1 =l
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Furthermore,

N'™ < 2 exp (lug k (I _ loglog k

3 Tguk_ — tlog (1l — (&/2)) — 0 log pluy }))

My

Since —flog (1 — (g/2)) < —log (1 — (g/2)) < 3efd, we have. for k
sufficiently large in terms of £ and 6,

Pl
N il = kMI?Hr.j

as required. O

§2. S-umit equations with many solutions

LetS = {p,....,p, | beasetof prime numbers. Let a, b and ¢ be non-zero
integers. Then the equation

ax + by = ¢z (1)

in integers x, ¥ and z which are all composed of primes from § is called
an S-unit equation (over @), Usually S-unit equations are defined over
algebraic number fields or other finitely generated domains. An extensive
survey on these equations has been given by Evertse et al. [18].

It follows from the work of Mahler [31] (cf. Lang [27]) that the S-unit
equation (11) has only finitely many solutions in coprime integers x, ¥, =
Mabhler dealt explicitly with the case @« = b = ¢ = |. An upper bound for
the number of solutions in this case was given by Lewis and Mahler [28].
Their bound depends on §. Evertse [16] proved for general a, b, ¢ that the
S-unit equation (11) has at most 3 x 7% solutions in coprime integers
x, ¥. = (see also Silverman [41]). Generically the number of solutions of
equation (11) is much smaller. S-unit equations split in a natural way into
equivalence classes (cf. [18, 19]) in such a way that it is a trivial matter to
compute all the solutions of an S-unit equation il one knows the solutions
of an equivalent S-unit equation. Further the number of solutions of equiv-
alent S-unit equations are equal. The number of equivalence classes is
infinite, but Evertse et al. [19] proved that. with the exception of only finitely
many equivalence classes, the number of solutions of the S-unit equation
{11} in coprime positive integers x, v, z is at most two. By contrast, it follows
from Theorem 4 that the S-unit equation x + y = z can have at least as
many as exp ((4 + o(1))(s/log 5)'*) coprime positive solutions and hence
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Evertse's upper bound is not far from the best possible bound. On the basis
of a heuristic computation we think that the truth is in between. We
conjecture that if & is any positive real number and S the set of the first 5
primes then the number of solutions of the S-unit equation x + y = zin
coprime positive integers x, v and z is at leastexp (V") fors > C,(£) and,
on the other hand, if § is any set of s primes, then the number of solutions
is at most exp (s°"**) for s > C,(z). Theorem 3 shows that in Theorem 4
one of x and y can be fixed at the cost of replacing exp ((4 — &)(s/log 5)"*)
by exp ((2 — &)(s/log £)'?).

THEOREM 3. Let 2 = p,, ps, . . . be the sequence of prime numbers. Let & be
a positive real number. There exists a positive number 5,(&) which is effectively
computable in terms of & such that if s is an integer with 5 > 5,(£) then there
exist positive integers k, and &k, with

k, < exp (2(s log 5)'*), k; < exp ((s log 5)'?),
such thar the equation

x—-y =k

has at leasi exp ((4 — &)(s/log 5)'*) solutions in positive integers x and y with
Plxy) = p, and such that the equation

x—y =k

has at least exp ((2 — &)(s/log 5)'?) selutions in coprime positive integers x
and v with P{xy) = p,.

THEOREM 4. Let & be a positive real number. There exists a number s,(g), which
is effectively computable in terms of &, such that if’ s is an integer larger than
5,8} then there exists a set 8 of prime numbers with |S| = s for which the
equation

X+y =1z

has at least exp ((4 — &)is/log 5)'*) solutions in coprime positive infegers
composed of primes from 5.

Proof. Let 0 < & < 1| and let 5 be so large that the following arguments
hold true. Apply Lemma 3 with ¢ = 1, the positive number & to be chosen
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later, f(x) = (log x)/2, N = Lexp ({2 — &)(s log 5)"*)] and I = 2. Then
there exists an integer s, with

- 41 — 8)s log 5)'°
B o
B e 0 {“ % (I + &) log s }

and there exist integers a;, .. -, B Al N} and b in {I
N — 1} such that

P([Il ala;, + 'E‘}) = (1 = g)_ s log s.
=]

Taking x, =a + b, =g fori=1..., m,, we obtain a positive
integer k, = b with k, < exp (2(s log £)'*) and m, solutions x,, y, of
the equation x — y = k, with Plx,y) < (1 — 6/2)slogs < p,, the
last inequality by the prime number theorem. Choosing 4 so small that
41 — 8%(1 + 8)' > 4 — £, we obtain

N
M, > eXp {{4 — a](@) }

and the first assertion follows.

