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The central problem in additive number theory is as follows: 

Let A be a set of nonnegative integers. Describe the set of 

integers that can be written as the sum of h elements of A, with 

repetitions allowed. This sumset is denoted by hA. If hA is the 

set of all nonnegative integers, then A is called a basis a grder 
8. If hA contains all sufficiently large integers, then A is 

called an asvm~totip basis a orde1: 41. Most of classical additive 

number theory is the study of sumsets hA, where A is the set of 

squares (Lagrange's theorem), or the k-th powers (Waring's 

problem), or the polygonal numbers (Gauss's theorem for triangular 

numbers or Cauchy's theorem for polygonal numbers of any order), or 

the primes (Goldbach's conjecture). Shnirel'man [14] created a new 

field of research in additive number theory when he discovered a 

simple criterion that implies that a set A of nonnegative integers 

is a basis of order h for some h. Much recent work in additive 

number theory concerns general properties of additive bases of 

finite order. In this paper we discuss some unsolved problems 

about bases. 



Let A be a set of nonnegative integers. Let A(x) denote the 

number of positive elements of A not exceeding x. The function 

A(x)  is called the ~zgunt- 2- of the set A. If lirn A(x)/x 

exists, then it is called the gsvm~totic densitv of A, denoted 

d (A) . In particular, if lirn A(x) /x = 0, then A has asymptotic 

density 0 .  The lower ~ s v m ~ t o t i q  density of A, denoted dL(A) , is 
defined by dL(A) = lirn inf A(x)/x, and the asvm~totic 

density, denoted dU(A), is defined by dU(A) = lirn sup A(x)/x. 

There are many examples of asymptotic bases A of order h with 

density zero. An easy combinatorial argument will show that the 

counting function of an asymptotic basis A of order h must grow at 

least as fast as xlih. Let A be an asymptotic basis of order h. 

Then there is an integer N such that n belongs to hA for all n 

greater than N. If N < n 5 x and n = al+a2+. . .+ah, where each ai 
belongs to A, then 0 ( ai ( n ( x for i = 1, 2,. . . , h, and so the 
number of such ai is at most A(x)+l. The number of formal 

expressions of the form al + . . . + ah with ai belonging to A and 

0 5 ai 5 x is at most (~(x)+l)~, and these expressions represent 

every integer n such that N < n 5 x. It follows that ( ~ ( x ) + l ) ~  > 

x-N-1. This simple argument proves the following. 

LEMMA. If A is an asymptotic basis of order h, then 

lim inf A(x)/x'/~ - > 1. 

As a consequence of this result, it is natural to ask if 

there exist asymptotic bases A of order h such that A(x) has order 

of magnitude xlih. 

DEFINITION. An asymptotic basis A of order h is if there 

is a constant c > 0 such that A(x) < cx1Ih for all x sufficiently 

large. 

Thin bases exist. The first examples were constructed by 

Chatrovsky 121, Raikov 1131, and st6hr [15]. Cassels [I] obtained 



a more precise version of this result. For every h 2 2 he 

constructed a family of asymptotic bases A of order h such that if 

A = (a,), then an = cnh + 0 (nh-l) for some c > 0. 

It is a difficult open problem to determine if the classical 

bases in additive number theory contain subsets that are thin 

asymptotic bases. Consider the set Q of squares. Lagrange proved 

that every positive integer is the sum of four squares, that is, Q 

is a basis of order 4. However, Q(x) N x1l2. ~ r d h s  and Nathanson 

[6] proved that for every € > 0 there is a subset A of the squares 

Q such that 3A = 34, 4A = 44 and ~(x),.vcx(l/~)+' for some c > 0. 

Since the set 3Q of sums of three squares has positive density, 

this result (except for the E > 0) is best possible. We 

conjectured that for any t > 0 there exists a subset A of the 

squares such that 4A = 44 (that is, A is a basis of order 4) and 

A(x) N C X ( ~ / ~ ) + ~  for some c > 0. In his doctoral dissertation at 

Mainz, ~ollner 1171 has proved this conjecture. Is it possible to 

drop the E > 0 in ~ollnerls result? That is, does there exist a 

set A of squares such that A is a basis of order 4 and A(x) /v cx1l4 

for some c > O? This problem may be very difficult. 

