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ABSTRACT

We pose the problem of the existence of incongruent covering systems of
residue sets, where two residue sets intersect if and only if their moduli are rela-
tively prime. We show how such covering systems give rise to nearly disjoint cell
covers of a lattice box, and thereby obtain a partial solution. In particular, we
show that the number of primes dividing the £.c.m. of the moduli of the residue

sets of such an incongruent covering system must be at least five.

NOTATION

IN denotes the natural numbers, Z the integers, Zy the non-negative integers

and @ the rationals. For a,b & %, < a,b > denotes the integer interval

< ab>i={a,a+1,---,b}.

(If @ > b this is the empty set.) An empty product is defined to be 1. The
complement of the set S is denoted §. §; C S denotes that ) is a subset of Ss,
and 5y C S denotes that 7 is a strict subset of 53 (1.e. 5 C 52 but Sy # S9).
If F is a non-empty family of non-empty sets, the dertved fomaly FU) 2 Fis the

family of all non-empty intersections of these sets,
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INTRODUCTION

A residue setis a set R € Z of the form

R={keXZ:k=a(medn)}

(]

for some a € &, n € IN. This set is denoted a(n). We refer to n as the modulus
of R, and two residue sets are congruent if they have the same modulus. If R is

a family of residue sets
R={ailn)):ie< 1t >},

the modulus n = ny, is division mazimal, or simply divmaz, if it is maximal relative

to division among the moduli of the sets of R. That is,
nin; = n=n; (fe<1,t>) .

If the sets in R cover Z, then R is a covering system. If the meduli n; are all

distinct then R is tncongruent.

Let R be a family of residue sets which cover Z and have the property that
they are nearly disjoint in the sense that no two distinct residue sets of R intersect,
unless their moduli are relatively prime. Is it necessary that some of the residue
sets of R be congruent, or can R be incongruent? We know of course from
the Newman-Znam result that if the residue sets of R are pairwise disjoint, then
necessarily the divmax moduli from R must occur repeatedly, We show that
under a certain condition described below, a similar result holds for these nearly

disjoint covering systems.

Recall the Bell numbers by, n > 1, which count the number of distinct

partitions into subsets of < Ln > (by =1, by = 2, b3 = 5, by = 15, b; = 52,

etc.). These numbers satisfy the recurrence

by = i (z)bk (n20) ,

k=0
where by =1 .

QOur main result is the following
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THEOREM: lLet R = {ai(n;): 1 <i <t} be a nearly disjoint family of
residue sets which cover Z, 0(1) € R, and let py < --- < py be the prime divisors
of the £.c.m. of the moduli n;. Assume

k

t
DSQE_‘(Hpj}bk_g <24 E(pj —~2) forevery ke<5hit> . (1)

Then n; = nj for some i # j.

The repetition of a modulus in R derives from the repetition of a divmax modulus

in the associated system R(!), The precise statement appears below in §3.

Special cases of the Theorem

(i) If £ < 4 then (1) is satisfied vacuously — hence there is no nearly disjoint
incongruent covering system, the £.c.m. of whose moduli is divisible by at

most 4 primes.

(i1) There is no nearly disjoint incongruent covering system, the f.e.m. of
whose moduli has precisely 5 distinct prime divisors, if any of the following

conditions hold:

(a) One of the primes is > 29;
) m2T

(e) p221L

(d) m=2 p2T

Similar other conditions can be given.

§1. LATTICE GEOMETRY

Let n € IN and let § CZ" . Fori €< 1,n > define the i projection m;(S)
of S by
7i(8) = {yi:v=(y1."* . ¥n) €S} .

For z = (21,--*,2n) € Z" with z; > 2 (2 €< 1,n >) define the n-dimensional
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lattice boz, or simply boz
B=B(mz):={y=(n,,y):0Syi<z; (i€<ln>)}

=m(B) % -+ X wa(B)

%

where 7;(B) =< 0,z;—1> (ie<l,n>). lfzy = =2, =d then B(niz) is
the d-cube, or simply cube Q(n;d).

Given a box B = B(n;z)let I €< 1,n > and for any i & I let u; be any fixed

integer in m;( B). An I — cell, or simply cell of B is a set of the form
Ci={y=(y1,- " ¥m): 08 <z for iel, yy=u; for i g I}

=m(C)x - xwa(C)

where 7;(C) = mi(B) for all i € I, and m;(C) = {u;} for all i g I. The set I is
the indez of C, denoted

I = Indez(C)

Two cells of B are perallel if they have the same index. The dimension of a cell
Cis
dim(C) :=| Indez(C) |

LEMMA I: Let Cy,Cy be cells of an n-dimensional boz B.

