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The problem of colourlng the real llne so that the d~stance between l~ke  coloured 
numbers does not Ile In some specified set D, called the dzstance set, IS discussed In 
particular, the m ~ n ~ m u m  number of colours needed for varlous dlstance sets are 
determined (0 1985 Academ~c Press Inc 

What is the least number of colours which can be used to colour all 
points of the euclidean plane so that no two points which are unit distance 
apart have the same colour? Though rather well known, this problem has 
resisted all attempts at solution. The necessity of four colours was 
established by Moser and Moser [2], and the sufficiency of seven colours 
by Hadwiger, Debrunner, and Klee [ I ] .  Essentially no further progress has 
been made on the problem. 

The corresponding problem for the real line is easy: there are various 
ways in which two colours can be used to colour the line so that points 
which are unit distance apart have different colours. But how many colours 
are needed to avoid assigning the same colour to points whose distance 
apart lies between 1 - E and 1 + E (where 0 < E < I)? We shall discuss this 
and several related problems. By scaling, the closed interval [ l  - E, 1 + E]  

can be converted into the closed interval [ I ,  61 for suitable 6 > 1, so we 
shall in fact treat this "normalized" version of the problem. 

A proper colouring of a graph is a colouring of the vertices (i.e., an 
assignment of each vertex of the graph to a colour class) so that no two 
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COLOUXING THE REAL LINE 8 7 

adjacent vertices have the same colour. The chromatic number of the graph 
is the least number of colour classes which admits a proper colouring of the 
graph. 

Given any set D of positive real numbers, let G ( R ,  D )  denote the graph 
whose vertices are all the points of the real line R', such that any two 
points x ,  y are adjacent if and only if Ix - yl E D .  The set D will be called 
the distance set of the graph. We shall treat the problem of determining the 
chromatic number of G ( R ,  D )  for various classes of distance set D. 

The first case to be considered is when the distance set D is a closed 
interval [ l ,  61 for some 6 2 1. For convenience, in this case we shall use 
R ( 6 )  to denote the graph G ( R ,  D ) ,  and ~ ( 6 )  to denote its chromatic num- 
ber. 

LEMMA 1. If 1 < 6 < n then ~ ( 6 )  6 n + 1 ,  for any positive integer n. 

Proof. Let all points of the real line be assigned to colour classes num- 
bered 0, 1, ..., n such that x has colour i exactly when L x ]  - i (mod n + I ) ,  
where Lx] denotes the greatest integer not exceeding x. (Fig. 1).  This is a 
proper colouring of R(6)  if 1 < 6 < n, whence ~ ( 6 )  6 n + 1. I 

THEOREM 1. If 6 > 1 and n - 1 < 6 6 n then ~ ( 6 )  = n + 1 ,  for any positive 
integer n. 

Proof The definition of ~ ( 6 )  requires that 6 3 1; the case n = 1 
corresponds to 6 =  1. Obviously R ( 1 )  needs at least two colours for a 
proper colouring, and Lemma 1 shows that it can be properly coloured 
with two colours, so ~ ( 1 )  = 2. 

Now suppose n 3 2 and n - 1 < 6 6 n, and consider a proper colouring of 
R(6) .  For any E > O  we can choose vertices x ,  y which are coloured dif- 
ferently and satisfy 0 < y - x < E .  In particular, choose E < 1 + 6 - n. Define 
vertices v , : = y + i  for l < i < n - 1 .  Now v , _ , - y = n - 1 < 6  so 
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FIG. I .  A proper colouring of R(6), for 1 < 6 < n. - 



u ,  , - x < v, - , - y + E < 6. Thus, apart from x and y, the distance between 
any two points in (x, y, v , ,  u,, ..., 0,- ,) is at least 1 but less than 6, so all 
such pairs are adjacent in R(6) .  Hence x, y, v , ,  v,  ,..., v,-, must all have dif- 
ferent colours in the chosen proper colouring of R(6) ,  and so ~ ( 6 )  3 n + 1. 
Equality then follows from Lemma 1. 1 

What subgraphs of R ( 6 )  are "responsible" for its chromatic number? We 
define a chromatic subgraph of a graph G to be a minimal subgraph of G 
with the same chromatic number as G. A graph G is colour-critical if its 
only chromatic subgraph is G itself. The next three theorems are concerned 
with chromatic subgraphs of R(6).  We begin by investigating when a com- 
plete graph is a chromatic subgraph of R(6) .  

THEOREM 2. If n <S < n  + 1, the largest complete subgraph of R ( 6 )  is 
K,  + , , for any positive integer n. 