It is important to note that ~ r d &  and Nathanson and ~bllner 

prove their theorems by using probabilistic methods. It is an 

open problem to construct explicit sets of squares that satisfy the 

conclusions of these two theorems. 

Nathanson [12] has investigated similar questions for Waringls 

problem, that is, for sums of k-th powers. In particular, he 

proved that for any s > so there is a set A of integers of density 

zero such that every nonnegative integer can be represented in the 

form n = alk + . . . + askl where al, .. ., as belong to A. Wirsing 

(unpublished) has considered similar questions for sums of three 

primes in connection with Vinogradovls theorem. 



Let A be a set of nonnegative integers, and let h 2 2. Denote 

by rh(n) the number of solutions of the equation 

n=al+...+ah with al 5 ... ( ah and al,. .., ah belonging to A. 

Clearly, A is an asymptotic basis of order h if and only if 

lirn in£ rh(n) > 0. Erdss and ~ u r i n  [ 9 ]  conjectured that if 

lirn inf r2(n) > 0 ,  then lim sup r2(n) = 09 . This remains a major 

unsolved problem in the study of additive bases. In general, if 

h 2 2 and lirn in£ rh(n) > 0, is it true that lim sup rh(n) = 00 ? 

A second open problem is as follows: The sequence A is called 

a B2 sequence if every integer has at most one representation in 

the form n = al + a2 with al, a2 in A and al ( a2. Does there 

exist a B2 sequence that is an asymptotic basis of order 3? 

A key role in additive number theory is played by the concept 

of minimality . 
DEFINITION. An asymptotic basis A of order h is minimal, if no 

proper subset of A is an asymptotic basis of order h. This means 

that for every number a in the set A there must be infinitely many 

integers n all of whose representations as a sum of h elements of A 

include the number a as a summand. 

stohr [16] introduced this definition of minimality. Using a 

nonconstructive argument, ~artter [lo] proved the existence of 

uncountably many minimal asymptotic bases of order h for every 

h 2 2. Nathanson [ll] independently rediscovered the notion of 

minimal asymptotic basis. His hope (unfulfilled) was that an 

asymptotic basis of order 2 that was both thin and minimal might 

provide a counterexample to the Erd;s-~ur&n conjecture. Let A be 

the set of all strictly positive integers that can be written 

either as a sum of distinct even powers of 2 or as a sum of 

distinct odd powers of 2. Nathanson [ll] showed that A is a 

minimal asymptotic basis of order 2 and also that A is thin. 



Moreover, A is minimal in the following strongest possible sense: 

For every integer a in A, let E<a> denote the set of integers in 

the sum set hA that are destroyed by the removal of a from A. Then 

E<a>(x) > c1x1/2 > c2~(x) for positive constants cl and c2 and all 

sufficiently large x. 

Not every asymptotic basis A of order h contains a minimal 

basis of order h. A trivial example of this phenomenon is the set 

consisting of 1 together with all nonnegative multiples of h. 

Nathanson [ll] constructed the first nontrivial example of an 

asymptotic basis of order 2, no subset of which is minimal. ~ r d o s  

and Nathanson [3] constructed a family of asymptotic bases A of 

order 2 with the property that, for every subset S of A, the set 

A\S is an asymptotic basis of order 2 if and only if S is finite. 

Since there is no maximal finite subset of the infinite set A, it 

follows that A does not contain a minimal asymptotic basis of order 

2. 

Let h 2 3. It is an open problem to construct an asymptotic 

basis A of order h such that, for any subset S of A, the ~ e t  A\S is 

an asymptotic basis of order h if and only if S is finite. 

There is a class of related open problems. For example, does 

there exist an asymptotic basis A of order h such that, for any 

subset S of A, the set A\S is an asymptotic basis of order h if 

S(x) < c log x, but not if S(x) > c(1og x12? A more extreme 

problem: Does there exist an asymptotic basis A of order h such 

that A\S is still an asymptotic basis if S(x) < c loglog x, but not 

if S(x) > cx? These problems seem difficult. 

