ON THE NUMBER OF FALSE WITNESSES FOR A COMPOSITE NUMBERl

Paul Erdds
Mathematical Institute of the Hungarian Academy of Scilences
Budapest, Hungary

Carl Pomerance2
University of Georgla
Athens, Georglia 30602/USA
When presented with a large number »~ which one would like to test
for primality, one usually begins with a modicum of trial division. If =»
is not revealed as composite, the next step is often to perform the simple

and cheap test of computing 4”-1

mod » for some pre-chosen number & > 1
with (a,n) = 1. If this residue is not 1 , then s 1is definitely com-
posite (by Fermat's little theorem) and we say & 1is a witness for n .
If the residue is 1 , then »# is probably prime, but there are excep-

tions, 1If we are in this exceptional case where

a”'l 2 1 mod 7 and ~7 i3 composite

then we say & 1is a rfalse witness for »n , or equally, that 2 1is a
pseudoprime to the base a .

The problem of distinquishing between pseudoprimes and primes has been
the subject of much recent work. For example, see [4].

Let

n-1

F(n) = {amod n : & 2 1 mod a2, Fln) = ¥F(a) .

Thus, if » is composite, then &(n2) 1is the set (in fact, group) of
residues mod » that are false witnesses for #» and F(#z) is the number
of such residues. If » 1is prime, then &») = 2 -1 and &(n) is the

entire group of reduced residues mod » . For any » , Lagrange's theorem

1Extended abstract, details to appear elsewhere.
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gives

F(n)|e(n)

where ¢ 1s Euler's function.

There are composite numbers » for which Ma) = ¢(n), such as
n = 561. Such numbers are called Carmichael numbers and probably there are
infinitely many of them, but this has never been proved. It is known that
Carmichael numbers are much rarer than primes.

At the other extreme, there are infinitely many numbers »s for which
An) =1 . For example, any number of the form 27 will do, where p is
prime. It is possible to show that while these numbers » with Ma) = 1
have asymptotic density 0 , they are much more common than primes.

So what is the normal and/or average behavior of the function mMa)?
It is to these questions that this paper is addressed. We show (where J'

denotes a sum over composite numbers)

mx
for x large and

(2)

Y

;E;' F(n) s x exp{-(1+0(1l)) log x logloglog x/loglog x}
as x 3o , We conjecture that equality holds in (2). oOur proof of the
lower bound (1) uses recent work of Balog [2] on the distribution of primes
p such that all primes in p-1 are small. With continued improvements
expected on this kind of result, the exponent 15/23 will probably "creep
up" towards 1.

Let ZL(x) = exp(log x logloglog x/loglog x). Let F}(x) denote the
number of 27 £ ¥ such that =~ 1is a pseudoprime to the base & . Thus
};{x} is the number of composite »# S ¥ with a4 mod 2 € #(n) . For a

fixed value of & , the sharpest results known on ;}(x) are that
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(3) exp{(log x)°/14 ¢ Py(x) < x o(x)"1/2

for all x 2 xola) - see [5], [6]. (Using Balog's result, we may replace
the *5/14" in the lower bound with 15/38.) We trivially have

) P, (%) 2 ' An .

asx mx

Oon the other hand

2 E,me 3 ¥ 1
asx mx n-1 asx
g 2 ] mod »z
s I OAn (£+1) .
mx

Thus, by using partlial summation and (1), (2) we can obtain a result that

is, or» average, much better than (3):

o 15723, y-1 + ol1)

%-‘SE’P‘(A’) < x olx

for x large.

We can compute the geometric mean value of A7) with more precision:

there are positive constants €r S such that

1/x “1

( 01 Aa)) = c'z(log x) + o(l)

mx
as x 2o , If the geometric mean is taken just for composite numbers,
then the result 1s the same except that c

2
Concerning the normal value of F(»7) , we show that 1log F(»)/loglog »

is replaced by c'z/e .

has a distribution function (&) . That is, 2(z) 1s the asymptotic

density of the integers um~ for which
M n) s (log n)” i

The function &(u) 1s continuous, strictly increasing, and singular on
[0,») . Moreover, D(0) =0 and 2{(+ «) =1 . Thus, for example, the set

of n with /Mn) =1 has density 0 .
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The starting point for our results is the elegant and simple formula
of Monier [3] and Baillie-Wagstaff [1]:

(4) Alna) = 1 (p1, n-1)
pla

where p denotes a prime. For example, (4) immediately implies /(2p) = 1.

We are also able to prove analogous results for certain pseudoprime
tests more stringent than the Fermat congruence, namely the Euler test and
the strong pseudoprime test. It is to be expected that there will be
similar results for all Fermat-type tests; for example, the Lucas tests.
Such an undertaking might gain useful insights into the nature of these
tests.

Finally we address some further questions including the maximal order
of M n) for n composite, the nature of the range of # ,the normal number

of prime factors of /A7) , and the universal exponent for the group #(»x).
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