PROBLEMS AND RESULTS
ON INTERSECTIONS OF SET SYSTEMS
OF STRUCTURAL TYPE

P. ERDOS AND V.T. S50s

The study of intersection theorems for set systems was started in the
papers of [BE 1] and [EKR 1].

In the last twenty years a fairly extended theory has developed, several
survey papers [EK 1], [K] were written. There is also a forthcoming
book [FFK 1] about extremal problems of set systems.

Intersection theorems of structural type started in the papers of
[SS 1] were followed by several others [SS 2| [SS 3] [SS 4] [R 1]
|CFGS 1] [FSS 1]. The structures considered are mostly graphs or
subsets of integers and the intersection properties are given in graph
theoretical or arithmetical terms.

The general problem is the following:

Let § be an n-element set, and J be a family of aubsets of §. J will
be called the intersection family.

I. Strong intersection problem.
Let A= {A1,...,An} be a family of subsets of S satisfying
AN4;ed for 1<i<j<m. (1)
For fixed n and J let g(n, J) denote the cardinality of the largest family

A satisfying (1). Determine g(n;J).
An important subcase is the following.

II. Weak intersection problem.

Using the same notation as above, let A = {Ay,...,An} be a family
of subsets of § satisfying the intersection conditions: for any 1 <1 <
i< m.

IC A;nA; forsome ICJ. (2)

Let f(n,J) denote the cardinality of the largest family A satisfying
(2). Determine f(n,J).
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First we mention a few results of type L.

Subsets of integers.

THEOREM [SS [ ]]. Let Pi denote the set of arithmetic progressions
of length > k and § = {1,...,n}. Then

g(n, ) = (g +0(1J)n2 it K>2

g(n; Po) = (:) + (:) +n+l

Remark. Curiously enough for k£ = 1 not even the asymptotic value of
f(n, Py) is known. A plausible guess in [SS 1] is

CONIECTURE 1.
gln; Py) = (n) +1.

and

2
For results on g(n; Py) see [SS 1].

Graph intersection theorems.

Let G and H be graphs on the same vertex set V. Their intersection
N H is the graph whose edge-set E(GNH) = E(G)N E(H) and whosze
vertices are the elements of V incident to some edges of E(G N H).

Given a family L of graphs, h(n;L) denotes the maximum number
of graphs G,,..., Gy defined on the same n-element vertex set V for
which

G;NG; €L

Here we mention some results for the case when the intersection family

is the set of all cycles.

THEOREM [SSL 4|. Ifn > 4 and C denotes the set of all cycles; then

h(n;C) = (:) ~2

and the only extremal system, that is the only C-intersection system
G,,...,Gy for N = f(n;C) is the following one:

E(G,) forms a triangle and E(G;) contains E{G,) and exactly one
additional edge for1 =2,..., (g) -2,
REMARK 1: A family G;,...,Gy is called a strong A-system. The
extremal system is a very stable one in the following sense.
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THEOREM [SS 4]. IfG,,...,Gy is a family of graphs on n vertices
which satisfy
G,NG;€C for 1<i<j<N

and which is not a strong A-system

1
N<—n?+n 3
/e (3)

In the same paper we formulate the
CONJECTURE [SS []]. Let G,,...,Gy be a family of graphs which

satisfies the conditions of the previous theorem. Then
1.
N< g+ 0(n).

The above conjecture is sharp if true.

[CFGS 1] and [FSS [ ]| the following weak intersection theorem is
proved:

THEOREM A. Let § =(1,2,...,n) and J, be the family of sets {a +
1,...,a+ k} where k is a fixed positive integera=0,1,...,nanda+jJ
is taken mod n. Then
f(n,dy) = 2"~ (4)

REMARK: 2a. It is trivial that f(n;J;.) > 2*~*: take all subsets of §
which contain {1,2,...,k}.

The same trivial lower bound holds whenever J contains a k-element
set.

b. If J, is the family of sets {a + 1,...,a8 -+ k}, where a + k < n, then
it is simpler to prove that f(n;J.) = 2%,

The following intersection lemma seems to help in many intersection
problems and was used to prove the theorem above.

INTERSECTION-LEMMA [FSS 1],[CFGS 1]. Let A= {A1,...,An}
be a family of subsets of §, |S| = n. Suppose A satisfies the following
intersection property.

There exists a partition § = Uk_, S, such that

s(A;nA;) = [{v|[A1NA;NS, #¢}>r. (5)
Then (k.7)
m < 2; -an (6)



where

_ITi=(®) for k—r=2L
e(k,r) = {E.‘:u B+ (¥  for k-r=2L+1 @

REMARK 3: In fact ¢(k,r) is the maximum number of 0-1 sequences of
length k having the property that the Hamming distance of any two is
at most k — r. The value of ¢(k,r) is given e.g., in [KA 1].

In some cases the extremal family A is a so called kernel-system which
in the weak intersection case means that

N, A, e€J for 1€i<j<m. (8)

Obviously this condition implies the intersection property. In the
general case (strong intersection problem) (8) does not automatically
imply the intersection property, but it gives enough information to get
the extremal system.

