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Let ec(@) (resp. ep(G)) b= the least numbar of comalate subgraphs needed to cover (resp.
partition)the edges of a graph G. We prezsent bounds on m x {re{G)+ee (G, max (ep(G) = cp(G1),
mux {ee(Glec{G)) and mu {ep(Giop(G)} where the maximy are taken over all graphs & on
vartives and ¢ i3 the complemant of & in K. Several related open problems are also given.

Introduction

Let G be a graph on n vertices and let G be its complement in K, the complete
graph on a vertices. If f is a real valued function defined on graphs, what are the
extreme values of f(G)+/(G) and f(G) f(5)? E. A. Nordhaus and J. W. Gaddum
(see e.z. [5]) considered those questions when the function is the chromatic number.
D. Taylor, R. D. Dutton and R. C. Bricham [5] studied the questions for several
other functions. One of those is the eligue covering number. That is ce(G), the least
number of complete subgraphs (cligues) of G necessary to cover the edge set of G.
We continue their investization. We also consider the questions lor another func-
tion the eligue partition nwmber. That is ep(G), the least number of cliques needed
to partition the edge set of G.

In Theorem |, we establish the right inequality of |#®/4]+2=max {cc(CG)+
+ec(G)}=(n*/4)(1 +o(1)) where the maximum is taken over all graphs G on n
vertices. The bipartite graph Kj.z),rae; assumes the lower bound.

In Theorem 2 we modify the proof of Theorem 1 to show that
max {ec(G)ee(G))=(n*/256)(1 +o(1)), where the maximum is taken over al| n-
vertex graphs G, D. Taylor et al. [5, Theorem 5] pave an example of a graph F for
which ee(F)ee{F)=n"(n+8)%256. The graph F is obtained from two copies 4,
and 4, of K, and two copies A, and 4; of K,,, by joining each vertex of A, to each
vertex of 4;,, (i=1,2 and 3). When n is not divisible by 4 the construction can
be modified to yield 4 similar graph. Hence Theorem 2 establishes the conjecture
made in [3], that max {cc(G)ee(G))~n"/256 where the maximum is taken over
all n-vertex graphs G.
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Somewhat weaker results for the clique partition number are obtained in
Theorems 3, 4 and 5. They imply

lls n?4-0(n) = max {cp(G)+cp(0)} = % n*+0(n) and

o140 (%) = max cp(G)ep(G)) = s 1t 40(r)

where the maxima are taken over all p-vertex graphs G.
We state several related open problems at the end of the paper.

Results

Theorem 1. For some d=0 and all graphs G on n vertices, cc(G)+cc(G)=
=(n"4)(1 +dflog n).

Proof. Suppose 4°=n/4c®. From a sequence #={K', K? ..., K"} of cliques K’
in K, by choosing K' to be a cligue in G or in G which covers at least ¢ edges unco-
vered by KU'UKU .. UK=Y The process halts when such a selection is no longer
possible. Now [=n%c. If a vertex has fewer than n/c incident edges in G or in G,
augment 5 by adding these edges separately, and continue repeating this step until
there are no such vertices remaining. At most 2a%/c new cliques have been added
to &. Let H, (or H,) denote the subgraph of K, induced by the set of edres of G
(respectively G) not contained in the union of the cliques in &, and put H=H,UH,.
Let T denote the set of vertices of H with degree at least n/c in both H, and H,,
and let I/ and ¥ denote the sets of vertices in K,— T with degree at least n/c in H,
and H, respectively. Note that vertices in U/ and ¥ have degree 0 in H; and H, re-
spectively,

In [2] it is shown that ce(D)=k%4 for all k-vertex graphs D. Therefore
the edges of H with both ends in U or both ends in V¥ can be covered by at most
|U/|2/4 or |F|*/4 cliques respectively. We further augment % by these cliques,
which adds at most n*/4 cliques to 5.

