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ON LOCALLY REPEATED VALUES 
OF CERTAIN ARITHMETIC FUNCTIONS. III 

PAUL ERDijS. CARL POMERANCE AND ANDRk3 SbiRKdZY 

ABSTRACT. Let d(n) denote the number of natural divisors of n. It is shown 

that thenumber of n 5 z with d(n) = d(n+l) is O(z/dG). In addit.ion, 
certain related problems and results are presented. 

1. Introduction. Let v(n) denote the number of distinct prime factors of n. 
Our main result in this paper is that the number of n < 2 with v(n) = v(n. + 1) 
is O(r/dm). We obtain the same result for the equations n(n) = n(n + 1) 
and d(n) = d(n + l), where n(n) is the number of prime factors of n counted with 
multiplicity and d(n) is the divisor function. 

A few years ago. Heath-Brown [7] proved that d(n) = d(n+l) has at least order of 
magnitude z/(logz)7 solutions n 5 5 and that the same is true for st(n) = R(rz+l). 
(It is not clear if the method goes through for u(n) = v(n+l).) In the second paper 
in this series [4]. we showed that the number of n i: 5 for which Iv(n)-v(n+l)l 5 3 
is at least of order of magnitude z/di@i@?? and obtained the same result for n(n), 
For d(n); we have the analogous result for those n < x for which d(n) = 2’d(n + 1) 
for some integer i with lit 5 3, 

Very recently, Hildebrand [8], combining the methods of [4] and [7]: showed that 
d(n) = d(n + 1) h as at least order of magnitude s/(loglogs)3 solutions 7% i: x and 
similarly for n(n) = S2(n + 1). Assuming a quantitative form of the prime k-tuples 
conjecture in Hildebrand’s paper gives order of magnitude x/d- solutions, 
which would then be best possible, in light of the main results below. 

The situation for other common arithmetic functions can be markedly different. 
In the second paper of this series we showed that the number of n 5 5 for which 

d(n) = d(n + 1) is less than ~/exp((logz)~/~) for all large X, where $ denotes 
Euler’s function. The same result holds for the sum of the divisors function o(n). 

An estimate just a little weaker than our main result can be immediately obtained 
from a theorem of Barban and Vinogradov (see Elliott [2, Theorem 20.11) on the 
joint distribution of v(n) and v(n + 1). Namely, from this theorem, the number of 
n < 2 with v(n) = v(n + 1) is 

0 
( 

5 log log log z 

> ~~loglogloglogs . 

We thank R. R. Hall and G. Tenenbaum for this observation. 
It seems interesting, though, to remove the log log log X/ log log log log 2 factor, 

not only for esthetic reasons, but because x/J- is almost certainly the correct 
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order of magnitude. In fact, in the second paper in this series we conjectured that 
there is a positive constant c such that the number of n < x with v(n) = ~(n f 1) 
is asymptotic to cx/fli. 

It might be interesting to see if the methods of this paper can be used to obtain 
a sharper error term in the Barban-Vinogradov theorem and thus prove an analog 
of the LeVeque conjecture for joint distributions of additive arithmetic functions 
for more modestly, just for y(n), v(n + 1)). 

In the first paper of this series [3] we considered the equation n+v(n) = m+v(m) 
for n # m. The method for treating the equation v(n) = v(n + 1) can be used to 
get an upper bound for the number of solutions of n+ u(n) = m + v(m). This result 
and several other problems suggested by our first paper in this series are discussed 
in $3. 

Finally we wish to mention that P. T. Bateman and C. A. Spiro [l] have given 
a heuristic argument for the main theorem in this paper. 

We shall use the letter p to denote primes. By P(n) and p(n). respectively, we 
shall mean the largest and smallest prime factor of n for n > 1; we let P(1) = 
p(l) = 1. The constants cl, ~2, . . . are all positive and absolute. 

2. The equation v(n) = v(n + 1). In this section we establish our main result. 

THEOREM 2.1. The number of n 5 z with v(n) = v(n+ 1) is 0(x/J-). 