Proof: If 6 3 n, the vertices 0, 1, 2,..., n in R ( 6 )  induce the complete sub- 
graph K,, ,. On the other hand, if R ( 6 )  contains the complete subgraph 
Km with vertices v ,  > v,  > . . . > vm then 

Hence R ( 6 )  can contain Km only if 6 3 m - 1. Therefore, if 6 < n + 1 then 
R ( 6 )  does not contain Km for any m > n + 1. 1 

COROLLARY. The complete graph K,, , is the smallest order chromatic 
subgraph of R ( 6 )  exactly when 6 = n, for any positive integer n. 

Next we investigate when an odd cycle is a chromatic subgraph of R(6) .  

THEOREM 3. The smallest odd cycle in R ( 6 )  is C ,  i f  6 3 2, and C,,, , i f  
l + l / n < 6 < 1 + l / ( n - 1 ) ,  for any in tegern32 .  

Proof. Theorem 2 implies that C ,  (which is K,) is a subgraph of R ( 6 )  
exactly when 6 3 2. 

Suppose R ( 6 )  contains an odd cycle C,, + , : = v,v, . . . v,, v,. Since 
(no- v , )  + ( v ,  - 0,) + . . .  + (u2,- , - v , ~ )  + (v,,, - u,) =0, the sum of the 
signed distances corresponding to the edges of this cycle is zero. Since the 
cycle can be reflected about any point, we can assume without loss of 
generality that at least n + 1 of the signed distances corresponding to the 
edges are positive. Thus, the sum of these positive distances is at least n + 1, 
while the sum of the negative distances is at most n6 in absolute value. 
Hence n +  1 GnS,  so R ( 6 )  can only contain an odd cycle C,,,, if 
6 2 1 + lln. 
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Now for an integer n 3 2, define vertices ui,  wi of R ( 6 )  by 

u , :=i (6-1)  forO<i<n,  

:=2 for i = n, 

and w,: = u, - 1 for 0 < i < n. Then u, is adjacent to w, in R(6) ,  since 
u,-  w, = 1; similarly u, is adjacent to w,. Also u, is adjacent to w , ,  for 
1 < i < n -  1, since in these cases u,-  w , - ,  =6. Thus if u,  is adjacent to 
u, , we have an odd cycle 

Czn+l:= U O W , U ~ W , ~ ~ ~ U ~ ~ ~ W ~ ~ ~ U ~ ~ , U ~ W ~ U ~ .  

The condition for u, and u,-, to be adjacent is 

that is. 

With appropriate attention to the endpoints of this range, the rest of the 
theorem now follows. 1 

COROLLARY. For any positive integer n, the odd cycle C,,+, is the 
smallest order chromatic subgraph of R ( 6 )  exactly when 

6 = 2  ifn = 1, 

We now specify a class of graphs which will be shown to include a 
chromatic subgraph of R ( 6 )  for each 6 in the interval n - 1 < 6 d n. For any 
positive integers m, n let G(m, n )  be the graph comprising m + 1 distinct 
vertices u,, u ,,..., u, and m disjoint subgraphs H I ,  H ,  ,..., H,, each of which 
is a copy of the complete graph K,, such that u, is adjacent to u,  and each 
vertex of H, is adjacent to u , - ,  and u,,  for 1 < i < rn (Fig. 2).  Note that 
G(m, 1 ) is the cycle C2, + , , and G(1, n )  is the complete graph K, +, . 

LEMMA 2. For any positive integers m,  n the graph G(m,  n )  is colour- 
critical, with chromatic number n + 2. 

Prooj Suppose we had a proper colouring of G(m, n )  using n+ 1 
colours. Without loss of generality the vertex u, has colour 0, and the n 



FIG. 2. The graph G(2, 2). 

vertices of HI have colours 1, 2, ..., n. Since u, is adjacent to all the vertices 
of HI it follows that u, has colour 0. Iterating this argument shows that urn 
has colour 0. But this is impossible, since urn is adjacent to u,. Hence any 
proper colouring of G(m, n)  requires at least n + 2 colours. Clearly n + 2 
colours are sufficient, so the chromatic number of G(m, n) is n + 2. Note 
that if any edge is removed from G(m, n) the resulting graph has chromatic 
number n + 1, so G(m, n) is colour-critical. I 

THEOREM 4. For any integers m, n 3 2 if n + llm 6 6 < n + l/(m - 1) 
then G(m, n) is a chromatic subgraph of R(6). 

ProoJ: We prove the result for the case n = 2. (The general case is 
proved similarly but details are more involved.) 

Noting that 6 > 2, define vertices u,, v,, w, of R(6) by 

: = 1  for i = m; 

vi:= ui- 1 for 1 < i < m ,  

:= 2 for i = m; 

w.:= u . -2  for 1 d i < m ,  

:= 3 for i = m. 

These vertices are all distinct provided urn-, <urn,  v m p l  <u, and 
w ,  , < v,. These conditions amount to (m - 1)(6 - 2) < 1, which holds 
since 6 < 2 + l/(m - 1 ). 