We next show that |T]=n/c: Assume |T|=n/e. Then at least n®/2c* edges
of H, have at least one end in T. It follows that some set £ of at least n/2¢® such
edges are all incident with some vertex p. Let T'={veT: prc E}). Then |T'|=n/2c%,
s0 at least n®/d¢? edges of H, have at least one end in T”. Then a set F of n/4¢® or
more such edges are all incident with some vertex g. Let T"={veT": qve F}. Then
|T*I=n/4¢®. By the bound for Ramsey’s Theorem given for example in [1, Theorem
7.5], G of G contains a clique K with ¢ vertices in T". Therefore the cligue spanned
by K and p (or K and q) covers ¢ edges of H, (respectively H,) incident with p (respec-
tively ). But this contradicts the definition of &. Thus |T|=n/c as claimed. Hence
we can further augment the cliques in 5 by adding all edges of H incident with
vertices in T as separate cliques. There are at most n*/c such edges.

The cliques in & now form a clique covering of G and a clique covering of
G, and |%]=n*/4+dn%/c. For large n we can take 3c=logn, which gives the
theorem. [
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Theovem 2. For some d=0 and all graphs G on n vertices, cc(G)-ec(G)=
=m*(1 4-dflog n)/256.

Proof. Tn the proof of Theorem 1, we obtained a clique covering of G using at most
4n*fe+|U7]%/4 cliques, and a clique covering of G using at most 4n*/c + |V |*/4 cliques,
where 4°=n/dc® and |U|+|V|=na. Honce cc(G)ec(G)=(4n?/c+a%4)(4n*lc +b%/4)
where each of these factors is at most n%/2, and a@+b=n. This product is at most
dnt/c+a®b16, which is maximised when a=b=n/2. Hence cc(G)ec(C)=
=dtfc+n*f256. Taking 3c¢=logn as in Theorem 1, we obtain the result. |

Corollary. For each graph G on n vertices min (ce(G), ce(G))=n?/16(1+0(1)). 1

If G, and G, are vertex-disjoint graphs, then G,V G, is the graph formed
from the union of G, with G; by adding edges joining each vertex of G, to each
vertex of Ga.

Lemma 1. [3, Theorem 3). Let G=AVK,. If A has p vertices and e edges, and
the edge-chromatic number y'(A) of A is at most q, then cp(H)=pg—e. |

W= note that ¥'(K,)=m or m—1 according as m is odd or even. There-
fore for all m=1,

() cp(KVED) = m’—[’;]
and
(D) cplK, (NEy)= 2m(m+r}—[m;r] when O0=r=m.

Let A and B be replicas of K, and let i, be the graph diagrammed in Figure
1. There, as in all figures below, a double line joining two graphs G, and G; indi-
cates that every vertex in G, is adjacent to every vertex in Gs.

Fig. 1

Lemma 2. Forall m=1, cp[Hm}E%m’-l-m.

Proof. Let & be a clique partition of H=H,, of least cardinality (so that |€]|=
=cp(H)). Denote the subfamily {K', K2, ..., K°}, consisting of those cliques in
% with vertices in both graphs A and B, by 5. From subgraphs A" and B ol A and
B by deleting the edges of all cliques in & from A and B respectively. Let 4, and ¢
be the number of vertices of X' in 4 and B respectively. Denote the clique partitions
of AV A" and BV B’ induced by ¥—% by %, and €5 respectively, Thus ep(H)=
=6 ,| + |6yl +a. But

wamoaave (5 51



a2 D. DE CAEN, P, ERDSS, N. 7. PULLMANN, N, C. WORMALD

by Lemma 1. Similar statements for B imply that

1

ep(H) Em‘+m+a+é[§*] +[2 !

Differentiation shows that the minimum of the quantities
(2)+(3)+1
de .

where d, e are positive integers and de=1, is 3/4. This minimum is achieved at
d=e=2. Now every edge with one vertex in A and the other in B must be covered
by some member of &, Also K'in & covers exactly d;e; edges joining A to B. Thus

o
2 djey = m*
f=1
and hence cp(H)=Tdm*+m. |}
Theorem 3. Let r be the remainder when n is divided by 5. For each n=20

I (25+2)n—41rt
max {ep(G)+ep(0)) = e+ 22N AT

where the maximum Is over all graphs G on n vertices.