For the second statement apply Lemma 3 withe = 4, 4 to be chosen later,
f(x) = (log x)/2, N = Llexp (1 — §)(s log £)'*)] and { = 2. Then there
exists an integer m, with

L 2(1 — 8)(s log 5)'*
nm, = exp {H — &) T+ 8 lous (1 + log 2) (12)
and there exist integers a;,...,a, in {l,..., N} and b in {1,...,

N — 1} such that

L] T2
P(]_[ ala, + b}) £ (l - g) slogs < p,.
fu ]

Takingx, = a, + b, ¥y, = @, fori = 1, . . ., m; we obtain a positive integer
k = b with & < exp ((s log s)'*) and m, solutions x,, y, of the equation
x—y=4kwith Plx,v) s p,. Letd =pged{x,y)fori=1,...,m.
Then d |k and x,/d, y,/d is a solution of x — y = k/d. The number of
possible values of k/d, is at most the number of positive divisors of k. Since
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k = N. the number of divisors of k& does not exceed exp ({1 + (5/2))
{log 2)(log N )/loglog N) (see Theorem 317 of Huardy and Wright [25]).
Thus there exist positive integers d and k. = &/d such that the equation
¥ — ¥ = k, has at least

i 112
m; axp(—u + (1 — §) (m%h) 2 log 2)

solutions x,/d, v, /d. Observe that all these solutions are coprime and distinet,
Choose & so small that 2(1 — é¥(1 + &) '(1 + log2) — (1 + &)
{1 —d2log2 = 2 — & Then it follows from (12) that the number of
solutions in coprime positive integers of the equation x — y = Kk, is at least
exp ({2 — £)(s/log 5)"”). Since these solutions x, ysatisfy 0 < y < x < exp
(is/log 5)'%) and P(xy) < p,.and moreover k. < k = exp ((s/log 5)'7). this
completes the proof.

Proof of Thearem 4, Let 0 < & < 1, By Theorem 3 there exists a number
sHd) which is effectively computable in terms of & such that il 5, = s*d)
then there exists a positive integer k, with k, < exp (2(s, /log 5,)'7) such
that the equation x — y = k, has at least exp ((4 — 8))(s /log 5,)")
solutions in positive integers x and y with P{xy) < p, . We infer that the
number of prime factors of &, does not exceed 4(s, log 5,)'*. Put

S = {plpprime and p < p, or plk, }.

Then |8| £ 5, + 45, /log 5,)'* < (1 + &)y, for 4, sufficiently large. We
now choose s, by 5, = [#(1 + §)"'l. Then |S| < 5. By making § sufficiently
small with respect to & we obtain that the number of solutions, in positive
integers x, y composed of primes from 8, of the equation &, + y = xisat
least exp ((4 — £)(s/log 5)'7) and, by dividing out the common [actor, we
obtain this many distinct solutions in coprime positive integers x, v and = of
theequation ¥ + y = =z such that each of x, y and = are composed of primes
from §. O

§3. Thue-Mahler equations with many solutions

Let F{X, Y) be a binary form with integer coefficients of degree n = 3 and
It S = {Prycosy p,| be a set of prime numbers. The equation

Flx, yy = @ oo p? (13)
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in non-negative integers x, 3, 2. . . . . z, is called a Thue-Mabhler equation.
It becomes a Thue equation if =, ..., z, are all fixed. Mahler [30, 31]
proved that if Fis irreducible, then equation (13) has at most ¢ solutions
with x and y coprime where the number ¢ depends only on F. Lewis
and Mahler [28] derived explicit upper bounds for the number of coprime
solutions of (13) in terms of Fand § when Fis a binary form with nen-zero
discriminant. Evertse [16] succeeded in deriving an upper bound for the
number of coprime solutions which depends only on » and 5. He showed that
il the binary form Fis divisible by at least three pairwise linearly indepen-
dent forms in some algebraic number field, then the number of solutions of
(13) in non-negative Integers x, ¥, ;. . . . . z, with ged(x, y) = 1is al most

3w B4R

(see also Mahler [33] and Silverman [38, 39]). Upper bounds for the sol-
utions themselves were provided by Coates [9. 10], Sprindzhuk [42]. Gydry
|20] and others.

