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ABSTRACT

A dominating cycle in a graph is a cycle in which every vertex of
the graph is adjacent to at least one vertex on the cycle. We conjecture
that for each ¢ there is a constant k., such that every c-connected graph

with minimum degree 6 > %Hcc has a dominating cycle. We show
L

that this conjecture, if true, if best possible. We [urther prove the conjec-
ture for graphs of connectivities 1 through 5.

1. Introduction

For notation, usually we follow Bondy and Murty [1]. The number of vertices, the
connectivity and the minimum degree are denoted by n, ¢ and &, respectively. A dom-
inating cycle is a cycle L in graph G for which every vertex of G is adjacent to at least
one vertex of L. A more specific type of cycle is a D-cycle , which is a cycle L in graph
G for which every edge of G is incident to at least one vertex of L.

Dominating cycles have been studied from an algorithmic viewpoint [3, 4 and 7|
with applications in network design in mind. We are interested here instead in studying
an extremal problem, namely the minimum degree which ensures that a c-connected
graph contains a dominating cycle. Our primary motivation is not algorithmic, but
rather to extend previous research on D-cycles and Hamilton cycles. A D-cycle can be
considered as a generalization of a Hamilton cycle and a dominating eycle a generaliza-
tion of a D-cycle. Therefore the smallest minimum degree that guarantees a dominating
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cycle should be smaller than that for a D-cycle, which in turn should be smaller than the
sufficiency condition with respect to 6 for Hamilton cycles.

Dirac’s classical result gives the sufficiency condition with respect to 6 for Hamil-
tonicity [5].

Theorem Al. Let G be a graph with n>3 and 5_>_i;- Then G is Hamiltonian.

For D-cycles, a theorem of Nash-Williams (see [2]) establishes an upper bound, which an
example of Veldman [8] shows is best possible:
Theorem A2. Let G be a c-connected graph (¢>2) with § > gl

3 -

Then G has a D-
cycle.

Both these results give sufficiency conditions with respect to é depending only on n. As
long as the connectivity is high enough, it is irrelevant.

Before we prove results about dominating cycles, we need a lemma, which relies on
the following two theorems. Bondy [2] gives Theorem B, which relates connectivity,
minimum degree and what can lie off a longest cycle. A graph is n-path-connected if
any two vertices are connected by a path of length at least n.

Theorem B. Let G be a c-connected graph such that the degree-sum of any c+1
independent vertices is at least n+c(c—1), where n>3, and let L be a longest cycle in G.
Then G—L contains no (¢—1)-path-connected subgraph.

Theorem C, from Erdés and Gallai (6], relates number of edges and the length of the
longest cycle.

Theorem C. Let G be a graph on n vertices with at Jeast %d[n—1}+1 edges, where
d>1. Then G contains a cycle of length at least d+1.

Lemma 1 follows directly from these theorems.

% 4c—1and let L be a
c+1

longest cycle in G. Then all subgraphs H in G—L have less than (¢—2)(v(H)—1)+1
edges.

Proof. Let H be a subgraph of G—L. From Theorem C, H is not (¢—1)-path con-
nected, which implies no cycles of length 2¢—3 or more since such a cycle is (c—1)-path-

Lemma 1. Let G be a c-connected graph, ¢>3, with 6 >

connected. Using Theorem D, H must have less than -;—(2.:—4)(0{H)-1}+1 edges. O

2. Dominating cycles in graphs with small connectivity.

Our goal is to establish a sulficiency condition for the existence of dominating
cycles. In order to establish a general pattern, we begin by proving sufficiency conditions
with respect to & for dominating cycles in graphs with small connectivity. Later we
extrapolate this pattern to formulate a conjecture about the sufficiency condition.
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Lemma 2. Let G be a connected graph with n>3 and 62—} Then G contains a dom-
inating cycle.

Proof. From Theorem A, G has a Hamiltonian cycle. A Hamilton cycle dominates. O
Lemma 3. Let G be a 2-connected graph with n>3 and 62%. Then G contains a
dominating cycle.

Proof. From Dirac [5], G has a cycle L of length at least —235 Since 62%, every ver-

tex must have a neighbour on the eycle. O

Until this point, the situation for dominating cycles is essentially the same as it is for D-
cycles; for ¢ >3, however, we see a radical difference.