Proof. Let L be a replica of K,,;, and let K be a replica of K,,. Define G, to be the
graph whose diagram is given in Figure 2 (a). The diagram of G, is given in Figure
2 (b). (We use the same diagrammatic convention here as for Figure 1.)

fa)

Fig.2

The graph G=G, is the edge-disjoint union of H=H, and H'=K,, VE,,.
Since every clique in G has all its edges in H or all its edjes in H’, we have ¢p(G)=
=cp(H)+ep(H'). Similarly cp(G)=cp(H)+2cp(KEVL). Since n=20, m=4
and so equations (1) and (2) imply

Tn®  25p+2nr—41r°

(3 BT + %0 =cp(G)+cp(G).
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When does equality hold in (3)7 It is a direct consequence of the following
Lemma that equality holds infinitely often.

Lemma 3. [4, proof of Theorem 4, pp. 346, 347]. Let K(g, k) be the complete k-
partite graph defined by k vertex-disjoint replicas of K. Then the edge set of K(q, k)
can be partitioned into cliques of order k if there exist k-2 mutually orthogonal
Latin squares on g symbols. |}

With k=4, Lemma 3 implies that the edges joining A to B in the praph
H, of Lemma 2 can be covered using edge-disjoint replicas of K, for even m=12.
Therefore when n=64 and (n—r)/5 is even, equality holds in (3).

Theorem 4. For each graph G on n vertices, cp(G)+cp(G)=13n%/30—n/6.

Proof. Let us construct a clique partition of K, into triangles and edges, each of
which is in G or . First select as many edge-disjoint triangles as possible. Then
the set of s edpes uncovered by any of these ¢ triangles cannot contain the edge set
of a copy of K;, for otherwise G or G would contain a triangle by an instance of
Ramsey’s theorem. Therefore, by Turin's theorem (see e.g. [l, Theorem 7.9]),

§=2n%5. Since 3:+.r=[;]. it follows that the partition has at most 13x*/30—n/6
members. |

The coefficient of n® appearing in the right side of the inequality of Theorem 4
can be reduced by 1/204 by using K,'s as well as K;'s and K,'s in the clique partition,
and bounds on higher Ramsey numbers lead to further improvements. However,
this approach cannot lead to an exact determination of max {¢p(G)+cp(G)}. The
bound in Theorem 3 is probably nearer to the actual value.

Theorem 5. Taking the maximum over all graphs on n vertices,

S 40(n") < max (cp(G)cp ()} = s n +O().

Proof. The left inequality is obtained by using the graph @, of Theorem 3. The right
inequality is obtained from the clique partition of K, constructed in the proof of

S : 13 A :
Theorem 4. It has x of its cliques in G and [ﬁ n“—%—-x] cliques in G. |

Concluding remarks

L. Pyber proved that the lower bound in Theorem 1 is sharp for n large.
Possibly Theorem 3 is close to best possible; that is, max {ep(G)+cp(G)}~7n?/25
where the maximum is taken over all n-vertex graphs G. Suppose G,UG,UG;=K,
where the G, are edpe-disjoint. IT R is the graph diagrammed in Figure 3 with A=
=K,5, then we can have G,=G,=R and so ¢p(G,)+ep(G:)=2n%5. (We use
the same diagrammatic convention here as in Figure 1.) Probably this is the maxi-
mum possible value of ep(G,)+ep(G,). The estimate cc(G,)+cc(Go)+ee(Gy)=
=24%/5 (1 +e(1)) was proved by L. Pyber (see pp. 393—398 of this issue). Perhaps
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max {cc(Gy) +ec(Go)+ee(Gy)}=2n5+5, taking the maximum over all n-vertex
graphs.
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