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How much can a permutation be simplified by means of cyclic rotations? For functions
f : S„ Z which give a measure of complexity to permutations we are interested in finding

F(n) = max min f (a),

where the max is over a e S„ and the min is over tr which are cyclically equivalent to a.
The measures of complexity considered are the number of inversions and the diameter of the

permutation . The effect of allowing a reflection as well as rotations is also considered .

1. Introduction

Let

	

a = (a, i . . . , an ) E Sn

	

be

	

a

	

permutation

	

and

	

let

	

[a]
{(a;, . . . , a n , a l , . . . , al-1), n , j ,1} be the class of all cyclic permutations of a .
Also for _ (b, . . . , b n ) E Sn denote by ,rR the permutation (bn , . . . , b 1 ) E Sn .
We also denote by (a) the set [a] U {iR i E [a]} . For a real function f :Sn R,
we consider f defined by

f(a) = min{f(i) I i E [a]},

and f given by

f(a) = min{f(i ) 1 t c- (a)} .

Our interest in this article is in finding max{ f(a) I a E Sn } and max{f(a) I a E

S, 1, for certain functions f.
Here we deal with two instances of this general problem :
(1) f (a) = number of inversions in a = If (i, j) I i <j, a(i) > crU)} ;
(2) f(a) = max fla(i) - il I i = 1, . . . , n} .
Our interest in those problems was initiated by studies on the design of

electrical circuits for parallel computations [1] . Of course, many other problems
suggest themselves that we hope to investigate in the future .
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2. Counting inversions

As stated in the introduction we investigate here the function

F(n) = max min I(c ),

where I(a) is the number of inversions in o, the max is over n E Sn and the min
over a E [n] .

Theorem 2.1 .

2
0.304-n 2 + O(n) =

8 _16j7 n2 - Zn, F(n) -- 3
- 3n6 1=

0.333 +n2 + O(n) .

Proof. Let us first remark that F(n) = O(n2 ) is obvious. Since a permutation of
Sn can have at most (2) inversions, F(n) , (2) . Also for _ ( n, n - 1, . . . , 1) E Sn
it is easily verified that

min I(Q) =
4

+ O(n) .

The upper bound

Let a = (a, i . . . , an ) and let ik = (ak , . . . , a n , a l , . . . , a k_ 1 ), n % k --1 be the
permutations in [Q]. Define variables x k) , 1-- i <j -- n, 1, k -- n as follows :

x(k) = (1 if ak+i > ak+jt
t) 0 lf ak+i < ak+j •

Whenever reference is made to a t with t ~ [ 1, n] we mean a, where t' _
t - 1 (mod n) + 1. This convention will be made throughout the article without
further notice. Also xij stands for x ") .

Note that

I(ik) _

	

z
1--i<j--n

We want to find the average of I(ik ) over n % k , 1 ; so let us fix 1, i < j , n
and let us calculate

n

	

_

	

I

	

if xij = 0,
I xvk~
k=1

	

In-j+i ifxij =l .

This is because for 1, i < j , n there are n - j + i values of 1, k -- n for which
i + k (mod n) > j + k (mod n) . Again let us remark that our residue classes mod n
are 1, . . . , n not 0, . . . , n - 1 as usual. So, we have

n
~ x k ) =j - i+(n-2j+21)xij .
k= 1



And therefore

Therefore

1(i
)` (n+1) +

k=1

	

(n)-(2n-1)n(n-1)
k

	

3

	

3

	

6

and so the average of I(i) over all i E [a] is at most 6(2n - 1)(n - 1) . It follows
that for every a E Sn there is a i E [a] for which I(i) , 6(2n - 1)(n - 1) = Ant -
6(3n - 1), proving the upper bound .

The lower bound

We want to find a permutation a= (a, i . . . , an ) E Sn for which I(rk ) is large for
all tk = (ak , . . . . a n , a,, . . . , a k_ 1 ) E [a] . Let us comment first that

I('rk+1) - I(rk) = n + 1 - 2ak .

Because of moving from tk to tk+1, ak - 1 inversions disappear and n - ak new
inversions are created. Let us assume, for simplicity that I(i1) , I(tk ) for all
n , k > 2 . That means that for all n - 1, k , 1

Extremal problems on permutations under cyclic equivalences

n

	

n
I(tk )

	

(i - t) +

	

(n - 2j + 2i)x ij
k=1

	

k=1 1_i<j-n

	

1--t<j_n

	

1_i<j--n

(n+1)
+

	

(n - 2j + 2i)xi; .
3

	

n

For 1, r < s <i--n we have

1, x,,r + x st - x,t .