Theorem 1. Let G be a 3-connected graph, with sufficiently large n and § > %+2,

Then G has a dominating cycle.
Proof. Let L be a longest cycle in G. From Dirac |5), L has length at least 26. If L
does not dominate then there exists some v&V(G) such that V(H)V(L)=(, where
V(H)=N(v) and v(H)>6. By lemma 1,

€G—L) < (e—2)(v(G—L)-1)+1 < %—4.
There must exist some z,y€V(H) such that dg_(z) <1 and dg_z(y) <1 (see Figure 1).

v

Figure 1.
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Otherwise dg_p(u) > 2 for all u€V(H) except for possibly some z'€V(H). By lemma 1,
no u€V(H) can have neighbour we€V[H), since then {u+v+w) = 3. Therefore each edge
must account for one vertex degree and since v(H) > §

Y de_(z) <dG-L) or 2AZ+2-1)=242>
ot 4 2

—4.

|3

Then dy,.(z) > Tr:--i-l and dp . (y) > %-H., The neighbours of z and y on L must be

at least four apart on L or we could form a longer cycle by including z,v,y and omitting
the vertices on the cycle between the neighbours of z and y. Therefore

v(L) > 4(%+1} > n. L must dominate. O

Theorem 2. Let G be a 4-connected graph, with sufficiently large n and § > %+3.
Then G has a dominating cycle.

Proof. Let L be a longest cycle in G that dominates the most vertices. Again L has
length at least 26. If L does not dominate then there exists some v and H as in theorem
1. By lemma 1,

(G-L) < 2(%n—6—1)+1 - %n 13,

There must exist some z,y€V(H) such that dg_;(z) <11 and dg_;(y) < 11. Otherwise
dg_p(u) 212 for all u€V(H) except possibly for some z'€V/(H). Since each edge can
account for two vertex degrees and v(H)>$

L S doy(z) <dG-L) or Lig(Pis—1)=Lni12<Ens
2ot 2 'S 5 5

u
upz'

The neighbours of = and y on L must be at least four apart or we could form a longer
cycle. Consider any two neighbours of x and y on L that are four apart, [; and l;, and
the vertices between them on L, l,!; and I, (see Figure 2). All neighbours of I3, other
than [, and [, must not be on L or we could construct a cycle of equal length that dom-
inates one more vertex by leaving 5[50, off the cycle and including z,v,y. This would
contradict the choice of L. Therefore if any neighbours of z and y on L are four apart,

o(L) > 4(5—11) = %n —32 and o(G—{L+H-+v)) > 6-2 = Z+1. But then G must have

more than n vertices. If the neighbours of = and y on L are all at least five apart, then
v(L) > 5(6—11) = n—40 and again we have more than n vertices. Therefore L must
dominate. O

Theorem 3. Let G be a 5-connected graph, with sufficiently large n and § > -%—Hi,

Then & has a dominating cycle.

Proof. Let L be a longest cycle in G that dominates the most vertices. Again L has
length at least 28, If L does not dominate then there exists some v and H as in theorem

1 and 2. By lemma 1,
dG-L) < 3{%,1‘12-1}“ = 2n-38.

Similar to theorem 2, there must exist some z,y€V(H) such that dg_;(z) <23 and
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Figure 2.
dg_p(y) <23. The neighbours of x and y on L must be at least four apart or we could
form a longer cycle. Consider any two sets of vertices of L that have two neighbours of
z and y four apart, {1,05,l3,04,0s and [ 0 10k yo.lky5.0k 44 (See Figure 3).

‘L'

Figure 3.
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Both 3 and {;,, must have all neighbours off the cycle, except for their immediate neigh-
bours on the cycle. These neighbours must also be disjoint or we can form a longer cycle
as indicated in Figure 3. Therelore il two or more sets of neighbours of z and y are four

apart, v(L) > 4(6—23) = %n—ﬁs and v(G—(L+H4v)) > 2(6—2) = %n+8. But then G
as more than n vertices. Il there is at most one set of neighbours of z and y that is four
apart then v(L) > 5(6—23)—1 = -:-n—Sﬁ. With this new estimate of the size of v(L) by
lemma 1,
dG—L) < 3f"2*+85‘1 )41 = §+255,

Similar to theorem 2, there must exist some z,y&V(H) such that dg_j(z) <6 and
de_p{y) < 6. If there is at most one set of neighbours of z and y that is four apart then
v(L) > 5(6—6)—1 = %-n—l and we again have more than n vertices. Therefore L dom-

inates. O

3. The conjectured sufficiency condition
Even though we do not know the exact result for higher connectivity, the following
example places a lower bound on the sufficiency condition. Let ¢>1, A>c and G consist
of the following subgraphs:
X =i,
=K, Ve i=12 -+l
with extra edges from every vertex in X to every vertex in Y;—z, (see Figure 4).

