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Abstract. Let H be a fixed graph of chromatic number r. It is shown that the number of graphs on n
" 1

vertices and not containing H as a subgraph is 2= o), Let h,(n) denote the maximum

number of edges in an r-uniform hypergraph on n vertices and in which the union of any three edges

has size greater than 3r — 3. It is shown that h,(n) = o(n?) although for every fixed ¢ < 2 one has

lim,_., h(n)/n° = co.

1. Introduction

Let H be an arbitrary graph, | H| denotes the number of edges of H. Let T,,(H) denote
the Turan number of H, i.e., the maximum number of edges which a graph on n
vertices and not containing H as a subgraph may have. Let X be an n-element set
and let X = X, U---UX, be an arbitrary partition of X. The complete r-partite
graph K(X,, ..., X,) consists of all edges connecting distinct X; and X;. Note that
this graph contains no K, and has chromatic number rif X; # @,i = 1,...,r. To
maximize |K(X,, ..., X,)| one chooses the X, to have as equal sizes as possible, i.c.,

n
[;J <X < [E.I Then Turan’s theorem states
r

Theorem 1.1. [23] T(K,,;) = |K(X},..., X, )| = (;)(1 - -:: + o(l)). Taking all

subgraphs of K(X,,..., X,) one obtains 2™¥r+1) distinct labeled graphs on n
vertices without K, ;.

Definition 1.2. Call a graph H-free if it contains no subgraph isomorphic to H. Let
F,(H) denote the number of distinct labeled H-free graphs on n vertices. Extending
earlier results of Erdds, Kleitman and Rothschild [8] Kolaitis, Promel and Roths-
child proved that the number of K,,,-free graphs is asymptotic to the number of
the r-partite graphs. This in particular implies
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F,(K,) = 271 +o(1) (1)

Let x(H) denote the chromatic number of H. An old result of Erdés, Stone and
Simonovits shows that T,(H) and T,(K ) are closely related.

Theorem 1.4. [7, 9] Set x(H) = r,r > 3. Then
T(K.) < T(H) < (1 + o(1)) T,(K,). )
Our first result extends (2).

Theorem 1.5. Let ¢, be an arbitrary positive number and G an H-free graph on n
vertices. Then for n > ng(e,, H) one can remove less than eqn” edges from G so that
the remaining graph is K -free, where r = y(H).

This may be further extended in the following way: Let H,, H, be two graphs.
A mapping y: V(H,) - V(H,) is called a homomorphism if {x,y}e E(H,) implies
{¢(x),¥(y)} € E(H,). Note that ¢ ~*(x) is an independent set for all xe V(H,). Also
if x(H,) = r then r is the smallest integer for which there exists a homomorphism
y:H, - K,.

The following is a slight generalization of Theorem 1.5

Theorem 1.5'. Suppose that H, is a homomorphic image of H,, &, is an arbitrary
positive real and G is an H,-free graph with n vertices. Then for n > ng(eq, H, ) it is
possible to remove at most eon® edges from G so that the remaining graph is H,-free.

a

We do not include the proof here, it uses an argument very similar to that of
the proof of Theorem 1.5. Note also that some stronger statements of the same
flavor were obtained by Rodl [19]. The present proof is similar. Theorem 1.5. is
shown to imply easily:

Theorem 1.6. Suppose y(H) = r > 3. Then
F {H) — 2T"(K..){l+otl})_ (3)

n

Note that for H = K, (3) is much weaker than (2) and this special case was already
proved in [8].
It seems likely that
FR(H) — 2 TalH)}1+o(1))

holds for bipartite H as well. However, this is not even known for H = C,, the cycle
of length 4. For this case the best known upper bound (2*%) is due to Kleitman
and Winston [15].

Our last but probably most interesting result concerns r-uniform hypergraphs.
Recall that an r-uniform hypergraph is simply a collection of distinct r-element sets,
called edges. Let g,(v,e,r) denote the maximum number of edges in a r-uniform
hypergraph on n vertices in which the union of any e edges has size greater than v
(i.e., no v vertices span e or more edges).

Theorem 1.7. Suppose r > 3. Then the following hold.
9a(3r — 3,3,7) = o(n?), (4)
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P
Our proof of (4) is based on Szemerédi’s uniformity lemma [22].