Because xs = xst = 1 implies xrt = 1 .
Let us sum (1) over all triples 1-- r < s < t -- n . For 1, i <j < n we count

x ij (i - i - 1) times in the negative and i - 1 + n - j times in the positive sign .
Altogether we get

( 3 ) _

	

1, Y, xrs + xst - x rt =

	

(n - 2j + 2i )x,, .
l--r<s<tsn

k
(n+1-2aj) ;0 (n-l,k,l) .

	

(2)
i=1

3

(1)

To simplify our calculations we assume n to be even, the modifications for
odd n are insignificant . We want to find o for which a i < aj for i < j will occur only
for i , In <j . In other words the numbers in [1, Zn] will appear in reverse order
and so will the ones in [Zn + 1, n] . Under this assumption we want to maximize
the number of inversions between numbers from these two intervals, while at the
same time maintaining (2) valid . This means we set

ai = zn-i+l fortl ,i,landa t, +l =n,
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for some integer t 1 . Of course, we wish to minimize t, so as to maximize the

number of inversions. This must be done subject to the assumption that (2) must
hold, which it certainly does for t, , k ,1. Let us evaluate the left hand side of

(2) for k = t l + 1

t,
•

	

(n-2aj +1)=E (2j-1)= ti .
i=1

	

j=1

And therefore

tj+1
•

	

(n-Zaj+1)=ti-(n-1)>0 .
j=1

We, therefore, choose t 1 = r'\/n - 1] to meet our goals .
We continue by letting ai = Zn - i + 2 for t 2+ 1, i -- t, + 2 and a te+2 = n - 1 .

The condition (2) reads
t2+2

•

	

(n-2aj +1) ,0.
1.=1

We group the terms for t, --j ,1 and those for t2 + 1, j -- t 1 + 2 and the (t, + 1)st
and (t2 + 2)nd term arriving at the inequality

t2
•

	

(2j-1)=t2,(n-1)+(n-3)=2n-4,
j=1

and we choose accordingly t 2 = [\/2n - 4] .
In general, where tr = [ Vrn - r2 ] we set a t, +r = n - r + 1 (2n , r ,1) . This

defines 2n of the a i (n % i % 1) the undefined a i 's are 2n, . . . , 1 in this order . This

construction of o implies that I(o) , I(ik ) for every ik E [o] . So we have to

calculate I(o) : The only situation where i < j and a i < aj occurs for i -- 21n <j, and
Zn and ai < n - r + 1} J= tr for r=1, 2, . . . , Zn . Therefore

n

	

~n

I(o) = (2) - ,_, tr .

But

and

•

	

tr , ( 1 + Vrn - r2),

f~n		~n2
Vrn-r2 ~

J
\/nx-x2 dx+Zn= 16 +2n.

r=1

	

0

And hence

(n)
urn 2

	

8- at 2 sI(o) - 2

	

16 - n = 16 n - 2n,

establishing the lower bound . 0



3. Maximal distance

For a = (a i , . . . , a n ) E 5,,, let

D (u) = maxfla i - i I : i = 1, . . . , n) .

In this section we investigate the functions :

G(n) = max min D(i)
asS t,[a]

and
H(n) =max min D(i) .

a,S t,(a)

We provide the exact value of G(n) and an approximate value of H(n), as
described below : Let

a(n) = min{k : k2 + k - 1 ; n},

	

fl(n) = min{k : k 2 - k - 4 ; n},
and

y(n) = min{ k : k2+ Zk -- n} .

We prove that:

G(n) = n - a(n) [n > 1],

	

n - /3(n) , H(n) -- n - y(n) [n--8] .

The rest of this section is organized as follows : First we present a general result
related to G(n) and H(n) (Proposition 3.1) . Then we use this result to prove the
upper bounds on G(n) (subsection 3 .1) and H(n) (subsection 3.2) . We conclude
in proving the lower bounds on G(n) and H(n) (subsections 3 .3 and 3 .4) .

In investigating the properties of D(a) it is convenient to deal with the value
k(a) = n - D(a) . Let a = (a i , . . . , a n ) and k < n be given . Then a i covers a if
Iai - iI , n - k, and a is covered if some a z covers it . As in the previous section,
we denote the permutations in [a] by {i i , . . . , Zn } and the permutations in (a)
by

	

{ ri , . . . , fin, 211	Un},

	

where

	

rj _ (a,, . . . , an, al, . . . , aj-1), rjR _
(a;_1, a;_2, . . . , a i , an , . . . , aj ) . The proof of the following Proposition follows
directly from the definitions, and is omitted .

