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SOME RESULTS IN COMBINATORIAL NUMBER THEORY

P. ERDES, R. FREUD and H. HEGYVARI

We should like to state here some new results in
ﬂg@ﬁbinatcriql number theory.

1., In [3] p.50 the following guestion was asked:
"Let a={a <a Sewrs} BT H=[b1<h2{...] be sequences of

2
1/2 1/2

integers satisfying A(x) > ex ¢ Blx) > ex for

gﬁme >0, JIB it true that
1) -~ @3, =h, = b
=% EJ

has infinitely many solutions?" (a(x) and B(x) are

;he-number of elements of A and B up to x, resp.)J
E. Freud observed that the answer was negative: we

write the numbers in binary scale, and select for a

thoze ones which contain only even powers of two, and for
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8 those which contain only odd powers of two. Then (1)

is possible only in the trivial case, and

o o= 1dm ipg DinfaGe), &)} _

A
xws Jx JZ

Later P. ErdSs and ‘R. Freud investiligated general
properties of seguences a and B for which (1) has
only trivial sclutions. We state here some of these
results:

1.1. > 2794 o ¢ is attainable.

1.2. The largest possible value of

& = lim sup A(x)alx}/x 1= 2. More precisely, if

R =

lim sup Hin) = » then Aaln)Blnl) 2 2n-H(n) 1is attainable
n

for infinitely many n by suitable a4 and g, but
al{n)B(n)=2n = =u for any a and B.

1.3. 5 = lim inf alx)Blix) /= is at most 14/9;

K-

more precisely

(5/2)s + 25 < 7.

Also s + (3/2)5< 4, which shows that 5=2 implies s=1.

It is not yet known whether s>»1 is possible at all.
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1.4. If m>0, then neither a(x)/Jx nor alx)/Jx
can tend to a limit.

Several further theorems are proved on the behav-
iour of A(x)B(x)/x, Alx)/Jx and &B(x)/Jx. The
results with detalled proofs will appear in (13, and
another forthcoming paper will deal with related prob-
lems.

2. Mow we consider permutations of integers. In the
finite case let Apedgr=ce,d, be a permutation of the
integers 1,2,...,d, @and in the infinite case let
Bpedgreccrd aeas be a permutation of all positive in-
tegers.

P.Erd&s, R.Freud and N.Hegyvari investigated

gevaral estimations concerning the wvalues of [ai,a i |

i+l
lﬂd Eﬂi 'Hj+‘1}'.
2.1. In the finite case
nZ
min 15!';;:-1 t#l'"i+l] = (1+a{l}) TIog »

where the minimum is to be taken over all permutations

Il;uii;ﬂnr
This result can somewhat be improved if we omit

oln) numbers from 1,2,...,2; then:
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nﬁ-sfﬂ}

1 <

Z2.2. min maxtai. is attainable for

141
any cfln) = 0; but is impossible for a fix e>0.

2.3, In the infinite case there exists a permuta-

tion satisfying

cflog 1 loglog i

Ca 1 <« ie for all z.

172541

In the opposite direction we can show only that

t&.rﬂiq_l] 1

i 2 1-1log 2

lim sup
4

must hold for any permutation.
2.4. Concerning the greatest common divisors, we

can construct an infinite permutation with
(ai;ai+ll > il2 for all i.

In the opposite direction we can show only that

Gl s
; 17 i+l 6L
llm‘inf e o = 95
AL
is valid for any permutation.

These results with detalled proofs will appear in

£21.
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3. Concerning the permutaticons now we consider the
values of a£+ai+l' Odlyzko has gonstructed an infinite
permutation where a ta, g is always a prime (see [3,
p.9473. R.Freud and W.Hegyvari investigated several oth-

er sets with ecan contain the wvalues of a for a

TR TN
suitable infinite permutation. E.g. the set of the
squares has this property, and a pair of residue classes,
k and k+s (mod m} has this property if and only if
either (s,m)=1l, or (g,m)=2 and k is odd (one res-
idue class alone is clearly "bad").

In T4] the density of the sums of subsegquent ele-
ments is investigated. It is shown, that the identiecal
permutation iz in some sense best possible, but this is
not the case from several other points of view. As a
special case also an answer 1s given tec a guestion of
N.Hegyvarl, which asked for the smallest possible value
of the maximum of the sums a,¥a, a7 1<i<pn~1 concern-—-
ing all such permutations of l;2,-.:.;n where the sums
a;ta .., @are distinct.

We guote here the results for the infinite case.

For an infinite permutation put

T = {tlt = a. + .a

3 41 is solvable for some il,
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and

R o= 1im sup TEL Lo Tiniine ZUE
X e * P *

3.1. The largest possible value of R is 2/3.

More precisely, if limnsup H{n) = =, then
i) > (2{Dn- #ln)

can be attained for infinitely many n by a suitable

permutation, but for any permutation
rin) = {2/3n = -w,

Moreover F=2/3 implies r=0.

3.2. The largest possible value of r is 1/2.
More precisely rT(n) = [(n-1)/21 can be attained (e.q.
by the identical permutation), but (a) < [nf2]1 must
hold for infinitely many =n for any permutation. More-
over, r=1/2 implies gr=1/2.

3.3. In general

- REZ“EE} )
Y-2ZR
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The attractive conjectures

I
—

3p + » £ 2, B+ r and Rr = 1/4

satisfied by the extremal permutations are false:

3.4, For suitable permutations we have

3R +-» = 2,134, B+ r 2 1,10l8 and

Rr = 0,;257.

{On the other hand 3.3. assures that

38 + r £ 2,236, R+ r & 1y042 and

Br =< 0,270

hold for any permutation.)

In [4] the fipite case and the generalization for

more than two terms is considered as well.
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