Hypergraph intersection problem.

In this paper we shall investigate set intersection problems where the
intersection family is defined as an r-uniform hypergraph. The motiva-
tion comes from Theorem A. The problem there can be formulated as
follows:

Let H(V) be a fixed Hamiltonian cycle on the vertex set V; |V| =n.
How large can the family A = {4;,..., 4.} be, A; CV,if A;NA; spans
at least one edge of H for every 1 <1< 7 < m?

This suggests the following setting of a general problem, which is
a subcase of the weak intersection problem. Let G7(V;J) be an r-
uniform hypergraph. The intersection family J is the edge-set of G".
Let A= {A;,...,An} be afamily of subsets of an n-element set S 2 V.
Suppose A satisfies the weak intersection condition (2).

f(n;G7) (or f(n;J)) denotes the cardinality of the largest family
which satisfies (2). Determine f(n;G").

The idea behind using different settings of the general structural in-
tersection problems is that we focus on different aspects, on different
structural properties of J which determine the order of magnitude of
f(n:J).

In this setting we are interested in the graph theoretical properties (of
the hypergraph G"(V;J) relevant to the value of f(n;J).

One would think that the size of J (i.e., how rich the family J is)
has a strong effect on g(n;J). This is not entirely the case. Our result



below shows that e.g., the chromatic number, the size of the largest
independent set of G'(V';J) are more relevant parameters. Our results
in this paper are unfortunately far from being complete, many unsolved
problems are left and we are far from the complete understanding of the
situation.

For an arbitrary G"(n;J) we have the trivial
FacT 1. 1 1
2—,2" < f(niG7) 52".
The problems considered here actually refer to the determination of
lim 2-7 f(n; @) which trivially exists. First we consider the case @ = G*
(i.e., the ordinary graphs).

PROPOSITION 1. Let x(G) denote the chromatic number of G(V;.J).
If x(G) < k, then
k<
fm@) < B2 ()

For x(G) = 2 or 3 then (9) is sharp, i.e.,
f(m@) = i_z".

PROOF: Let Tk(my,.. ‘ru] be a complete k-chromatic graph on n; +
..+ ng vertices, V = l..l‘_1 o Vil = ni, E(Tk) = Uig;Vi x V;. Since
G C Ti(ny, ..., ng) for some ny,...,ng, obviously

f(ﬂ,g) = f‘ﬂ; Tk[nii iy nk]}-

Now we can apply the interseetion-lemma.
Suppose A = {A1,...,An} C 2Y satisfies (2). Then for any 1 <i <

Jj<m
slAinA;) = [{fAinA;NVe#¢, 1< E<k} >2.

By the intersection lemma this proves (9).
How relevant is the number of edges of G*7 For this we have
PROPOSITION 2. Let e(G) denote the number of edges of G. Suppose

1w < &2

Then
e(G) < ¢(Tk(n)). (10)
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For Ty = Ti(ny,...,ng)
c(k,2)

F(n i) = fln; Ka) = =55

(Here Ty (n) is the Turdn-graph, the complete k-chromatic graph Tg(ny,
coymg) withn=ny +...4+ ng, |n; —nj| £ 1)

To prove (10), observe that if (@) > e(Tk(n)), then by Turén’s theo- .
rem T[1], Kx41 € G. Let V* CV be the vertex set of a Kg+) contained
in 7. We define our family as follows:

o (11)

ACA if |AnV*|2 ?

Now if A, A' € A, then
|[AnA'nV* =2,
hence AN A’ contains an edge of G. For this A we have

k41
E+1\ 1 . e(k+1,2) clk,2)
4] = E ( : )2T-|T2 = =i 2" > ok 2t (12)
izt

REMARK 4: Though the chromatic number is a relevant parameter it
is not the only one. This is shown by the following fact.
Let Wy be the pentagonal wheel. X (W) = 4 and one can show that

1 n
f(nrwfw] 5 Zz 1
while § g
. — =~ an - = —gn
f(n; Ka) = 352", 1(n; Ks) n
The size of the largest independent set, a(G) also has an important
effect on f(n;G). We have the following simple

PROPOSITION 3. For any ¢ > 0 there is a §(¢) > 0 with the following
property:

Suppose G contains a subgraph G'(V', E') of m = |V!| vertices for
which ¢(G') < 6,/m. Then

f(n:G) > (%—f) 2",

PROOF: Take all subsets of V' containing at least ﬂiﬁ;‘@ vertices of V',
Then the intersection of any two sets contains at least §,/m vertices, but
it spans at least one edge of G.

Remark 5. It is well known that there exists a graph G of n vertices
(n > np) which does not contain a Ky and a(G) < §/n. Hence we get
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COROLLARY 1. Forany ¢ > 0 there is a graph G containing no K4 and
for which "
f(m @) > (5 = )2"-

We have very few results for r > 3. We mention only the obvious.
PROPOSITION 4. . o
f{n;K:+1} w ‘2_,.2"

r+3
. >
Jln K] o) > T

REMARK: Let h(n; K3) denote the maximum cardinality of a family G
of graphs satisfying the intersection condition, that

2",

G:NG;j 2 Ks, 1<i<j<m.
CONJEOTURE 2. Simonovits-Sés formulated
hin; K3) = éz".
In [CFGS 1] it is proved that
hin; Ks) < 412'-‘ (13)

If we reformulate this result in the present terminology, we arrive at
the following.