(i) IfCinCy# 0 then Cy NCy is a cell of B with

Index(C; N Ca) = Indez(C1) N Indez(Cy) .
@) I
Indez(C1) U Indéz(Cy) =< 1,n >

then C1 N Cq # 0.

PROOF: Both parts of this Lemma follow from the cbservation that

C1NCy =(m(C1)Nm(Ca)) x -+ % (wa(C1) Nwn(Ca)) -
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Let C be a family of cells of a box B. A point ¢ € B is isolated (with respect
to C) if for any other point 2 € B there exists a cell in C which contains y but not
z. Equivalently y € B is isolated if

NC:CecC, yeC)={y} ;

or equivalently if
N{Index(C): CeC, ye C)=0 .

Denote the isolated points of B with respect to C by Isel(B;C), or simply Isel(B).

The family C is nearly disjoint if whenever Cy,Cy are distinct cells of C with
CiNCy # 0, then

Index(C1)U Index(Cy) =< 1,n >

LEMMA II: LetC be a nearly disjoint family of cells of an n-dimensional
boz B.

(i) If Co,- -+, Cy are distinct members of C with N}_yC; # 0, then

Indez(Cy) 2 Index(Nt_,Cy) .

(it) Suppose B&C. Then to each isolated point y € B corresponds a unique
sub-family C' € C for which

nC:Cec)={y) .
PROOF: (i) By the nearly disjointness of C
Indez(Cp) U Indez(Ci) =< 1,n> (ie<1,t>) .
Thus by Lemma I(i)

i i
Index(Cq) U Index( ﬂ C;) = Index(Co)U [n Inde:(C,-)]
i=1 i=1
t
= () Indez(Co)U Index(Cy)] = <1,n>

i=1
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(ii) Let €' CC be such that

nC:Cec)={u} ,

and let C be any cell in C which contains y. If C & C' then it would follow from
part (i) above that C = B .

LEMMA III: Let C be a nearly disjoint family of cells of an n-dimensional
boz B, and let C' be any sub-family of C with

Co:=nN(C:CeC)#0 .

Then
Co:={CNC.:Cel, CNC. £}

is also a nearly disjoint famaily of cells of C., and
Isol(C.;Cy) = Isol(B;C)NCu .

Furthermore if D1 N C., D3 N C, are distinct parallel cells of C. (D1,D3 € C),
then D1, D2 are distinet parallel cells of C.

PROOF: To see that C, is nearly disjoint observe that if
(CinC)N(CanC)# 0, C,CaeC, Cp # Cy,then C1NCy #£§; and so

Indez(Cy) U Indez(Cy) =< 1,n >
Thus by Lemma I(i)
Indez(Cy N Cy) U Indez(Ca N C.)
= [Indez(Cy) U Indez(Cs)) N Indez(Cy) = Index(C.) .
Next, regarding the isolated points, observe that for any y € Ca

NC:CeC,yeC)=nN(C:CeC,, yel) .

Finally observe that if D € C\C', DN C, # 0, then by Lemma II(1)
Index(D) 2 Indez(C.). Now if DyNCy, DyNC. are distinct parallel cells in C.
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then Dy,D9 € C\C'. Since Inder(Dq) and Indez(Dy) each contain Indez(C.),
and since Indez(Dy N C.) = Index(Dy N C.), it follows from Lemma I(i) that
Index(Dq) = Indez(Dy) .

|
LEMMA IV: Let Iy, I (k€< 1,t >) be subsets of < 1,n > satisfying
t t
hi= k=0,
k=1 k=1
Liul, = IJ'UIL =<n> (I £ &) =
Then I = I, (ke<1,t>).
PROOF:
T 1
IEQUI_;:ﬂI;:Ik.
i#k i#k
[ |

PROPOSITION V: Let C be a nearly disjoint family of cells of an n-

dimensional boz B. If
[Tsol(B) N D| > by

for some k €< 1,n > and some k-dimensional cell D of B, then there are two
points y, 2 € Isol(B)N D with the following property. Each cell of C containing y
is parallel to a corresponding cell of C containing z, and vice versa.