Proposition 3 .1 .
(a) If ai = k - w + 1 for 0 < w -- k, then ai covers the 2w-elements set

{ ri+v ii+2, , 2i+w, 2R, Ti1, • , Ti w+1} . (Recall that if t is not in [1, n], then
Tt is identified with i r •, where t' = t - 1 (mod n) + 1 .)

(b) If a i = n - k + w for 0 < w -- k, then a i covers the set

Lei, 2i-1, . . . , Ti-w+1, Zia+h tii+2, . . . , Ti µ} .

(c) If k < a i , n - k, then ai covers (P . i]

3.1. Upper bound on G(n)

We now use Proposition 3 .1 to obtain an upper bound on G(n) . To simplify the
notations we denote mint,[,] D(i) by G(a), (thus, G(n) = max„S G(a)) . Let

Extremal problems on permutations under cyclic equivalences 5
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o = (al , . . . , a n ) and k , n be given. We shall show that if G(o) -- n - k then
k2 + k - 1, n, which, by the definition of a(n), proves the upper bound .

For i = 1, . . . , n, let v(az) = I {i E [o] : a, covers r) 1 . Then, by Proposition 3 . 1,

v(n) = v(1) = k,

v(n - 1) = v(2) = (k - 1),

v(k) = v(n - k + 1) = 1,
v(j)=0 fork<j--n-k .

Let FAR([o]) _ {i e [o]: i is covered} . Then if G(o) % n - k, IFAR([o])I =
I [o]I = n . On the other hand, IFAR([o])I ~ En , v(a z ) = 2(1 + 2 + • • • + k) _
k(k + 1) . This means that if G(o) % n - k, then k(k + 1) % n, which gives the
upper bound

G(n) -- n - min{k : k2 + k % nj .

To improve this bound to

G(n) -- n - a(n) (recall that a(n) = min{ k : k2 + k - 1, n}),

we show that if G(o) , n - k then for some i in [o] there are i, and i 2 , i, i2 ,
such that both a t , and ail cover z. Such a permutation i is said to be over covered.
Clearly, if some i in [o] is over covered then

n
IFAR([ o])I

	

v(az) - 1= k2 + k -1,
i=1

which implies the upper bound on G(n) . The next lemma proves that such an
over covered permutation must exist .

Lemma 3.1.1 . If G(o) , n - k, then there is a permutation i E [o] which is over
covered .

Proof. Assume the contrary . Then each permutation in [o] is covered by a
unique az (1 i -- n) . Hence n = Enj=, v(az ) = k2 + k, which implies that k -- 2n .
We say that a permutation i in [o] is of type (S) if the unique a ; that covers it is
not larger than k, and of type (L) otherwise (that is : if that a ; is larger than
n - k) . There are exactly 2(k2 + k) permutations of each type, and hence for
some j in {1, . . . , n}, T, is of type (L) and r; + , if of type (S). Let a; > n - k cover
i; and ap , k cover i;+ , . Note that since k -- 2n we must have that az a j , and
hence i i' .

By Proposition 3 .1 (b) we have that i - v(az ) + 1 , j -- i, and a z covers it for
j -- l -- i . Since r; .,., is covered by a z •, it cannot be covered by a z . Hence, i cannot
be greater than j, which implies that it must be equal to j . By similar reasons,
using Proposition 3 .1(a), we get that i' = j . Thus we get that i = j = i', a
contradiction . The lemma follows . 0
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3.2 . Upper bound on H(n)

Let H(a) = min, E(,) D(T) . Like in the proof of the upper bound on G(n), we
shall show that if for some a = (a,, . . . , an ) and k it holds that H(a) , n - k,
then k2+ 2'k--n . For i=1, . . . , n let w(a i) _ I {i E (a) : a ; covers t} j (= 2v(a;)) .
Then, by Proposition 3 .1 .

w(n) = w(1) = 2k,
w(n -1) = w(2) = 2(k -1),

w(k) = w(n - k + 1) = 2,
w(j)=0 fork<j_n-k.