Now Iv, - w, I = 1, so v ,  is adjacent to w, in R(6), and these two vertices 
induce a subgraph H, isomorphic to K,, for 1 d i < m. Again lu, - u, I = 1 
and lu,+ w,l =2,  so u, is adjacent in R(6) to both vertices of H,, for 
1 < i d  m. Also urn - u, = 1, so u, is adjacent to urn in R(6). Next, for 
1 6 i < r n  we have u , , - v , = 6 - 1  and u,- , -w,=6,  sou , - ,  is adjacent in 
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R ( 6 )  to both vertices of H I ,  Thus, the vertices u,,  v, ,  w, are vertices of a 
subgraph G(m,  2 )  in R(6) ,  provided u r n _ ,  is adjacent to both vertices of 
H,. This requires 1 < u r n - u r n - , = 2 - ( m - 1 ) ( 6 - 2 )  and 6 3 w m - u r n ,  = 

3  - ( m  - 1)(6 - 2) ,  whence 2  + l l m  d 6  d 2  + l / ( m  - 1). These requirements 
are satisfied, so R ( 6 )  does have G(m,  2 )  as a subgraph for the specified 
range of 6. It now follows from Theorem 1 and Lemma 2 that G(m,  2 )  is a 
chromatic subgraph of R(6) .  I 

1 COROLLARY. For any given 6  3 1 ,  there are positive integers m, n  such 

I that G(m,  n )  is a  chromatic subgraph of R(6) .  

I ProoJ: The case where 6  is a positive integer corresponds to m  = 1, and 
follows from Theorem 2. The case where 1 < 6  < 2  corresponds to n  = 1, 
and follows from Theorem 3. All other cases follow from Theorem 4. 1 

I When 2 < 6  < 3, Theorem 4 shows that G ( 2 , 2 )  is a chromatic subgraph 
of R ( 6 )  (see Fig. 2) .  By systematically eliminating all other possibilities, it 1 can be shown that any other 4-chromatic subgraph of R ( 6 )  in this case 
either has order greater than 7, or else has order 7 but contains more than 

I 1 1  edges. In this sense, G ( 2 , 2 )  is the smallest chromatic subgraph of R ( 6 )  
I when 2<6<3.  

It may be remarked that with due attention to detail, Theorem 4 could 
be extended to include Theorems 2 and 3. In conjunction with Lemma 1 ,  I 

this would then provide an alternative proof of Theorem 1. 

I Given any finite graph G, it is clear that R ( 6 )  has a subgraph isomorphic 
to G  if 6  is sufficiently large. Let d be a positive real number such that R ( 6 )  

I has a subgraph isomorphic to G  for all 6  > d, It appears that if d >  1  then 
there is also a subgraph of R ( d )  which is isomorphic to G. However, I ~ this is not true if d= 1; counterexamples are provided by C, and K,,,, for 
example. 

4. OPEN INTERVAL OF DISTANCES 

In this section we consider the case where the distance set D  is an open 

i interval ( 1 , 6 ) ,  for some 6  3 1. We shall use R,(6) to denote the graph 
G ( R ,  D )  in this case, and ~ ~ ( 6 )  to denote its chromatic number. (Inciden- 
tally, if 6  = 1 then D = IZ(, so R o ( l )  is an independent set of vertices and 

1 x o ( 1 )  = 1.)  
I It turns out that Ro(6)  has the same chromatic number as R ( 6 )  when ~ 6  > 1, so we have 

1 THEOREM 5. If n  - 1 < 6  < n  then ~ ~ ( 6 )  = n  + 1, for any integer n  3 2. 



Prooj Since R,(6) is a proper subgraph of R(6) ,  it follows that 
~ ~ ( 6 )  d ~ ( 6 )  for any 6. Hence if 6 d n, Lemma 1 implies ~ ~ ( 6 )  < n + 1. We 
next show that ~ ~ ( 6 )  3 n + 1, whence equality follows. 

Given any 6 such that n - 1 < 6 d n, choose 6' so that n - 1 < 6' < 6. By 
the corollary to Theorem 4, we can find positive integers r, s such that 
G(r ,  s )  is a chromatic subgraph R(6') .  Choose any real number c satisfying 
1 < c < 6/6'. Choose any particular subgraph of the form G(r,  s )  in R(6 ' ) ,  
and enlarge it by the scale factor c. The new graph is still of the form 
G(r ,  s ) ,  and each of its edges has length at least c and at most c6', that is, 
the length of each of its edges is strictly between 1 and 6. Hence R0(6)  con- 
tains a subgraph G(r,  s ) ,  so ~ ~ ( 6 )  3 ~ ( 6 ' ) .  But ~ ( 6 ' )  = n + 1 ,  by Theorem 1, 
so ~ , ( 6 ) 3 n + l .  0 

We can again specify chromatic subgraphs. The method used in proving 
Theorem 5 adapts to establish the following result. 