PROOF. Let N denot,e the set of n with v(n) = v(n 4 1) and x1/3 < n < x - 1. 
It suffices to prove the O-estimate for IN]. Given n E N, let us define the integers 
a, 4 k 1 by 

n + 1 = ak, P(a) 5: p(k), a 5 ccl/33 up(k) > di3, 

n = bl, P(b) < p(Z). b < d3, bp(l) > x1/3. 

We shall assume that p(k) < p(l), the case p(k) > p(l) being similar. 
For 1 < y 4 x1j3. let N(g) denote the number of n E N with y < p(k) < y3. 

Thus if y3 = x3-‘, we have 

(2.1) INI I &(YJ 
j=l 

If j is so large that’ ~3” 5 2, t,hen N(yj) = 0, so we really only have a finite sum in 
(2.1). 

We now turn our attention t,o estimating iv(y). If n is counted by N(y), then 
the numbers a; bt k, 1 defined above satisfy 

@‘2) 
ak-bl = 1: ak < x: v(uk) = v(bl), P(a) I p(k) < g35 

y < p(k) < p(Z), a 5 x1j3, b < x1j3) a > s’/“/p(k) > d3/y3. 

Since all of the primes in k, 1 are at least 9, we have 

log x 
v(k) I - 

logy’ 

log x 
v(l) 5 - 

logy’ 
so that 

(2.3) 
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We now fix the integers a, b appearing in (2.2) and count the number of pairs 
/c, 1 there can be. Let ko, lo denote the unique integers which satisfy 

ako - blo = 1, 0 _< ko < b, O<lo <a. 

Thus if k, 1 satisfy (2.2) we have some integer m with 

(2.4) k=bm+ko, l=am+lo, OlrnSs, p((bm+ko)(am+lo)>Zy. 

Thus it suffices to count, t,he number of m satisfying (2.4). This is easily done by 
using either Brun’s method or Selberg’s sieve (e.g., see Halberstam and Richert (5, 
Theorem 3.1, p. 1011: note that a _< z1j3, b 5 z1j3 by (2.2)) which gives that, the 
number of such m is at most 

ClX 

4(44(b) log2 Y 

for some absolute constant cr. 
Thus from (2.2) and (2.3) we have 

(2.5) 

c 
b<s’/3 

~(a)<~~ l4b)--4~~l_<log x/ 1s Y 

Cl5 l 
-- 

log2 Y c- 
cb(4 

c c- 

a>d’3/y3 lt--v(a)l_<logx/l%Y b<2”3 
4;b) 

P(a)<y3 v(b)=t 

The inner sum on b is at most t 
1 1 1 1 

t! i z( ( m 
+ -- + +. . . 

p12’/3 G”> HP31 
0 

t 

1 
=z 

p<2’,3 (p G2 
c 

1 

5 ~(loglogz + C# < 
c3 log 2 

* Ji@i+’ 

where for the last inequality we used Stirling’s formula and then replaced 
pression in t with its maximal value. Using this estimate in (2.5), we have 

(2.6) N(Y) 1. 
Cd2 log2 2 

c 
1 

diaGGlog3 Y a>z1,3/y3 rn’ 

P(a)<y3 

To estimate this sum we prove the following lemma. 

LEMMA. There is an absolute constant c5 such that ifu > 0 and v 1 
we have 

the ex- 

2, then 

l c- < c5 log 2, exp 
log 21 

n>u #Cn) ( 1 -Ggi ’ 
P&i <7J 



PROOF. Let (T = 1/(2logv). Note that, if p I: II! then p0 < ,,k We have 

=21 --O exp 

i 

C t(l + O(crlogp)) 
PiV 1 

=U --d exp(log log 2, + O(1)) 

log 21 
-c-c C”logv = logvexp -- ( > 2lcJgv ’ 

which proves the lemma. 
Using the lemma in (2.6): we have 

N(Y) 5 
+,2 log2 z 

,,‘i@i@+og2y exp 

log(zr/s/ys) 

6logy ’ 

Recalling that yj = x3-’ ! this gives 

NC?/31 5 J1&323 exp 
( 

-;(3J-l - 3)) . 