Let us mention that the special case r = 3 of (4) and (5) is a celebrated result of
Ruzsa and Szemerédi [217]. However, the present proofis much simpler and probably
more insightful. In [21] it is shown that g,(6,3,3) > nr;(n)/100 where rs(n) is the
maximum size of a subset 4 = {1, 2, ..., n} which contains no arithmetical progres-
sion of length 3. Thus (4) implies r;(n) = o(n) which was proved in a stronger form
by Roth [20].

Let G = (V,E) be a graph and A4, B = V be a pair of disjoint subsets of V. The
density of a pair (A, B) is the fraction d(A, B) = e(A, B)/|4]|B| where e(A, B) is the
number of edges with one endpoint in A and second in B and | 4|, | B| denote the
cardinalites of A4 and B, respectively. The pair (A, B) is called e-uniform if for every
A€ A B« B.|A'|>¢|A|,|B|> ¢|B| |d(4’, B') — d(A, B)| < & holds. The partition

V= C,UC, U--UC, is called e-uniform if
i) 1Col = &V _
H) €= (5] = s |G

oy

k
iii) all but ¢ (2) of the pairs (C;, C;) are e-uniform, 1 <i<j<k.

Uniformity Lemma [22]. For every ¢ > 0 and positive integer ¢, there exist positive
integers nole, ¢) and mol(e,£) such that every graph with at least ny(e, ) vertices has
an g-uniform partition into k classes, where k is an integer satisfying £ < k < m,(e.7).

L]

Another simple proof of g,(6,3,3) = o(n?) (which is also based on [22]) was
independently found by E. Szemerédi.

2. Proof of Theorem 1.5.

Without loss of generality assume that e, < 1/r and set ¢ = [1/gq], & = (,/6)" "
and ny(go) > n(e,£). Let Co U C, U+ -U C, be an g-uniform partition of G(n). Consider
the graph G with vertex set {1, 2, ..., k} and {i,j} joined if (C;,C;) is an s-unilorm
pair of density at least g,/3. We prove that this graph does not contain K, as a
subgraph. This follows from the following.

Claim 2.1. If (C, C;) is &€ = (g/6)" uniform for every 1 <i<j<r then the graph
induced on | Ji-, C; contains all complete r-partite graphs on v points. (In particular.
G contains H, contradicting our hypothesis.)

Proof of Claim 2.1. As each of the pairs (C,C,) 1 <i<r — 1 is z-uniform we can
find (1 — (r — 1)&)|C,| points in C, which are joined to at least (1,3 )|¢,] points
of C;foreachi=1.2,...,r — 1. Take one such point x, € C, and denote by (7 the
set of all vertices of C; which are joined to x, (i = 1,2, ....r — 1)1.Set (]~ ¢, v 1
we have |C]| > (eo/3 — ) |Ci| > (g0/6)|Ci| foreveryi = 1,2,.... rand henee each of

the pairs (G, C}) 1 <i < j < ris(gy/6)" " uniform. Now we take v, from one of the
sets Cy, C3, ..., C; (say Cj) and repeat the argument to construct sets (47, 8=
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of size at least (¢,/6)""*|C|, i =1, 2, ..., r and with the property that x, is joined
to every point of  J,.; C{?". Repeating this procedure v — 1 times (on i-th step using
that (eo/6)"'(r — 1) < 1 and &,/3 — (£,/6)'™* > £,/6) We can construct a sequence
of points x,, x,, ..., x, which span a graph isomorphic to any complete r partite
graph on v points. O

Now we can finish the proof of Theorem 1.5. quite easily: The number of edges
not contained in pairs with density at least.gq/3 is clearly at most

k(ngk) + £0/3 (;) (E)z + s(g) (E)Z + en? < gon?.

After omission of these edges we get a graph which can be mapped on G by homo-
morphism and hence (according to Claim 2.1.) does not contain K,. a

3. The Proof of Theorem 1.6.

Let y(H) = r. According to Theorem 1.5. every graph on n points n > ng(e) not
containing H can be written as a union of a K ,-free graph and g,n? edges. Thus the
number of such graphs is according to Theorem 1.3. (here we could use also the

earlier, weaker result of [8]) smaller than (1 + o(1))27%" (8(2’:2) As g, can be
L]

arbitrarily small we get (3). 0

4. The Proof of the First Part of Theorem 1.7.

We prove (4) in the following form: For every ¢, > 0 there exists n, = n, (e, ) so that
if n>n, and G = (V,E) is an r-uniform hypergraph with [V|=n and with the
property that every set of 3r — 3 vertices spans at most two r-tuples, then | E| < ¢, nZ,
First we show that the statement holds (with n, replaced by n,) if G is connected.
Consider the graph G = (V, F) defined by

F= {{X,y}, 3213225 ...,2,._2{3(, Y213 225004 zr—I}EE}

As there is no triangle with all three edges in different r-tuples (this would yield
(3r — 3,3) a subgraph of 3 edges on 3r — 3 points) we infer that

i) The set of r-tuples of G = the set of r cliques of G.
Moreover, as G is connected we get that

ii) Every two r-cliques of G intersect in at most one point (Otherwise we get an
(¢, 2), ¢ < 2r — 2 the vertices of which cannot be contained in any other clique since
this would immediately yield (3r — 3, 3)).

