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The reader might wonder about the abundance of authors for such a short note .
The assertion of the title was conjectured by P . P. Pálfy, and P. Erdős pointed out
that it easily follows from the Sylvester-Schur theorem . Then it was set as a problem
in the 1984 Hungarian annual M. Schweitzer memorial mathematics contest for
college students . The most elegant solution was given by M . Szegedy, and that is
what we present here .

THEOREM . Let a and b be positive integers . If, divided by any prime number, the
residue of a is less than or equal to the residue of b, then a and b are equal .

Proof. Let us use the notation xp for the residue of x modulo p, i .e ., x =-
xp(mod p) and 0 5 xp < p. If we choose p > max(a, b), then a = ap < by = b . We
will suppose a < b and prove the theorem by contradiction .

We have l < b - a < band (b - a)p = by - ap < bp , so b - a and b satisfy the
hypothesis of the theorem if and only if a and b do. So, without loss of generality,
we may choose the smaller of a and b - a, call it a and have 1 < a s b/2 .

We can reach a contradiction immediately by making use of the Sylvester-Schur
theorem [1] . It yields a prime p > a such that p divides (b), i.e ., pl(b - a +
1) . . . (b - 1)b . Exactly one of the factors will be divisible by p, say b - k,
0 < k < a . But then by = k < a = ap , contrary to the assumption .

However, we can give a more elementary, self-contained proof . Let

A=1 .2 . . .(a-1)a and B=(b-a+1) . . . (b-1)b,

so that B/A = ( a ) . Let a(p k ) and /3(p k ) be the number of factors in A and B,
respectively, which are divisible by p k . Thus
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Since both A and B are products of a consecutive integers and multiples of p k
appear pk integers apart in the sequence of integers, we have

a(pk ) - Q(pk)
1 < 1 .
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By hypothesis, ap < bp . That is, the first multiple of p in the sequence a, a -
1 ' . . .' 1 will occur not later than the first multiple of p in the sequence b, b -
1, . . . , b - a + 1 . Thus a(p) >, /3(p) . But if p > a, then a(p) = 0. So, /3(p) = 0
also, and neither A nor B is divisible by p .

We have
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Denoting by ic(p) the exponent of the highest power of p for which P(pk ) > Owe
get
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or put in another way

(b-a +1) . . . (b-1)b I-2 . . . (a-1)a

I1 P
p-a

Here, after factoring, there remain in the right-hand side exactly a - 7r(a) factors
each at most a, and in the left-hand side at least a - ir(a) such factors which are

b - a + 1 . Since b >, 2a, b - a + 1 > a + 1 > a, so we have a contradiction .
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1. Introduction . An effective and much used method for introducing students to
a new mathematical topic (e.g., modern algebra) is to pick some important subtopic
(say, groups) and then present a discussion of the simplest or most familiar special
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