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1. Throughout this paper, we use the following notations:

¢ €, €z, ..., Xg, Xy, ... denote positive absolute constants. We denote the number
of the elements of the finite set S by |S|. We write ¢* =exp (x). v(n) denotes the number
of the distinct prime factors of n. We denote the least prime factor of n by p(n), while
the greatest prime factor of n is denoted by P(n).

Let A be a finite or infinite sequence of positive integers a; <da, < . ... Then we write

N (x)= Z L,

ae A
asx

fA(X)= Z !y

ag A
asx

dfn)= > 1

aeA
ain

(in other words, d ((n) denotes the number of divisors amongst the a,'s) and

D (x)= max d,x).
1=nsx

The aim of this paper is to investigate the function D (x). Clearly

(1) Y dn)=xfdx)+O0(x).

l=nsx
One would expect that if N (x)— + oo then also

Do) _

@ ki
} x-}Tw f;{{x)
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(2) is trivial if f,(x)<C thus we can assume

(3 fax)— + .

The special case when

@) (@,a)=1 for all 1<i<;j

was posed as a problemin [2]. Furthermore, we guessed there that condition (4) can be
dropped, in other words, (2) holds for all infinite sequences. To our great surprise, we
disproved (2); Section 2 will be devoted to the counter-example. On the other hand, we

log 1 -3
prove in Section 3that lim inf N (x) (xlg&) > ¢, implies (2). We believe that
x=+ 1w og X

also the weaker condition f,(x) (log log x)~ ! — + co implies (2). We hope to return to
this question in a subsequent paper.
Furthermore, we prove in Section 3 that (3) implies that

. D (x)
1 =
© A7

Perhaps
lim  sup D (x)/f ((x)"' ~Moes¥) = 4 o0

Xx—++

also holds; we will return to this problem in Part II of this paper. In Section 3, we prove
several other theorems concerning various sharpenings of (2) and (5).

Theorem 1. There exist positive constants c,, ¢, and an infinite sequence A of positive
integers such that for an infinite sequence x, <x, < ...<Xx,<... of positive integers we
have

(6) fd(xi) a1 Cz log log Xy
and
D {x)
) :
2 Salxi) =6

Proof. We are going to construct finite sequences satisfying inequalities
corresponding to (6) and (7) at first.

By a theorem of Harpy and Ramanusan [5], there exist positive constants § and X,
such that if x> X then uniformly for all ﬁg_p < x, the conditions b<y and v(b) <

<2 log log x hold for all but 3
(log x)

integers b. (See also [1].)

&
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For any positive integer x =10 and for 1 < j<(log x)*2, let Bj(x) denote the set of
those integers b for which

X X
— <bg —

(ii) p(b) > 2/,
(ii1) u(b)#0
and
(iv) v(b)<2log log x

hold and let
B(x)= |J Bjx).

15is(log xy*

We will show that there exist constants X, and ¢, such that for x= X,, we have

1
(8) Yy - >cqloglogx
he Bix)
and
©) Dg.fx)<2loglog x.

By using standard methods of the prime number theory (see e.g. [3] or [4]), it can
be shown easily that there exist constants ¢ and X ; such that if x > X, then uniformly

for all y and z for which \/; <y and z< 219" the number of the integers b satisfying
the conditions y <b <2y, p(b)>z and u(b)+0 is greater than

1 1 ¥
Csy 1——) (l——)>c .
; ,,Il( P ,,11 p?) " Clogz

Thus for x > X4, the number of the integers b satisfying (i), (ii) and (iii) (for fixed j) is
greater than

x/2 x
— =7
“lg2 P

uniformly for 1<j=(log x)*2.