Yc-l-l

2 23 Zet1
Figure 4.
c

G has connectivity ¢, § = A4 = -%1——{14- ) and no dominating cycle. For a dom-
e

c+1
inating cycle to exist each Y; must have at least one vertex on the cycle so each z; will

be adjacent to the cycle, but to include each Y; we need c+1 vertices in X. G shows

__9
e

that the sufficiency condition is greater than
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We conjecture the following sufficiency condition for dominating cycles in terms of
6 and c:

Conjecture 1. Let G be a c-connected graph with n>3 and 6§ > %Hﬁ‘c, where k, is
a constant depending only on ¢. Then G has a dominating cycle.

Conjecture 1 is the best possible by the previous example so it may allow values for
6 that are too low to guarantee a dominating cycle. We are much more certain that the

sufficiency condition for § is not a constant, like %, as it is for Hamilton cycles and D-
cycles. It may be more reasonable to try to find a sufficiency conditions, in terms of &,

n .
for each ¢ that are less than ry and decrease as ¢ increases.

One hope in proving such a conjecture is to show that when there is a dominating
cycle, some longest cycle dominates as we did in theorems 1,2 and 3. However, the fol-

lowing example shows that longest cycles are not necessarily dominating although dom-
inating cycles exist. Given ¢>6 and m>6 we construct such a graph G with § = %
on n=6m+2 vertices. Let G consist of the following subgraphs:

H=vVvH

where v is a vertex and H' is a K,,, and
m
J=Knv Y
i=1
where Y;=K,, with extra edges from every vertex in H' to every vertex in the K, (see
Figure 5).

Then G has connectivity ¢ and § = m+1 = n;-‘l_ A longest cycle in G has all of the

vertices of each ¥, i =1,2, -+ m, and also K,; to include H would add 3 vertices,
but would also remove a Y; from the cycle thereby subtracting more than 3 vertices. No

longest cycle is dominating, but a dominating cycle exists. For 6§ > ﬁ#cc, sufficiently

large n, and ¢>6 such examples exist so for higher connectivity we cannot prove conjec-
ture 1 by showing that it implies a longest cycle dominates. Nevertheless, we expect
that the conjecture holds, and these examples simply show that our longest cycle tech-
niques cannot generalize.
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Note added (July 1985):

Bondy and Fan (University of Waterloo), and Fraisse (Université de Paris Sud)

recently communicated to us different proofs of conjecture 1. We summarize Fraisse's
proof here. Veldman [9] defines a Dy cycle to be a cycle C for which G-C contains no
connected component with A or more vertices. Further define @, to be the maximum
number of remote subgraphs of order A (two subgraphs are remote if no edge connects a
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vertex in one to a vertex in the other). Veldman [9, thm 2| proves that if a; <c, then
G is Dy cyclic when ¢22.

In general, a Dy cycle need not be dominating, but if A < é+1 such a cycle s dom-

inating. Now set A = n-:;:
c

and set 6 > A+c. Compute a,. If &y, < ¢, then Veldman’s

theorem assures us that there is a Dy cycle, which (since A<<§) is dominating. If on the
other hand, a, > ¢, there are at least c+1 remote subgraphs each with A vertices. All
are disjoint, and this accounts for n—c vertices in total. The graph is c-connected, and
hence the remaining ¢ vertices are connected to each of the remote subgraphs. However,
consider a vertex in one of the remote subgraphs. It has at most A—1 neighbours in the
remote subgraph, no neighbours in any other remote subgraph, and at most ¢ neighbours
among the connecting vertices. But then its degree is smaller than &, which is a contrad-
iction. This proves conjecture 1.

Bondy and Fan prove a more general theorem which has this result as a corollary.

[9] H.J. Veldman, “Existence of D-cycles and D,-paths”, Discrete Mathematics 44
(1983) 309-316.
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