Set H= K, _ ;. (a complete r-partite graph with r + 1 pomtq] G does not
contain H for otherwxsc we would get {by i)) two r-tuples intersecting inr — 1 points
which contradicts to ii). If n, > ny(e,) we get (using Theorem 1.5.) that there are
¢, n* edges which if omitted destroy all cliques of size r. Hence by i) and ii) | E| < ¢ n?

1
Set now n, = —n, and suppose that the sizes of the vertex set of the connected
€y

components of G are m,, m,, ..., m,. Let I = {1,2,..., p} be the set of those i for
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which m. > n.. Then we get
|El< Y eym} + Y m? < gyn? O
fgrq

iel

5. The Proof of the Lower Bound in Theorem 1.7.
For the proof of (5) we need the following statement.

Lemma 5.1. There exists a set of positive integers A = {1, 2, ..., n} not containing
three terms of any arithmetical progression of length r and such that |A| > S
et logr\/E;
for some absolute constant ¢ > 0.
The proof is based on the method developed by Behrend [2]. Ford > 2,/ > 1
we may write any a, 1 < a < n to the base 2rd
a=ag + a;(2dr) + a,(2dr)? + - + a,(2dr)}

k 1/2
Set N(a@) = (Z af) , where @ = (ay, a,, ..., a). For s > 1 set

i=0
A=A, .s=1{a1<a<n0<a <dforalli (N(@)) = s}

First we prove the following.

Claim 5.2. The set A contains no three terms of any arithmetical progression of
length r.

Proof. Suppose that 4 contains three distinct positive integers a = Y a,(2dr)’, b =
Y bi(2dr), ¢ = Y ¢,(2dr)’ such that r;(b — ¢) = ry(c — a), where r,, r, are positive
integers smaller than r. Then rya + r b — (r, + ry)c = 0. Since g, b;, ¢; < d there is
no carrying in r,a; + ryb; or (r, + r,)¢; for 0 < i < k and hence

?‘za,- + r;bi -—(1"1 + rz)f.'l- =0f01’0£f$ k.

Then
r r
0 < 2 (a; — Ci)z + : (bl = C,')z
ry + r r + ry
r r
e e

= a;
rtr rnt+r;

which yields that
2 (N@)f + o (NE) =

w={¥le) <”'1"""2 T+ 1

a contradiction. CJ
Now we finish the proof of the Lemma. For a given r and d

logn
~ —— holds.
k og(2dr) holds
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all sums Z 2dr) <n0< a; < d. This is approximately n(2r)™* elements.
Consequently for some s

R
[Apasl = W
Settingd = ¢ Viogn (k ~ /logn) we infer
PR R
" ei.‘logr.a'!ngn
for some ¢ > 0, O

Now we prove (5). Take r-copies Xo, Xy, ..., X,-; of X = {1,2,..., m}, where
m = | n/r] and consider the set 2 of all r-tuples {x,x + a,..., x + (r — 1)a}, where
x +iaeX;foralli=0,1,...,r — 1. We have clearly | P| = n**for every ¢ > 0 and
n > ng(e). Moreover, [PN P'| < 1 for all distinct P, P’e€ 2. Suppose that there are
P={xx+a..x+(@r—1a}, ,={yy+b...,y+(r—1)b} and P, = {z,
z+4c...,z+4(r—1)c}e? such that [| J}_; P| < 3r — 3. Then there exist i, j,  (cf.
Fig. 1) such that

x+ia=y+ib
z+jce=x+ja
y+kb=z+kc
We infer that
(i—Jj)a+k—i)b=(k—j
which contradicts to the choice of the set A. O

6. Remarks and Open Problems

The first question which comes to mind is whether Theorem 1.5. can be generalized
to hypergraphs let K, (I, r) denote the t-partite complete r-graph having vertex set
X,U---UX, with [X;| =l and F, |F| = r being an edge if and only if |[FNX;| < 1
fori=1,...,1 Thatis K,(l,r) is empty for r > t, K,(1,7) is just K,(r), the complete
r-graph on t vertices,

Problem 6.1. Suppose H is a K/(l,r)-free r-uniform hypergraph on n vertices, t > r.
Let ¢ be an arbitrarily small positive real n > ng(e,r,t,1). Is it possible to remove en’
edges from H so that the remaining hypergraph is K (r}-free?