Putting this estimate into (2.1) we have our t,heorem. 
REMARKS. The above proof can be made to go through if we replace v(n) = 

v(n + 1) with d(n) = ol(n + 1). To do this we first show that the quadruple a, b? kt 2 
appearing in the proof can also be assumed to satisfy 

(2.7) (a,k) = (b,l) = 1: k, 1 square-free. 

Indeed, t’he n for which these properties fail are negligible. We next’ replace (2.3) 
with 

do = 2i 
log x 

d(b) 
for some irkeger Ii1 5 -. 

1% Y 

The inner sum in (2.5) now reads cbi,l,.j,d(b,=,(~(b))-l. To estimate this, let s(b) 
denote the largest square-full divisoruf b. Then 

d(b)=t 
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The situation for n(n) = fl(n + 1) can be handled by similar methods. It is 
slightly easier than the d(n) = d(n + 1) case, though, since here it is not necessary 
to establish (2.7) nor is it’ necessary to change the form of (2.3). 

3. The equation n + y(n) = m + v(m). In t,he first paper in this series we 
gave two proofs that the equation in the title of this section has infinitely many 
solutions rz # m. The first, relatively simple proof uses the auxiliary funct,ion 

t,he connection being that if g(n) > g(n + l), t)hen there are two int,egers ml! rn.2 
with ml + u(ml) = rn2 + v(rng) = 72 + 1. The other: more complicated proof 
actually obtains a decent lower bound for the function 

F(x) = #{(m, n) : m < rz 5 z. m -t v(m) = n + v(n)}; 

we show F(z) > 2 a exp(4000 log log z log log log z) for all large 5. We conject,ured 
that F(z) k ~75 for some positive constant c7. 

In this section we state some new problems and result,s concerning the functions 
g(n) and F(z). First we record the following upper bound for F(s). 

THEOREM 3.1. F(X) = O(Z). 

This theorem can be proved by the general method of Theorem 2.1. The idea is 
to replace the equation u(n) - ~(n + 1) = 0 with t,he equation v(rz - i) - v(~L) = i? 
where i is an arbitrary positive integer. One then follows the general outline of 
the proof of Theorem 2.1: but with many new details? to prove that the number of 
solutions n 5 z corresponding to a given i < (loglogr)3/4 is at most 

where cs, cg are positive, absolute constants. For (log log z)3/4 5 i 5 100 log log z9 
we use t’he uniform estimate zr . exp(-es&$@) and for i > lOOloglogs, 
we use the uniform estimate O(z/log’ x). Summing these est,imates for i < 
(1 + o( 1)) log x/ log log 5 then gives F(X) = Q(X). 

COROLLARY. There z’s a positive constant cl0 such that for all large X? the 
number of distinct integers below x of the form n + v(n) is at least C~OX. 

We remark that if it could be shown that the set of distinct integers of t,he form 
n + V(VL) has upper density iess than 1, a corollary would be that, F(x) >$ 5. 

Concerning the function g(n) defined above, it’ is easy to see that t’he average 
order of g(n) is log log n + 0( 1). We also have the following result,. 

THEOREM 3.2. The normal order of g(n) is loglogn. 

PROOF. For each E > O! let 

ck(n) = ix 1 
m<n-(l+E) log log n 

m+v(m)>n 
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Using the Hardy-Ramanujan inequality [6] for the number of n 5 x with v(n) = i!, 
it is not hard to show that for any E > 0: there is some 6 > 0 such that 

n<s 

Thus the set of n with gE(n) > 0 has density 0 and so g(n) < (1 + ~)loglogn 
on a set of density 1. From (3.1) and the fact that the average order of g(n) is 
log log n + Q(l), it follows that g(n) > (1 - E) log log n on a set of density 1 for each 
fixed E < 0. This proves the theorem. 

It seems much harder to say something more precise about the normal behavior 
of g(n). However, one can prove by the above method that for each E > 0 there is 
some K such that the lower density of the set of n with 

log log n - Kde < g(n) < log log n + K d- 

is at least 1 - E. The first author believes it likely that (g(n) - log log n)/&$@% 
has a normal distribution in asymptotic density. However, the second and third 
authors believe rather that g(n) = loglogn+ o(di) on a set of density 1. To 
settle this dispute one might estimate the second moment of g(n), but this seems 
to be not so easy. 