LEMMA 3. Let d be a positive real number such that the finite graph G is i 
a subgraph of R ( 6 )  if 6 > d. Then G is a subgraph of R,(6) if 6 > d. 

Prooj Given any 6 > d, choose 6' so that d < 6' < 6. Then R(6 ' )  con- 
tains a subgraph G, and we can find a scale factor c, where 1 < c < 6/6', so 
that if this particular subgraph is enlarged by the factor c, the new graph is 
still isomorphic to G and the length of each of its edges is strictly between 1 
and 6,  so it is a subgraph of R0(6) ,  as required. I I 

In fact, the following stronger result holds. 

THEOREM 6. Let d be a positive real number such that R ( 6 )  has a sub- 
graph isomorphic to the finite graph G if 6 > d, but not i f  6 < d. Then R,(6) 
has a subgraph isomorphic to G if and only i f  6 > d. 

ProoJ: Sufficiency follows from Lemma 3. For the necessity of the 
stated conditions, suppose R,(6) contains a subgraph G. Let 6' be the 
greatest length of any edge in this particular subgraph, so 6' < 6. But this 
same subgraph is contained in R(6 ' ) ,  so 6 ' 3  d. Hence 6 > d, and the 
theorem follows. I 

COROLLARY. I f  6 > 1 ,  no complete graph is a chromatic subgraph of 
Ro(6). I 

ProoJ: Since Theorem 2 implies that K,,, is a subgraph of R ( 6 )  
precisely when 6 3 n for any positive integer n, Theorem 6 shows that K, + , 
is a subgraph of R,(6) precisely when 6 > n. But ~ ~ ( 6 )  > n + 1 if 6 > n, by 
Theorem 5. The corollary follows. 1 
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THEOREM 7. For any integers m 3 2, n 3 1 if n + l / m  < 6 < n + l / ( m  - 1 ) 
then G(m,  n )  is a chromatic subgraph of R,(6). 

ProoJ: In view of Lemma 3 and Theorem 5,  this result is a direct con- 
sequence of Theorems 3 and 4. 1 

COROLLARY. For any 6 > 1 ,  there are positive integers m ,  n such that 
G(m,  n )  is a chromatic subgraph of  R,(6). 

We conclude this section by briefly considering G ( R ,  D )  when D is a 
half-open interval. When D:= [ I ,  6 )  for 6 3 1, let R , ( 6 )  denote G ( R ,  D )  
and let ~ ~ ( 6 )  be its chromatic number. Similarly R,(6) and ~ ~ ( 6 )  corres- 
pond to the case D: = (1,  61 for 6 > 1. As before, ~ ~ ( 1 )  = ~ ~ ( 1 )  = 1. For 
6 3 1 we have R,(6) c R , ( 6 )  c R ( 6 )  and R,(6) c R 2 ( 6 )  c R(6) ,  whence 
Theorems 1 and 5 imply that if n - 1  < 6 < n  then ~ , ( 6 ) = n +  1 and 
~ ~ ( 6 )  = n + 1 ,  for any integer n 3 2. 

It may at first be thought that an unbounded distance set D would result 
in the graph G ( R ,  D )  having a transfinite chromatic number. This is not the 
case, as is shown by the following result, which we shall apply several 
times. 

LEMMA 4. For any positive integer n, let D:= Up=, [ k ( n +  1 ) +  1, 
k ( n  + 1 ) + n ] .  Then the chromatic number o f  G(R ,  D )  is at most n + 1. 

Proof: Let all points of the real line be assigned to colour classes num- 
bered 0, 1, ..., n such that x has colour i precisely when Lx] - i (mod n + I ) ,  
as in Fig. 1. We shall show that this is a proper colouring of G ( R ,  D) ,  
whence the lemma. 

Let x, y be two reals assigned to colour class i, with x < y. Then there are 
integers r, s such that r < s  and r ( n + l ) + i < x < r ( n + l ) + i + l  and 
s ( n + l ) + i < y < s ( n + l ) + i + l .  If r = s  then O < y - x < 1 ,  so x is not 
adjacent to y in G(R,  D) .  If r < s, let t:  = s - r. Then we have 
t (n+ 1 ) -  1 < y - x < t ( n + l ) +  1, so x and y will be adjacent only if there 
is some integer k 3 0 such that [ k ( n  + 1 ) + 1 ,  k ( n  + 1 ) + n ]  has a nonempty 
intersection with ( t ( n +  1 ) -  1, t ( n +  1 ) +  1 ) .  This happens precisely if 
k ( n +  1 ) +  1 < t ( n +  1 ) +  1 and k ( n +  l ) + n > t ( n +  1 ) -  1. These inequalities 
reduce to k <  t and k +  1 > t ,  which are mutually inconsistent. It follows 
that the distance between x and y is not in D, so they are not adjacent in 
G(R,  D ) ,  as required. 1 



Note that Lemma 1 is an immediate consequence of Lemma 4, since 
[I, n ]  is one of the intervals contained in the distance set in Lemma 4. 
Another easy application of Lemma 4 is the following result. 