Let FAR(( a)) _ {i E (a) : i is covered} and OVER((a)) _ {r c= (a) : i is over
covered} . Since each permutation in OVER((a)) is covered by at least two
distinct a ;'s, we have that FAR((a)) - fin_, w(a;) - jOVER((u))j = 2k(k + 1) -
JOVER((a))J. Also, if H(a)--n-k, then 1FAR((a))1=1(a)1=2n . Thus we
have

Lemma 3 .2.1 . If H(a) , n - k, then 2k(k + 1) , 2n + JOVER((a))I . El

By the above lemma, the upper bound of n - y(n) on H(n) follows from the
following lemma .

Lemma 3.2.2 . If H(a) , n - k, where n , 2k, then OVER(( a))I , k .

Proof. Let a E Sn be such that H(a) a n - k. Consider the list of indices
1 < i, < i2 < < i2k , n for which w(a ii) > 0, and let w,, denote the number
Zw(a i ) . Consider now the following partition of (a) to the 2k sets 5 i	Silk
defined by :

Sii = ( rt , TR: 1 c [lj, tj+,))

	

( = 1, . . . , 2k) .

In the definition above, and throughout this lemma, [i2k i i,) means [i 2ki n] U
[1, i,) if i, > 1, and [i 2ki n] if i, = 1 . Also, for t > 2k, i; means ü •, where t' = t - 2k .
We denote by c(S;) the number of distinct permutations in S i, which are over
covered. The following claim is the main tool used in the proof of this lemma .
Though the claim is not surprising, its proof is rather tedious .

Claim 1 . If for some j, c(S;) + c(S i . + ,) = 0, then c(S i +2) + c(S ; +3 ) -- 2 .

Proof of Claim 1 . Let j satisfy the hypothesis of the claim, and denote ij , ij+1, ij+2
and ij+3 by i, i', i" and i"' respectively . We prove the claim only for the case
a i -- k, since the proof of the case a i > n - k + 1 is similar . Let ai = k - wi + 1,
where wi = 2w(a i ) . Then by Proposition 3 . 1, a i covers it for i < 1 , i + wi and im
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for i - w; < m , i. In particular, ti+W and 'ri are covered by a l , but i;+~ +1 and

T i + j are not (since k < n) . Let l be such that a, covers iR, . We consider three

cases :
(1) a i , n - k + 1 . Then, by Proposition 3 .1 and the fact that 2k -- n, we have

that l < i < l + wt , which implies that a l covers also ii in contradiction with the
assumption that iR is not over covered (since ii E Si ) .

(2) a ; -- k and 1 0 i' . This means that i = l - w, < i' < l . We distinguish between
two subcases :

(2.1) ai, -- k . Then tR is over covered (by a i , and at ), which contradicts the

assumption that c(S i) = 0 .
(2 .2) al• -- n - k + 1 . In this case iR+ , is over covered (by a, and a;), and hence

iR+, = iR cannot be in S i - (since c(Si) = 0) . This means that iR+ , is in
Sf , and hence that i" = i' + 1-- l . Since ai,--n-k+l, a l -- k and
l - wt < i' < i" , l, none of a ;, and a l covers i;--. We shall use this last fact
to show that there is another permutation in S i.. U 5 ;---, beside iR+ , = Z t%,
which is over covered. This will prove the claim . We consider three
subcases, according to the value of m for which a,,, covers r ;-- .

(2 .2 . 1) m = i" . Then it must hold that a l .. -- n - k + 1, and hence iR+ , is over
covered (by a i., and a t ), and clearly a ;,, + , E Si,, U 5,.--.

Note that the above argument is valid when ever a i ,• , n - k + 1, and

hence we may assume now that a i.-, k.

(2.2 .2) m = i. Then we have that i < i' < i' + 1 = i" , i + w;-, and hence i i - is

over covered (by a i and ai)-a contradiction to the assumption that
c(Si) = 0 .

(2 .2.3) m 0 {i, i', i"} . Then either m < i < i" , m + w n and a,,, -- k, or m -
wm < i" -- m and a,,, % n - k + 1 . In the first case 'ri+, and ii , are over
covered (the first by am and ai , the second by am and a i), which

contradicts the assumption . In the second case i i ., + , is over covered (by

am and ai-,), and clearly i i,- + , is in S i.. U S i.,,.
(3) at -- k and l = P . Since c(Si) = 0, a i , covers ii , but not iR . Thus,

i' = i + w; . . Since wi w i - and 1, wi , w i , -- k, we have that w i - can be either
strictly smaller or strictly larger than wi . We consider each of these two
possibilities here :

(3 .1) w ;. < w; . Then ii-+, is over covered (by a; and a i) . This means, by the
assumption that c(S i) = 0, that i' + 1 ~ S i -, hence i" = i' + 1 . We consider
two subcases, according to the value of ai., .