The minimal order of g(n) is also an interesting problem. The first author has 
called n a “barrier” if m + v(m) <: n for all m < n. Thus n is a barrier if and only if 
g(n) = 1. We conjecture that there are infinitely many barriers, that is, the minimal 
order of g(n) is 1. We can prove that the minimal order of g(n) is O(logloglog n), 
This is done largely by arranging via the sieve that the numbers just below n should 
be free of primes in the interval [(loglogn)2, exp(log n/(loglog n)3)]. 

Concerning the maximal order of g(n), it, is easy to see by the Chinese remainder 
theorem and by the prime number theorem that 

for infinitely many n. This is probably close to being best possible. The completely 
trivial upper bound is __ 

logn 
g(n) 5 Cl+ 41)) ~ log log n 

for all n. This can be rather easily improved to (3 + o(l)) log n/loglog n, but 
further improvements seem difficult. 

Let h(n) denote the number of solutions of m + y(m) = n. Clearly, h(n) 5 
g{n - l), but we cannot prove a better upper bound for h(n) lhan what we get for 
g(n). Probably h(n) is unbounded, but this too seems difficult. The best we can do 
in this direction is that h(n) 2 2 infinitely often-this is of course the main result 
of the first paper in this series. 
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WEIERSTRASS WEIGHT AND DEGENERATIONS 

R. F. LAX 

ABSTRACT. It is shown that as a family of projective smooth curves degener- 
ates to an irreducible Gorenstein curve the Weierstrass weight at a point P on 
the limit curve is the sum of the Weierstrass weights at points on the smooth 
curves converging to P. 

C. Widland [8] extended the classical notion of Weierstrass point to int,egral, 
project,ive Gorenstein curves. We considered Weierstrass point,s of invert’ible sheaves 
on such curves in [5] and showed t,hat a singular point is always a Weierstrass point 
of high weight of any invertible sheaf with at least two linearly independent global 
sections. We remarked that this may be interpret,ed to mean that as a family of 
smooth curves degenerates to an irreducible Gorenstein curve, then many of the 
Weierst,rass points tend towards the singularities. Our goal in this not’e is to make 
this statement precise. 

We work over C. By a “point” of a scheme? we mean a closed point. If X is a 
scheme of finite type over C, then we denote the associated complex space by X,,. 
We wish to thank August0 Nobile and Peter Stiller for helpful conversat’ions. 

Let S be an integral: noet’herian scheme over C and let 7r: K --+ S be a family 
of Gorenstein curves of arithmetic genus g > 2. By this we will mean that T is 
a flat, proper morphism whose geometric fibers are integral Gorenstein curves of 
arithmetic genus g. By the theory of duality of coherent sheaves [4! V.9.7 and VII.4 
(p. 388)]? there is a canonical invertible sheaf w = WI/S on X whose restrict’ion to 
a fiber X, is the sheaf of dualizing differentials on that curve. 

Let f be an invertible sheaf on X. Then fZ is flat over S. Assume that 
dim h”(K,, L1,) = r > 0 for all s E S. Then r,C is locally free of rank T. We 
define below an effective Cart,ier divisor W(e) on X. We will also use W(l) to 
denote the associated locally principal closed subscheme of X. We note that, the 
subscheme W(L) may not be reduced. The points of W (2) are t,he &Weierstrass 
points of X/S. The w @“-Weierstrass poinh are called Weierstrass points of order 
n and the w-Weierstrass point,s are simply called Weierstrass points. 

Suppose (s! P) E X and let U be an open neighborhood of (s, P) such that 
(1) There are sections 41 7 . . , ? q& of L whose restrict,ions to X,I form a basis for 

HO(.&! e,t) for all s’ E 7r(U). 
(2) C(V) is a free Ox(U)-module generated by Q. 
(3) WI/S(U) is a free Ox(U)-module generated by T. 
Define Fi,j E l?(U! Ox) by 

#j = Fl,jlc, for j = 1:. . . ! T: 

dFi-l,j = Fi3ir for i = 2,. . , T and j = 1,. , r> 
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