One may wonder how many solutions equation {13) can have, Theorem
5 shows that Evertse’s bound cannot be replaced by exp (s'"/log 5). There
is a wide gap between the bound of Evertse and the one we have given, but
we expect that the bound exp (s'" /log 5) is much closer to the truth than
exp (s), say. In fact, Theorem 5 already applies to the Ramanujan—Nagell
equation

F(x) = F(x,1) = pi'...p}.

However, the polynomial F is not explicitly stated in Theorem 5. In this
context, it is worthwhile to note the following immediate consequence of
Theorem 4, which even gives a slightly better estimate than that of
Theorem §.

CorOLLARY. Lete = 0. For s > 5,(g) there exisisaset S = {py, . ... p}
of prime numbers such that the equation

xylx+ 3 = p P

has at least exp (4 — e)(s/log 5)'7°) selutions in non-negative integers x, v,
Zyy .oy 5 With ged(x, ¥} = L

The situation becomes entirely different for the Thue equation

Fix,y) = k (14)
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where Fis a binary form as above and £ is a non-zero integer. Upper bounds
for the number of solutions of (14) have been given by Davenport and Roth
[11], Silverman [38, 39], Evertse and Gyéry [17], Bombieri and Schmidt [3]
and others. Upper bounds for the solutions themselves were provided
by Baker [1], Gyéry and Papp [21, 22] and others, On the other hand,
Silverman [40], extending work ol Mabhler [32], has shown that there exist
infinitely many cubic binary forms, each with non-zere discriminant, such
that the number of solutions of equation (14) exceeds C(log |k{)** for
infinitely many integers k where C is some positive constant. However, it
may be that there exists a number C,, depending only on n, such that
equation (14) has at most C; solutions in coprime integers x, v.
We now proceed with Theorem 5.

THEOREM 5. Let & be a positive number. Let 2 = p, po. . . . be the sequence
af prime numbers and let | be an integer with [ = 2. There exists a number
syles 1) which is effectively computable in terms of & and [ such that if 5 is an
integer with 5 = sy(e, 1), then there exists a monic polvaomial F(X) af
degree | with distinct roots and with rational integer coefficients for which the
equation

Fx) = p' ... (15)
has ar least

i

1!
QKP {H_ = E} W} {Iﬁ}

selutions in non-negative integers x, z,, . . ., Z,.
Proof. We assume that 5 is so large that the following arguments hold true.
Apply Lemma 3 with ¢ =1, flx) = (logx)f. N =lexp{{i — &)
(s log )"} |and the positive number § to be chosen later. Then there exists
an integer m with

(f — 28)(s log 5)'" }

m = exp {{1 — 0) Tog ((1— (8/1))(s log 5))

1 I
= exp {u - 3y M}

log &
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and positive integers a,. . . . . a, and non-negative integers b;. . . . . b such
that

o 5
P([_[ IT fe, + h,}) = (1 = %)sl-’.}gx.
I=Tils=l

By the prime number theorem, the right hand side of (17) does not exceed
.. hence all the numbers a, 4 b, are composed of p,, - . ., p,. Put F{X) =
(X 4+ B) ... (X + b;). Then we have m solutions of the Diophantine

equation (15) in non-negative integers x, =,, . . ., z,. Choose § 50 small that
(1 — 8" > FF — g Then the number of solutions of equation (13) is at
least (16). O

Remarg. The polynomial F mentioned in Theorem 5 has the special
property that all its zeros are rational integers. The problem of finding a
comparable lower bound for the number of solutions of (15) remains open
i, Tor instance, Fis irreducible over the rationals.
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