THEOREM 8. If D is any nonempty subset of the oddpositive integers, the 
chromatic number of G ( R ,  D )  is 2. 

Proof: With n:= 1 ,  the distance set in Lemma 4 is the odd positive 
integers and the corresponding graph has chromatic number at most 2. 
This also applies to any subgraph G ( R ,  D ) ,  where D is a nonempty subset 
of the odd positive integers. Because D is nonempty such a subgraph con- 
tains K,, so its chromatic number is also at least 2. 1 

When the distance set D is finite, say D:= { d , ,  d ,,..., d m ) ,  where 
0 < d l  < d, < . . . < dm,  we shall write R,(d,, d ,  ,..., d m )  to denote G ( R ,  D ) ,  
and x,(d,, d2, ..., d m )  to denote its chromatic number. Note that the case 
where m : =  1 has already been discussed, since R,(a) is clearly isomorphic 
to R(1) .  

We shall restrict attention to the cases where each d,  is a positive integer. 
In such cases, let d:= gcd{d, ,  d,, ..., d,). Then each real number in the 
interval [0, d )  belongs to a different component of R,(d,, d,, ..., d,), and 
clearly every component includes such a real. Moreover, all components of 
R,(dl ,  d,, ..., d m )  are translates of the component containing 0. If D is any 
subset of the positive integers, it is natural to use G ( Z ,  D )  to denote the 
graph with the integers as its vertex set, and edges between precisely those 
pairs of integers with absolute difference in the set D. In particular, for a 
finite distance set D:  = { d l ,  d,, ..., d,) we shall denote the graph by 
Z,(d, ,  d,  ,..., d,). Since Z,(d,  , d ,  ,..., d,) is a union of components of 
R,(dl ,  d ,  ,..., dm),  its chromatic number is also ~ , ( d , ,  d ,  ,..., d,). 

THEOREM 9. For any positive integer m ,  the chromatic number of 
Z,(1, 2 ,..., m )  is ~ ~ ( 1 ,  2 ,..., m )  = m + 1. 

Proof: By Theorem 1, R ( m )  has chromatic number ~ ( m )  = m + 1. Also 
Z,(1, 2 ,..., m )  is a proper subgraph of R ( m ) ,  so ~ ~ ( 1 ,  2 ,..., m )  d ~ ( m )  On the 
other hand, the vertices 0, 1 ,..., m induce a subgraph K,, , in Z,( l ,  2 ,..., m ) ,  
so ~ ~ ( 1 ,  2 ,..., m )  3 m + 1 and the theorem follows. I 

COROLLARY. For any positive integer m ,  the complete graph K,  + , is a 
chromatic subgraph of Z , ( l ,  2 ,..., m ) .  
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I Next we shall consider & ( d l ,  d ,  ,..., d m )  in the particular case m :  = 2. Let 
r, s be positive integers, with r < s. If gcd{r, s }  = d, then it is clear that 

I 

I Z,(r, s )  is isomorphic to .Z,(r/d, sld). Hence, it suffices to consider the case 
in which r, s are coprime. If r, s are both odd, Theorem 8 shows that 

I ~ , ( r ,  S) = 2. The remaining case is the subject of the next result. 

I THEOREM 10. If r, s are coprime positive integers of opposite parity, with 
I r < s, the chromatic number of Z ,(r, s )  is ~ , ( r ,  s )  = 3. 

Proof: The graph Z,(r, s) contains an odd cycle of order r + s, namely 
0, r, 2r ,..., sr, s(r  - I ) ,  s ( r  - 2)  ,..., s, 0. Hence ~ , ( r ,  s )  2 3. 

We shall now show that Lemma 4 implies x,(r, s )  6 3, whence the 
theorem. Choose n: = 2 in Lemma 4, so D: = U, ., [ 3 k  + 1,3k  + 21 and 
the chromatic number of G ( R ,  D )  is at most 3. For any real number c > 0, 
let cD denote the scaled distance set {cd:  d~ D } .  Clearly G ( R ,  c D )  is 
isomorphic to G ( R ,  D ) ,  so has chromatic number at most 3. We shall now 
show that Z,(r, s )  is a subgraph of G ( R ,  c D )  for some suitable c, whence 
x,(r, S )  d 3. Indeed, this holds whenever there is a real c > 0 and an integer 
k 3 0 such that c d r d 2c and (3k  + 1 ) c d s d (3k  + 2 )  c. These conditions 
are equivalent to r/2 < c < r and s / (3k  + 2 )  6 c d s / (3k  + 1 ). There is a real c 
satisfying these conditions precisely if sl(3k + 2 )  d r and sl(3k + 1) 2 r/2, 
which is equivalent to 