PROOF: Without loss of generality we may assume that B ¢ C, since
C\ {B} is nearly disjoint and keeps the same points isolated. The proof proceeds

by induction on n = dim(B). The case n =1 is easy.

Let (' ={C €C:C2D}. IfC" # @ then we may apply Lemma III and
consider C. instead of C, thereby reducing the dimension from dim(B) to dim(C.).
(Observe that Cy # B since we assumed that B & C.) In this case the induction
hypothesis applies.

Otherwise if C' = { then, on account of the nearly disjcintness of C, for any

isolated point y € D the family
Iy := {Indez(D)\ Indez(C): C € C, ye C}
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forms a partition of Index{D). Since there are only a total of by partitions of

Index(D), it follows that there must be two isolated points y, 2z € D with
Tgi= Mg {8475+ :80}
Let Cj and C; be the (unique) cells of € containing y and 2, respectively, for which
Index(C; N D) = Ir'adex{C; N D) = Index(D)\S; (jeE<1,t>) .
Then for i # j, sinee 5;N 55 =,
Index(C; N D) Index(C;- ND) = Index(D) ;
and so by Lemma I(ii) C;NC} # 0. Thus by the nearly disjointness of C, the sets
I; = Indea(C;), I; = Index(C})

satisfy the hypotheses of Lemma IV. It follows from this Lemma that C; and C_’f
are parallel (j e< 1.t >).

|
COROLLARY VI: et C be o nearly disjoint family of cells of the boz B(n;z).

if

t
Isol(B)N D : )bk
|Zsol(B) I)ngggi}_](gv}ka

for some k €< 1,n > and some k-dimenstonal cell D of B, where v1 < vy <

<vo < v 13 a consecutive ordering of (x;: 1t € Index(D)), then there are two points

v,z € Isol(B) N D with the following property. Fach cell of C containing y 1a

parallel to a corresponding cell of C containing 2, and vice versa.

PROOF: D can be partitioned into II{_,v; cells of dimension k — 1.

§2. CYCLIC GROUP ALGEBRA

Let G := Z/mi be the additive eyclic group < 0,m — 1 > modulo m, and

let m have the prime factorization
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3
m=1]r (p<--<ps) .

i=1
Let B be the box
B:=Q(a;p) x -+ x Qlag pe)
Observe that B is the box B(n;z) where n = 2;:1 o; and
zp =p; for Zug < 1.-52&,- .
i<J i<y
Recall the mapping ® : G — B defined in [1]. Givenu € G and j €< 1,£ > let
e (u) 1= 2D = (&, =) € Qlaiy)

be the aj-tuple of p;j-ary coefficients for u(mod p;-"" ). That is

&
@(Jl(u) =) —s u(meod P?i} = ZISJ)p‘?; i
i=1
Then set
B(u) := (8N (w),--, 80w e B .
The following result, proved in [1], describes an important property of @.
LEMMA VII: & is bijective, and if K 15 a coset of G, say
£ g;
K| = Hpj’ (B; €<0,a; >; jE<1,£>)
i=1
then C = ®(K) is a cell of B with index
&
Index(C) = | J(} o+ {1,---,8}) -
j=1 i<y

Two cosets Iy, K3 C G are congruent if |[Ky| = |K2|. Let K be a family
of cosets of G = Z/mZ. An element u € G is isolated (with respect to K) if
for any other element v € G there exists a coset in K which contains u but not
v. Denote the isolated points of G with respect to K by Isol(G; K), or simply

Isol(G). The family K is nearly disjoint if whenever Iy, K are distinct cosets of
K with K N Ko # 0 then
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Lem (K1l |Ezl)=m .
The covering function f = fr : G — K4 is defined by

flu) = |{K € K :u € K}| = the number of cosets in X which contain u .

PROPOSITION VIII: Let K be a nearly disjoint family of cosets of
G := Z{mZ which cover G, and suppose G € K. Then

S (Wer =0,
ued sol(G)
where w is a primitive mt" root of unity, end f = fic is the covering function.

PROOF: It follows from Lemma VII that
Lem.(|Iq], | Kz|) =m < Index(P(I)) U Indez(B(K3)) =< 1,n > ,

where n is the dimension of B := @{G). Then C := $(K) is a nearly disjoint family
of cells of the box B which cover B, and

Isol(B) = &(Isol(G)) .

Thus by Lemma II(ii) to every isolated point u € G there corresponds a unique
sub-family X' € K with

NK:KeK')={u} .