It is obvious that if A is a minimal asymptotic basis of order 

2, then r2(n) = 1 for infinitely many n. The reason is the 

following: For every a in A there are infinitely many positive 

integers n such that if n = ai+aj, then ai = a or aj = a. Thus, 



( n )  = 1 In a previous paper 153 we asserted incorrectly that if 

A is a minimal asymptotic basis of order h 2 3, then rh(n) = 1 for 

infinitely many n. Certainly, for every a in A there are 

infinitely many n that do not belong to the sumset h(A\(a)), and 

each representation of such an n in hA is of the form 

n = al+...+ah-l+a. It is possible, however, to have more than one 

representation of n-a as a sum of h-1 elements of A\(a), and so it 

may happen that rh(n) 2 2 for all n sufficiently large. Indeed, 

the ~ r d g s - ~ d n ~ i  probability method 181 may lead to a proof of the 

existence of a minimal basis of order h 2 3 such that rh(n) 2 2 for 

all large n, or even such that rh(n) tends to infinity. An 

explicit construction of such bases (if they exist) would be 

extremely interesting. 

Let A be a set of nonnegative integers such that dL(A) > 0 and 

dU(A) < 1. Suppose there exists a positive real number c such that 

if n is sufficiently large and n is in 2A, that is, if r2(n) 2 1, 

then r2(n) > cn. Do there exist sets X and Y such that ( A \ x ) ~  Y is 

a minimal asymptotic basis of order 27 

Erdgs and Nathanson [4] proved that if c > l/log(4/3) and if A 

is an asymptotic basis of order 2 such that r2(n) > c log n for all 

sufficiently large n, then A contains a minimal asymptotic basis of 

order 2. This result suggests the following three open problems. 

First, if A is an asymptotic basis of order 2 such that 

r2(n) > c log n for c > 0 and all large n, then does A contain 

a minimal asymptotic basis of order 27 This should be true, but we 

have no idea how to prove it. 

Second, let A be an asymptotic basis of order 2 such that 

r2(n) tends to infinity. Does A contain a minimal asymptotic basis 

of order 27 This problem seems to be very difficult. In the 

opposite direction, we have recently constructed for every K an 



asymptotic basis A of order 2 such that r2(n) > K for all n 

sufficiently large, but A does not contain a minimal asymptotic 

basis of order 2. 

Third, let h 2 3. Does there exist a function uh(n) tending 

to infinity such that if A is an asymptotic basis of order h with 

rh(n) > uh(n) for all sufficiently large n, then A contains a 

minimal asymptotic basis of order h? 

Let A be an asymptotic basis of order 2. For any integer n we 

define the solution set S2(n) as the set of all a in A such that 

n-a is also in A. Using the probability method, we proved [7] that 

for "almost all" sets A of nonnegative integers, the set A is an 

asymptotic basis of order 2, and, for all but finitely many pairs 

of distinct integers m and n, the intersection of the sets SZ(m) 

and SZ(n) contains at most 5 elements. We do not know if the 

following generalization to bases of order h 2 3 is true. Define 

the solution set Sh(n) as the set of all a in A such that n-a is in 

(h-l)A. Is there a probability measure on the space of all sets of 

nonnegative integers such that, for some K = K(h), almost-all sets 

A have the following two properties: First, A is an asymptotic 

basis of order h, and, second, for all but finitely many pairs of 

distinct integers m, n, the intersection of the solution sets Sh(m) 

and Sh(n) contains at most K elements. 

We conclude with three more problems about minimal bases. 

Cassels [1] constructed for each h 2 2 a class of bases 

A = (an) of order h such that an = cnh + O(nh-l) . Does there exist 

a minimal asymptotic basis of order h that satisfies this growth 

condition? 

Lagrange proved that every natural number is the sum of four 

squares. Does there exist a subset of the squares that is a 

minimal asymptotic basis of order four? 



Finally, let A be an asymptotic basis of order h, and let E<a> 

= hA\h(A\(a)) be the set of integers all of whose representations 

in hA are destroyed by the removal of a from A. If A is minimal, 

then E<A> is infinite for every a in A. Does there exist an 

asymptotic basis A with the stronger property that the upper 

asymptotic densities dU(E<a>) are positive for every a in A? 

Indeed, we cannot disprove the existence of an asymptotic basis A 

of order h such that the lower asymptotic densities dL(E<a>) are 

positive for all a in A. 

The problems and results described in this paper represent 

only a small sample of the open problems that lie in the 

intersection of classical and combinatorial additive number theory. 
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