Let 3a + 2 : = s/r. Then the interval in which k must lie is a d k  < 2a + 1 .  If 
a 3 0, this interval has length at least 1, and clearly contains at least one 
positive integer, which may be chosen as k .  Since s/r > 1 it follows that 
a > -+, so if a < 0 then 2a + 1 > 0 and we may choose k :  = 0. In any case, 
then, there exist suitable numbers c and k so that Z,(r, s )  is a subgraph of 
G ( R ,  cD) ,  as required. 

COROLLARY. If r, s are coprime positive integers of opposite parity, with 
r < s, the odd cycle C,,, is a chromatic subgraph Z,(r, s). 

We shall discuss one further class of graphs G ( R ,  D )  with D finite, 
namely those in which D is an initial segment of the positive integers with 
one element deleted. Let D:= (1, 2, ..., m}\{k), where k,  m are positive 
integers with k d m and m 3 2. Let Rp(m,  k )  denote G(R, D )  and let 
xp(m,  k )  denote its chromatic number. Let Z p ( m ,  k )  denote the 
corresponding subgraph induced by the integers. 

When k : =  m ,  the graph Z p ( m ,  m )  is just Z, ( l ,  2 ,..., m - 1) ,  so we shall 



I 
restrict attention to the cases where 1 6 k < m. It is not difficult to obtain I 

the following lemma, and to then use this lemma to derive Theorem 11. 

LEMMA 5. For any positive integer r, the complete graph K,,, is a 
chromatic subgraph of Z8(2r,  I ) ,  and the graph G(2,  r )  is a chromatic sub- 
graph of Zp(2r  + 1 ,  1 ). 

I 
THEOREM 1 1. For any integer m 3 2, the chromatic number of Z p ( m ,  1 ) 

is xa(m,  l ) = L ; ( m + 3 ) ] .  

When 1 < k < m ,  the determination of the chromatic number of Z8(rn, k )  
is more intricate. We shall content ourselves with establishing bounds for 
xp(m,  k )  in most cases. 

First let k :  = 2. Since Z8(3,  2 )  is the same as L,(1, 3 ) ,  its chromatic num- 
ber is ~ ~ ( 3 ,  2) = 2. The next theorem deals with other graphs in this family. 

THEOREM 12. For any positive integer m 2 4 ,  the chromatic number of 
Z B ( m ,  2 )  is x8(m,  2 )  = L$(m + 4 ) l  if m f  3 (mod 4 ) ,  and satisfies 
i ( m  + 3 )  6 xB(m,  2 )  6 +(m + 5 )  i f  m - 3 (mod 4) .  

The above result may be obtained routinely, and its derivation contains 
the following observation. 

COROLLARY. For any integer m 3 4, the graph Z8(m,  2 )  contains a sub- 
graph G(2,  L i m l ) .  

Upper and lower bounds for the general case are provided by the next 
two theorems. These results may be derived without difficulty. I 

I 

THEOREM 13. For any integers k ,  m with 1 6 k < m the chromatic number I 

of Z 8 ( m ,  k )  satisfies I 

THEOREM 14. For any integers k ,  m with 3 6 k < m the chromatic number 
of H8(m, k )  satisfies 

where t:= 2 ij"k:= 3 and t:= k - 2  i j " k 3 4 .  1 
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Let P denote the set of all prime numbers. In this section we shall discuss 
the chromatic number of G(R, D) when D L  P. Once again, consideration 
of components shows this to be the same as the chromatic number of 
G(Z, D). By analogy with notation used in Section 6, in the case D: = P we 
shall use Z,(P) to denote G(Z, P), and x,(P) to denote its chromatic num- 
ber. 

LEMMA 6. The chromatic number of L,(P) is x,(P)=4, and the 
chromatic number of Z,(2, 3, 5) is ~ ~ ( 2 ,  3, 5)  = 4. 

Proof Let each integer x be assigned to colour class i precisely when 
x - i (mod 4), for 0 d i < 4. Since integers assigned to the same colour differ 
by a multiple of 4, they are not adjacent in Z,(P), so x,(P) d 4. Because 
Z,(2, 3, 5)  is a subgraph of L,(P), we have ~ ~ ( 2 ,  3, 5)  6 x,(P). But 
~ ~ ( 2 ,  3, 5) 3 4, since 2,(2, 3, 5) contains a subgraph G(2, 2)  (see Fig. 2)  
determined by the vertices u,: = 2, u, : = 3, u,: = 4 and the subgraphs 
H I ,  H, with vertex sets (0, 5 )  and (1, 6), respectively. The lemma 
follows. I 

In view of Lemma 6, we can allocate the subsets D of P to four classes, 
according as G(L, D )  has chromatic number 1, 2, 3, or 4. Obviously the 
empty subset is the only member of class 1, and every singleton subset is in 
class 2. The following theorem addresses the classification of subsets with at 
least two elements, but does not fully settle this problem. 