For any coset K C G with |K| > 1 we have

z;.:“:l) :

ue K
Since K covers G we can use the inclusion-exclusion principle now to write

Y, =Yoot § Fob- Y, 3w

uelsol(G) uedG Kek ueK Ky Ryl weKynik;
|K|>1 Ky nKg|>t

4 Z Y W ee=0.

Ky Ky, K3€K weKynKorilis
|y NKNEg[>1
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The next result is from Conway and Jenes [3, Thm. 5.

LEMMA IX: [LetU C Zy and {qu : v € U} € @ be such that
cquwt = 0, where w 13 a primitive m!" root of unity. Suppose that 0 €
ver Qu® =0, wh is o primitive m!® f unity. Suppose that 0 € U
and that no proper subsum ¥, o quw™ equals zero, 8 C U' C U, Then
w2 2+) (-2 ,
plr

where

m
ri=s ——
ged(u:uel)
and the sum here 1s over the distinet prime divisors of r.

§3. PROOF OF THEOREM

Let C be a family of cells of a box B, The index I = Indez(C), C € C, is
subset minimal, or simply submin, if it is minimal with respect to set inclusion

among the indices of the cells of €. That is,
C'eC, Index(C')C I = Index(C')=1.

Similarly let X be a family of cosets of a cyclic group G. The order n = |K|,
K € K, is division minimal, or simply divmin, if it is minimal with respect to

division among the orders of the cosets of K. That is,

K ek, |[K'||n = |K|=n .

Observe by Lemma VII that n = |K| is divmin in K if and only if
I = Index(®(K)) is submin in &(K) .

THEOREM X: Let K be a nearly disjoint family of cosets of Z/mZ which

cover G, and suppose G ¢ K. Let py < -+ < py be the prime divisors of m.
Assume

i k
= 5ggg_l(p_lpj}bk-. < 2+;(p,-—2) (ke<5,€>) . (2)

Let n = |Kq| be divmain for KM, Then there exist two distinct congruent cosets
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K, K' € KD of order n such that each coset of K containing K is congruent to a
corresponding coset of K containing K', and vice versa.

PROOF: First observe that (2) automatically holds for k < 4, so that in

fact the assumption of the Theorem is equivalent to

k
me < 24 (pi—2) (ke<LE>) . (3)
i=1
Let C be a nearly disjoint family of cells of an n-dimensional box B which
cover B. Let I = Index(Cy), C; € C1), be submin in C(Y). In particular
Index(C) 2 I for any C € C. Define the cell

Co={y=(y1,:-,yn) €EB:y; =0 for iel} .
Observe that Indez(C.) = I. Now C induces a nearly disjoint family of cells
Coi={CNCs:CeC, CNC. #0})

which cover Cis. Furthermore there is a one-to-one correspondence between iso-
lated points y € C* with respect to C. and cells in c parallel to €7, Indeed
if

C.nN(Cel,yeC)={y}
then

J=Indez(N(CeC, yeC))CI ,

and since I is submin, J = I. Additionally if Dy, Ds € C are such that Dy NC.
and D3 N C, are parallel, then since Index(D1) and Index{D3) each contain I, it
follows from Lemma I(i) that in fact Dy and D3 are parallel. Thus if we establish
that C, has two isolated points y and z with respect to C., for which the cells of
C. containing them correspond and are parallel one to another, then it will follow

that C!) contains two I-cells with this same property relative to C.

In our case let C := ®(X) be the family of cells of the box B := $(G) which
correspond to the cosets of K. Then I} = Indez(®(Ky)) is submin in ¢ =
‘P(IC“)). By Lemma VII, restricting to the cell C, defined above corresponds to
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restricting to the quotient G/S) = Z/m %, where S} is the subgroup congruent to
Ky and my = m/|K|. Thus by restricting to the cyclic group G1 = G /51 we may
assume that ('] is a singleton. In other words it suffices to prove our Theorem here
for the special case where K7 is an isolated singleton. Furthermore by shifting
the cosets in K all by a fixed amount we may even assume that Ky = {0}. So let

us make that assumption now!

Next, as in [2], let Si be the subgroup of G with

4
1S.]=1I»i -
j=1

Then K induces a nearly disjoint family of cosets of S,
Kiei={KNS.: Kek, KnS,#0}
which cover S. . Let m = |G| have the prime factorization
‘ 2
m =[] 7}’
i=1
Suppose the element u € 5. is isolated with respect to Ky ; i.e.
SeN(K:Kek, ue K)={u} .