A positive answer would imply that the logarithmically asymptotic number of
K, (I, 7)-free r-uniform hypergraphs is the same as the number of those without K,(r)
for t > r, ie, it would extend Theorem 1.6. This number should certainly be
201 +etINTHKAN) ] et us mention, however, that the determination of T,(K,(r)) appears
to be a very difficult problem — it is Turan’s problem (cf. [4, 5, 13] for more
information).
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Fig. 1

Let c be a positive real and G a graph on n vertices and with at least cn® edges
in which every edge is contained in a triangle. Szemerédi (unpublished) proved that
for every integer I and n > ny(c, 1) there is an edge in G which is contained in at
least [ triangles. This follows also easily from Theorem 1.5 choosing r = 3 and H
the union of / triangles sharing an edge. On the other hand Alon [1] proved that
the same statement does not hold for ¢ sufficiently small and | = .\/P_l*.

The investigation of the function g,(v, e, ) goes back to Erdos [6]. Actually, the
value of g,(3,3,2) was already determined — although in different notation — by
Mantel [17] in 1907. The value is | n?/4].

The exact and even asymptotic value of g,(4,4, 2) is unknown. It is only known
that g,(4,4,2) = &(n*?), note that f(n) = &(g(n)) means that ¢, < f(n)/g(n) < c,
holds for positive absolute constants ¢,, ¢, and for n sufficiently large (cf. [10] for
more problems and results concerning the r = 2 case).

The general problem was first considered by Brown, Erdés and Vera Sos [3].

Very little is known for > 3. Obviously, g, (v, (:),r) = T,(K,(r)) holds, ie.,

the complete determination of g,(v, e,r) would include solving Turan’s problem.
Even the determination of g,(r + 1,2,r) is difficult. It is the maximum number
of r-element subsets of an n-set no two sharing r — 1 points. This yields the upper

bound g,(r + 1,2,7) < (r j 1)/r, with equality iff there exists a S(n, r,r — 1) Steiner-

system. Note that it is well-known that g,(r + 1,2,7) > (1 — o(1)) (r j ])/r —cf.

[18] for a general asymptotic bound.
Forv=r+1, e=3, r > 3 not even asymptotic bounds are known. It was

*  The problem of estimating f(n, c) - the maximal number of triangles which must share an edge
in any graph G with above properties was proposed by P. Erdos and B.L. Rothschild.
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shown by Giraud 11471 and hu Feantt oot e 20 =00

6.(4,3,3) = G - 0(1)) (’3‘)

On the other hand de Caen [5] proved g,(4,3,3) < ('15 Sl 1)) (’3’)

Theorem 1.7 shows that g,(3r — 3,3,7) # ©(n°) for any c. The same might hold
for g.(¢{r — 2) + 3,£,r), £, r = 3, in general.

Problem 6.2. Is it true in general that for all £,r > 3 and ¢ > 0
n?7¢ < g,(£(r — 2) + 3,£,3) = o(n?) holds for n > ny(e,Z,r)?

By a construction of Ruzsa [21] g,(7,4,3) > n*~* holds for all & > 0, n > ng(e).
However, to prove g,(7,4,3) = o(n?) appears to be difficult.

The proof of Theorem 1.7. implies that if a 4-uniform hypergraph on n vertices
has more than en? edges, n > n,(e) then it either contains an (11,4) or a (16, 6).

An apparently easier case is the following.

Propeosition 6.3. g,(2 + (r — 2)»‘?, e, ?') = @("2)

Sketch of proof. The upper bound follows by noting that through given two vertices
there are at most e — 1 edges. The lower bound can be proved both by direct
construction or by a random choice of cn? subsets of size r and then omitting all
edges from every (2 + (r — 2)e)-element set containing at least e of them, O
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Remark added in proof. Problem 6.1 has been recently positively answered by P. Frankl and
V. Rodl. The proof uses an extension of Szemerédi’s regularity lemma to hypergraphs.
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