PROPOSITION 5. For 3-uniform hypergraphs G® a large chromatic
number does not imply that f(n; @) is close to 127, not even that
it is larger than 12~

To see this let G* be the 3-uniform hypergraph with vertex-set [V
and the edge-set F{G®) the triples of [V]? forming a triangle in K,, on the
vertex-set V. The chromatic number of G* is > logn (log logn)~*. This
follows from Schur’s theorem implying that the value of the Ramsey-
number R(31,....3,)is less than ¢ r! However (13) gives (with m = (7))

f(m:G®) < izm.

PROBLEMS

PROBLEM 1: Is it true that for every 4-chromatic graph G not contain-
ing Ky we have

1w @) = 321
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Or perhaps the opposite is true, the set {L[L;;“-(-;—HQQ_G_) =4, K4 CGYis
everywhere dense in [%, % .

By Corollary 1 this is not true in general. It might be of some interest
to find the “smallest” graph (i.e., smallest chromatic number or smallest
number of edges) which contain no Ky and for which f(n;G) > 12m.
PROBLEM 2: Does there exist a graph G which contains no K3 and for
which i

f(m:@) > 7277

Perhaps the following stronger result holds. Is it true that for every
¢ > 0 and r there is a graph G not containing a Cy for £ < r and for
which

fmQ) > (% . e) 2

PROBLEM 3: What is the set of limit points of f(n;G")27"7 Is it dense
in [, 17

PROBLEM 4: Call a graph @G critical from below resp. from above if the
deletion resp. the addition of any edge decreases resp. increases f(n;G).
Obviously for k > 3 all complete k-chromatic graphs different from K
are critical from above. However the complete bipartite graphs are not
critical.

The complete graphs k > 4 are critical from below.

Can one characterise all critical graphs from above resp. from below
or the graphs which are critical both from above and from below?

For r = 2 we do not know any graph different from the above ones
which are critical. We know by Corollary 1 that such graphs exist. It
might be of some interest to find the smallest one. For r > 2 we have
such graphs, see Proposition 5 and Remark 7.

PROBLEM 5: What is the smallest number of edges of an r-uniform
hypergraph G for which f(n;GT) > £27

We know that f(n; K7) = $2" and f(n; K§) = S27 = £2m. If we
omit an edge of K we get 12" and surely every H® with 9 triples has
f(n @) = §om.
PROBLEM 6: Which are the r-uniform hypergraphs on n vertices with
the largest number of edges for which f(n;G") = 2-2"7 Perhaps this is
the r graph of maximal number of edges not containing a K(*)(r + 2).
PROBLEM 7: Is it true that for every ¢ > 0 there is a §(¢) > 0 such that
if ¢ has the property that for k > kg every V' C V of size k contains an
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independent set in G of size > E\/E then
£(m: @) < (% = a) an7

(See also Proposition 3.) It is well known that every graph not containing
a k(3) satisfies the condition of Problem 7. Thus the answer to Problem
4 and the stronger form of Problem 2 can not both be affirmative.

PROBLEM 8: Let A = {A;,..., A, } be afamily of subsets of {1,...,n}.

a) How large can m be if for 1 < ¢ < 7 £ m A;N A; contains a solution
of (z,y,u,v are distinct positive numbers)

z+y=u+w, (14)

a simple computation gives that m > %2", thus the extremal system
is not a kernel system.
b) How large can m be, if for 1 < i < j € m A;NA; contains a solution
of
z+y=v? (15)

REMARKS: If instead of the above conditions we require a solution of
z+y+z=utvtw (16)

then the answer is (% — 0(1)) 2"

This follows from the known result that given at least ¢nl/3 integers,
not greater than n, then there must be a solution of (16). Hence if we
take all subsets of {1,...,n} of size at least 2 + en!/2, the intersection
of any two will be large enough to ensure a solution of (16). Perhaps
the following little problem in combinatorial number theory is of some
interest: Let 1 < a3 < ... < a¢ < nt > ¢ nt/7. Is it true that if
¢ > eo(r) then there is always a set of 2r a's ay,,...44,; aj,,...,aj, for
which a;, +...+a;, = aj, +...+a;,, but all other subset sums formed
from ag,....8,; 85,,...,a;, are distinet?

This method does not work for (14) since there we would have to take
all sets of size at least % + (1 +¢) \/n and the number of these sets is
< (3-c)2m

Analogous reasoning can not be used e.g., for (15) since there is no
density theorem for z + y = v, namely there exist sequences of integers
of positive density, e.g., the odd numbers, without containing a solution
of (15).

Observe that the above example gives a G which contains no K% and
despite this property for every € > 0 f(n; G) > (3 — €) 2" if n > ng(e).
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