THEOREM 15. Let D G P, with 101 3 2. Then D may be classified as 
follows: 

(a)  D is in class 2 if2 D; otherwise D is in class 3 or class 4; 

(b)  if 2 E D  and 3 q! D, then D is in class 3; 

(c) if {2, 3 )  c D c {p E P:  p - +2 (mod 5) )  then D is in class 3; 

(d)  if (2, 3 )  E D  G {p E P :  p -- l.2, 1 3 ,  7 (mod 14)), then D is in 
class 3; 

(e) i f { 2 , 3 , 5 ) ~ D o r  {2 ,3 ,11 ,13}cD,  then D i s i n  class4. 

Proof (a)  By Theorem 8, if D is a subset of the odd primes then it is in 
class 2. If D contains 2 and any odd prime p, then G(Z, D )  contains a cycle 
v,v, v , . .  . v, wv,, where v, :  = 2i for 0 d i dp ,  and w: = p. This cycle has 
order p + 2, which is odd, so has chromatic number 3. Hence, with Lemma 
6 it follows that D is in class 3 or 4. 

(b)  If 2 E D  and 3 q! D, a proper colouring of G(L, D )  is obtained by 
assigning the integer x to colour class i precisely when x= i (mod 3), for 



0  d  i <  3. Integers assigned to the same colour class differ by a multiple of 
3, so are not adjacent in G(Z, D). In view of (a), it follows that D  is in 
class 3. 

(c) Assign each integer x  to colour class i  precisely when x  = 2i or 
2i + 1  (mod 5) ,  for 0  d id 1 ,  and assign x  to colour class 2  if x  = 4  (mod 5). 
The difference between any two integers in the same colour class is con- 
gruent to 0  or f 1 (mod 5) ,  so no such pair is adjacent in G(Z, D )  if 
D  c { p ~  P : p  - i 2  (mod 5 ) ) .  With (a), if 2 ~  D it follows that D is in 
class 3. 

(d )  Assign each integer x  to colour class i, where i:= 0  when 
x = 0 ,  1 ,  5 ,6 ,  or 10 (mod 14), i:= 1 when x - 2 ,  3, 7 ,  11, or 12 (mod 14), 
and i: = 2  when x - 4, 8, 9, or 13 (mod 14). The difference between any two 
integers in the same colour class is congruent to 0,  + 1, +4, +5, or i 6  
(mod 14), so no such pair is adjacent in G(Z, D)  if D G { p ~  P : p  = +2, 
i 3 ,  or 7 (mod 14) ) .  With (a), if 2  E D  it follows that D is in class 3. 

(e) If ( 2 ,  3, 5 )  G D, then D  is in class 4, by Lemma 6. If 
( 2 ,  3, 11, 13)  G D, then D can be seen to be in class 4  by the following 
argument. In view of (a), suppose we can find a proper colouring of the 
integers in G(Z, D )  using only three colours. Not every pair of consecutive 
integers is assigned to the same colour class, so without loss of generality 
we may suppose the integers 0  and 1  are assigned to colour classes 0  and 1, 
respectively. For convenience, we shall write x + i, for 0  d  i  d  2, if the 
integer x  is assigned to colour class i. Then consecutively we deduce 0  + 0,  
1 -  1 ,  3 - 2 ,  14-0,  12-2,  - 1 - 0 ,  - 2 - 2 ,  11+1, 9 - 0 ,  6 + 1 ,  
-10-0, -13-1,  -11-2,  - 8 - 1 ,  - 5 - 0 ,  8 - 2 ,  - 3 - 1 .  But 10 is 
adjacent to -3, - 1, and 12, which have been assigned to three different 
colour classes, so there is no proper colouring of G(Z, D )  with only three 
colours. I 

Although many sets D G P  are not classified by Theorem 15, among 
others it does classify all subsets of ( 2 ,  3, 5, 7 ,  1 1 ,  13, 17).  Clearly it also 
classifies all sets D with 2  elements, and many with 3. The next result 
classifies all remaining 3-sets. 

THEOREM 16. For any prime p  > 5, the set ( 2 ,  3, p )  is in class 3. 