(3 .1 .1) a i ,-, k. Then if w i . = 1 (i .e . ai.. = k), w i , must be larger than 1, hence
T i ,,,, is over covered (by a i , and a;,•) , and thus both ii.. and ii,-+, are over
covered, and the claim follows . If w i.-> 1 then ii, is over covered (by ai -
and ap), in contradiction with the assumption of the claim .

(3.1.2) ap-- n - k + 1 . Then iR is not covered by any of a i , a i , a i --, and hence
it must be covered by some a,,, where m I {i, i', i"} . If am , n - k + 1,

then m < i < i" < m + w., and hence a,,, covers also rR, a contradiction .
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Hence m - w,,, < P < m and am -- k . This implies that a,,, covers also iR+,,
which is covered also by a ; Hence both ti° and ZR+ , (which are in
S i ,- U S i--,) are over covered .

(3 .2) w i - > wi (i .e ., i + wi < i + w i • = i') . Then i i - is not covered by ai , neither

by a i • . The assumption that c(S i) = 0 implies that ii , is covered by some
a,,,, where a,,, -- n - k + 1 and m - w„, < i' < m, which means that Ti , +1 is
over covered (by a i , and am ) . Since c(Si -) = 0, this implies that i" = i' + 1,
and that tR is not covered by a i , neither by am. We shall use this last fact
to show that there must be another permutation in S i ,, U Si-.,, beside
ri .+, = T i , which is over covered . We consider two cases, according to
the value of P :

(3.2 . 1) i" = m (hence a i -- > n - k + 1) . Then Oi must be covered by some ap
where p {i, V, i") . If ap -- n - k + 1, then p < P < p + wp and tR is over
covered (by a i ., and ap ) : a contradiction . If ap -- k then p - wp < i" < p,
and tR+ , is over covered (by ap and a i .-), and the claim holds .

(3 .2 .2) i" m. Hence m - w,,, < i" < m . If ai ., -- k then Zi--+, is over covered (by
a i„ and a,,,) . If a i-. -- n - k + 1, then tR is not covered by any of a i , a i , and
a i,-. Let p be such that ap covers rR . If ap - k then p - wp < i" < p and

tR+ , is over covered (by a i .- and ap ), and the claim holds. If ap
n - k + 1 then p < P < p + w,,, and iR is over covered (by a,,, and a i -): a
contradiction . This completes the proof of the claim .

We need one more claim for the proof of the lemma :

Claim 2 . Let B,, . . . , B2k be 2k boxes, each containing ci balls, and assume that

for each i = 1, . . . , 2k, if ci + ci+, = 0, then c 1+2 + ci+3 -- 2 . Then E i= I c i , k .

Proof. By induction on the number t of indices i such that ci + ci+, = 0. If t = 0,
then there are at least k is such that ci -- 1 and the claim holds . So assume that
for some i ci + ci+ , = 0 . By the hypothesis of the claim, ci+2 + ci+3 % 2 . Relocate

two balls from boxes Bi+2 and/or Bi+3 in Bi+, and Bi+3 . This does not change the

sum E?k 1 ci , and reduce the number of indices i with the above property by at
least one, thus the claim follows by induction .

Proof of Lemma 3.2.2. Let c(Sj )=c; . Then JOVER((a))l = E?kl ci , and by
Claim 1 the assumption of Claim 2 holds. Hence, by Claim 2, EPk, ci -- k . 0

3.3. Lower bound on G(n)
First we show that if n = k2 + k - 1 for some positive integer k, then there is a

permutation a in S„ for which G(a) = n - k .
Let (f,, . . . , fk ) be the sequence defined by :

f,=1,

	

fi+,=f +k-i+l (l--i-k-1) .
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(i .e ., f = k(i - 1) + 2(3i - i 2 )) . In particular, fk = 2(k 2 + k) . Similarly, let

(911 . . . ) gk) be the sequence defined by :

g,=fk+2=2(k2+k)+2, g i+ ,=gi +k-i+l (1-i-k-2), gk =2.

(i .e ., for 1, i < k, gi = k(i - 1) + 2(3i - i2) . In particular, gk_1 =k 2 + 1 = n -

k+2.
Note that for 1, i , k and 1-- j -- k - 1, f < g;, and also that gk = 2 f ; it

follows that f fig; for all i, j in {1, 2, . . . , k} .
Let a = (a,, . . . , an ) be any permutation in S„ that satisfies the condition :

Forl ;i--k, of =i and ag,=n-k+i.