Then we claim that on account of the nearly disjointness of X, the cosets K € K

which contain u have the following special property:

(P) £ p;|IK| then p3||K] .

In other words if |K N Sy| = Ij¢ p; for some J C< 1,£ > then |K| = njeJP?j-
In particular if two cosets Ly N Sy, Ly N Sy € K4 containing isolated points of S.

are congruent, then in fact the cosets Ly, Lo € K are themselves congruent.

To see why (P) holds suppose K € K contains the isolated point v € S,. If
pjt|K N8| then pjf| K|, and so, by the nearly disjointness, any other coset L of
K containing u must be such that p?‘; “Li i

The upshot of this is that it suffices now to show that there are two isolated
points of S, with respect to K., for which the cosets of X containing them cor-
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respond and are parallel one to another. In other words it suffices to prove our

Theorem here for numbers m = H;:Ip,- which are square-free. So let us make

that assumption now!
In summary, then, it suffices to prove our Theorem for the special case where
(i) m= Hﬁ:ﬂ’:‘ is square-free,
(ii) 0 € G is an isolated point.

The rest is quick! According to Propoesition VIII

3 (et =0,

u€lsal(G)

where w is a primitive mth root of unity, and f = fx is the covering function. Let
Eneg[—l)““)w be a minimal subsum which alse equals zero, 0 € U C Isol(G).
This polynomial then satisfies the hypotheses of Lemma IX.

Suppose the conclusion of our Theorem were false. If
N ISR, W 1
gcd[u uel) jer

then the isolated points {®(u) : u € U} all lie in a k-dimensional cell of

B = &(G) = B(&(p1,--,p2)) -

Thus by Corollary VI
U <pe -

On the other hand by Lemma IX

k
Wl 2243 (pj=2) 2 2+ (pj—2) -

JE€J =1
Regardless of what k €< 1,€ > is, though, this conflicts with (3).

4
REMARK: Observe that the minimum in the expression for u in (2) can
be (slightly) simplified to
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]
= i | b
ph=, i (Hp;) k-t

j=1

(with k — 1 replaced by k — 4). This is because
Pty > by_qqq for k25, telk—3,k- 1}

We use this observation in the statement of Theorem X1 below and the Theorem

in the Introduction.

From Theorem X follows the Theorem in the Introduction. In fact we can say
something about which moduli are necessarily repeated.

THEOREM XI: Let R be a nearly disjomnt family of residue sets which

cover Z, Z§ R, and let p1 < ... < py be the prime divisors of the £.c.m. of the

moduli of the sets of R. Assume

j=1 i=1

t k
05?2?—4 (H p_,-) by <2+ Z(p; —2) for every k€ (5,€) .

Let n be any divmaz modulus of RO, Then there exist two distinct congruent sets
R R € RO of modulus n such that each set of R containing R 1s congruent to a

corresponding set of R containing R, and vice versa.

The conclusion here means that we can label all the sets {Ry,..., Ry} of R
which contain R, and all the sets {R},..., R} of R which contain R’ so that R;
is congruent to R; (i € {1,s)). In particular it will follow that these two families

consist of the same number, s, of sets. It may be that R; = R} for some i, but

this cannot be the case for all i € (1,s), since R and R’ are distinct.
For example consider the nearly disjoint covering system
R = {0(2),0(3),1(4),3(4)} .
Then
R = {0(2),0(3),0(6), 1(4), 3(4),3(12),9(12)} ,
and the divmax modulus n = 12 is repeated: R = 3(12), R' = 9(12). There are
s = 2 sets of R containing R: Ry = 0(3), Rz = 3(4). Likewise there are 2 sets of
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R containing R: R} = 0(3), R4 = 1(4). The sets Ry, R| are congruent (in fact
equal); and the sets Ry, Ry are also congruent. In particular R contains the two
distinct congruent sets Ry and R},

PROOF: Let R = {a;(n;) : ¢ € (1,1)}, and set m = Leem.ny,....ny).
Then
RNG:= {a;(n)NG: 1€ {1,1)}

is a nearly disjoint family of cosets of G : = Z/mZ. Furthermore G § RN G.
Observe that

RNV =rUng,
and that if n|m then
la(r)N G| =m/n,
implying that residue sets of R(1) with divmax moduli corresponding to cosets of

(RN G)1) with divmin order. Apply Theorem X, then, with K = RN G to arrive

at the desired conclusion.
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