ProoJ: In view of Theorem 15, it suffices to demonstrate a proper 
colouring of Z,(2, 3, p )  using three colours. First suppose p : =  6k + 1 ,  for 
some positive integer k. Assign each integer x to colour class i, where 
0 d i d  2, as follows. Let x  = a  (mod 6k + 4 )  with -4 d  a  < 6k. If a  3 0  then 
x - i  when a = 2 i  or 2i+1 (mod6). Also x - 0  if a =  -4; x +  1 if a =  -3 
or -2; x + 2  if a  = -1. No two integers in the same colour class differ by 
+ 2  or f 3  (mod 6k + 4 ) ,  so this is a proper colouring of Z,(2, 3,6k + 1 ) .  
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Now suppose p : =  6k- 1, for some integer k 3  2. This time, for any 
integer x let x - a (mod 6k + 2), with - 14 < a < 6k - 12. If a 3 0 then x + i 
when a = 2i or 2i + 1 (mod 6), with 0 d i d 2. As in the proof of Theorem 
15(d), when a < O  we assign x + O  if a €  ( 1 4 ,  -13, -9, -8, -4),  x+ 1 
if a€ ( -12 ,  -11, -7, -3, -2),  and x + 2  if a € ( - 1 0 ,  -6, -5, -1).  
No two integers in the same colour class differ by + 2 or + 3 (mod 6k + 2), 
so this is a proper colouring of Z,(2, 3, 6k - I), with k  3 2. This covers all 
cases. I 

We conclude this section with a theorem in the spirit of some of our 
earlier results on chromatic subgraphs. 

THEOREM 17. Let D c P. If K, is a complete suhgraph of largest order in 
G(Z, D) then n d 4, and 

(a)  n 3 3 precisely when (2, p, q )  G D, where p, q are twin primes; 

(b)  n = 4 precisely when (2, 3, 5, 7 )  G D. 

Proof. Because K, has chromatic number n, Lemma 5 implies that 
n d 4 if K, is a subgraph of G(Z, D), with D c P. 

Suppose G(Z, D) contains a subgraph K,. Such a subgraph cannot have 
two edges of even length, for then the longest edge would be even and at 
least 4, so could not be prime. Thus at least two edges of any K,  must have 
odd length, so the third edge must have even length which, being prime, 
must be 2. The lengths of the two odd edges must therefore be twin primes. 
Conversely, if D contains 2 and a pair of twin primes, it is obvious that 
G(Z, D )  contains K,. 

Next suppose G(Z, D )  contains a complete subgraph K4. Then there is a 
subgraph K,  which, in view of what we have just proved, can be taken to 
have vertices 0, p, q, where p, q are odd primes with q = p  + 2. If the fourth 
vertex of K4 is v < q, the subgraph K,  with vertices 0, q, v must have one 
edge of length 2, and v #p, so it follows that v = f 2. If v = -2, the 
adjacency of v and q requires that p + 4 also be prime; if v = 2, the 
adjacency of v and p requires that p - 2 also be prime. So in either case D 
must contain 2 and two intersecting pairs of twin primes, whence 
( 2 ,  3, 5, 7 )  c D. Conversely, if (2, 3, 5, 7 )  c D then G(Z, D )  contains a sub- 
graph K, with vertices 0, 2, 5, 7. 1 

By analogy with the notation used in this paper, it is natural to use 
G(R2, ( 1 ) )  to denote the graph on all points of the euclidean plane, with 
any two points adjacent precisely if their distance apart is 1. It is instructive 
to note that the proof by Moser and Moser [2] that the chromatic number 
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of G(R2, (1 ) )  is at least 4 is in fact a proof that G(2,2) is a subgraph. The 
identification of chromatic subgraphs relevant to G(R, D)  for various dis- 
tance sets D, additional to those discussed in the present paper, would not 
only be of intrinsic interest, but might also be relevant to graphs of the type 
G(R2, D). 

The colourings we have used in proving our results either explicitly use 
monochromatic intervals or (when the distance set is a subset of the 
positive integers) easily yield colourings of the real line with 
monochromatic intervals. What differences result if it is required that every 
open interval contains at least two colours or, more generally, at least k 
colours, for some prescribed k? 

A number of problems raised in the paper were not solved. These are 
indicated in the relevant sections. We hope to discuss, in a sequel to this 
paper, a class of problems not raised here: what happens when the distance 
set is not bounded away from O? 

1. H .  HADWIGER, H. DEBRUNNER, AND V. KLEE, "Combinatorla1 Geometry in the Plane," 
Holt, Rinehart, &Winston, New York, 1964. 

2. L. MOSER AND W. MOSER, Solution to Problem 10, Canad. Math. Bull. 4 (1961), 187-189. 


	086.jpg
	087.jpg
	088.jpg
	089.jpg
	090.jpg
	091.jpg
	092.jpg
	093.jpg
	094.jpg
	095.jpg
	096.jpg
	097.jpg
	098.jpg
	099.jpg
	100.jpg