	

(*)

Then G(o) = n - k . This follows by the following facts, that are easily verified by

Proposition 3 .1 :
(1) For f < j -- fi+1, i; is covered by af (i = 1, . . . , k-1) ;
(2) ifk + 1 (= ig,_,) is covered by afk and 'r, is covered by ag, ;

(3) For gi < j --gi+ ,, i; is covered by ag,+ , ( i = 1, . . . , k - 1) ;
(4) For j E [gk_ 1 , n] U {1}, r; is covered by agk (= a2 ) . (Note that i2 is also

covered by a 2 , and is the unique permutation in [o] which is over covered .)
To prove that the lower bounds of n - cr(n) on G(n) holds also for

n k2 + k -1 we make the following observations :

Lemma 3.3.1. If n k2 + k - 1 for all positive integers k, then a(n - 1) = a(n)

[similarly, if n * k2 - k - 4, then /3(n - 1) _ /3(n)] .

Proof. By the definition of a(n) [/3(n)]. El

Lemma 3.3 .2 . For all positive integers n, G(n - 1) , G(n) - 1 [H(n - 1)

H(n) -1] .

Proof. Define a mapping y : Sn+l- Sn by :

µ(Q') = µ(b,, . . . , bn+1) = o = (a,, . . . , a n ),

where ai is defined as follows : let io be such that b io = n + 1 . Then for i < io
a i = bi , and for i o< i < n ai = b1+ , . It is straight forwards to verify that this
mapping satisfies the following conditions :

(a) y([o'])=[y(o')][y((o'))=(y(o'))] . (For a subset T of Sn+1,y(T)=
{y(t) : r c T} .)

(b) D(y(o')) > D(o') -1.
By (a) and (b) above, for all a' E S,+, we have that G(y(o')) , G(o') - 1

[H(y(o')) % H(o) - 1], which implies the lemma . El

Thus, the lower bound on G(n) for k2 + k - 1, n > (k - 1)2 + (k -1) - 1 is
proved inductively, where the base of the induction is n = k2 + k - 1 and the
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correctness for n - 1 follows from the correctness for n by the inequalities :

G(n -1) . G(n) -1

	

(by Lemma 3 .3.2)

= n - a(n) - 1

	

(by the induction hypothesis)

_ (n - 1) - a(n - 1) (by Lemma 3 .3.1) .

3.4. Lower bound on H(n)

Like in the previous subsection, we show first that if n = k2 -k-4 for some
positive integer k, then there is a permutation a in S, for which D(a) = n - k .

Let (fi , . . . , fk-1) be the sequence defined by :

fi+t=f +k-i (l-i--k-2) .

(i .e ., f = 1 + k(i - 1) + 2(i - i 2 )) . In particular, fk_ 1 = 2(k2 - k) .
Similarly, let (g1, . . . , gk-1) be the sequence defined by :

gi=fk-,-1=2(k2-k-2),

	

gi+l = gi+k - i (l--i-k-3),

	

gk-1 =2.

(i .e ., for 1, i < k - 1, g; = 2(k 2 - 3k + 2ki - i 2 + i - 2) .) In particular, gk-2 =
k 2 --k-4=n.

It is not hard to verify that for 1-- i, j , k - 1, f g; . Like in the lower bound
for G(n), we claim here that for any permutation a E Sn which satisfies the
condition below, H(a) = n - k :

Fori=1, . . .,k-1, of =i and ag,=n+1-i.

	

(**)

To see this, observe that :
(1) For f < j -- f;+1 , 'r, is covered by af, ( i = 1, . . . , k - 2) ;

(5) For < <)

	

gi j ~ gi+v i;
R is covered by ag, (i = 1, . . . , k - 2) ;

(6) rf, (= iR) is covered by a f, (= a,) .
The proof of the lower bound for H(n) for all n > 7 follows by Lemmas 3 .3.1

and 3.3 .2, along the same line of the proof of the lower bound on G(n) . The
details are omitted .

We conjecture that H(n) is equal to n - /3(n) (for n > 7), though a simple
proof of that conjecture may not exist .
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(2) For g t_ 1 < j --g;, rj is covered by ag, (i = 2, . . . , k - 2) ;
(3) if, (= s1 ) is covered by a fk ,
(4) For f i _ 1 < j --f, t;R is covered by of (i = 2, . . . , k - 1) ;
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