On the other hand, by
X X X
3 2 o > 7= =V

x
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the definition of J yields that for x> X, (iv) holds for all but

x/2i~1 X

(logx)® 2~ L{log x)°

of the integers b satisfying (i).
Thus for x= X,, we have

X X X 2 g x
B-x)i>c—,——.——=c—.(l—— ):»c—
1B Tl 2itlogx)® 2 ¢, (logxy) ~ %2l

for all 1< j<(log x)*?, hence

1 1 1
2 b= 2 5 2 X b3 P
be Bix) 15j<(log x}? be Bj(x) 1gjS(logx? beByx) X
J—=1 1
= Y |Bjx) > ) ey >colog(log x)°?>c;plog log x
15/ (log x)¥? X 1) S (log 2

for x> X s which proves (8).
In order to prove (9), note that if

bju=b,v<x

for some positive integers b, € B(x), b, € B(x), u, v, and b; < b, then by the construction
of the set B(x), we have
TOATHL O
— ZU=—Uv>v
U= %, =5,

b
thus (b, v)=1 and b, = ivazv, hence b,/b,. Thus if n<x, and b, <b,<...<b,
uy

denote all the positive integers b; such that b;e B(x) and b;/n then
(10) by/by/. . ./b,

must hold. By the construction of the set B(x), we have

(11) ub,)#0
and
(12) v(b,)<2loglog x.

(10) and (11) imply that
wb)<wby)<...<wb)
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thus with respect to (12),
dpn)=r=v(b,)<2loglog x
for all n<x which proves (9).

Finally, let x,=max {10, [X,]+1} and x,=[exp {exp(expx;-,)}]+1 for
k=2,3,...,and let

A= [ B(xy).
k=1
Then by (8), we have
1 1
(13) falxd= Y -2 Y —>c,loglogx,
aeA ae Bx,)

for k=1, 2, ... which proves (6).
Furthermore, (9) yields that for k=2, 3, ... and n< x,, we have

k k-1
A< Y dpofn)= Y dpfn)+dp, n)<
i=1 i=1
k-1
S Y ) 14Dgyfxd< Y 1+2loglogx,=
i=1 beBx) bsx,_,

=x,-1 +2log log x, <log log log x, + 2 log log x, < 3 log log x,
hence

(14) D (x;)<3 loglog x; .

(13) and (14) yield (7) and the proof of Theorem 1 is completed.
We note that we could sharpen Theorem 1 in the following way:

Theorem 1'. There exists an infinite sequence A of positive integers such that for an
infinite sequence x, <X, <...<X.< ... of positive integers we have

(6) lim inf A
ket € 'loglog x,
and
D
@ lim sup ) _
k— + xk)

where y denotes the Euler-constant.

Note that (7') is best possible as (1) shows.
In fact, Theorem 1’ could be proved by the following construction:
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Let x, be a large number, and for k=2, 3, . . ., let x, be sufficiently large in terms of
k and x,_,. For k=1, 2, ..., let B(x,) denote the set of those integers b for which

(i) xi?<b<x,,
Xk

b
(ii1) u(b)#0,

(i) p(b)>

(iv) v(b) < (1 - ;{) log log x, ,

(v) if the prime factors of b are p; <p, < ... <p, then p;», >p,p,...p; holds for
2
less than (1 + ;)e“’ log log x, of the integers 1<i< v(b).
Finally, let

k=1

R

It can be shown easily that for this sequence A, we have

D
(15) fi: S A 1

oy g e "loglog x;

A

Combining the methods of probability theory with Brun’s sieve (see e.g. [3] or [4]) it
can be proved that also (6') holds. However, this proof would be very complicated; this
is the reason of that that we have worked out the weaker version discussed in Theorem
1. (1), (6" and (15) yield also (7).

Theorem 2 If
(16) lim f(x)=+
then we have
| =1
(17) lim sup D (x) (—c’g—x—) >1
S, log log x

Note that this theorem is best possible as the sequence A consisting of all the prime
number shows.

Proof. We are going to show at first that (16) implies that for all ¢>0, there exist
infinitely many integers y such that

Y

'[18) NA(y)')" W
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In fact, let us assume indirectly that for some £>0 and y> yo(e) we have

y

NS g =

Then partial summation yields that for x— + o0 we have

_ S NO-NL-1 2 11\ N
Jd0= %— Z - yZ N4 |- y+1)+ o
X N NA(xl ( . y!(logy)”‘) (x/(log x)‘”)
o 0 =
Lo+ s ) * P

% 1 1
-0 (E; Wiog y)’ ) s (uogx:‘ ) e

in contradiction with (16) and this contradiction proves the existence of infinitely many
integers y satisfying (18) (for all ¢>0),
Let us fix some £>0 and let y be a large integer satisfying (18). Put

X=1]a.

ae A
agy
Then
X g n y:yNA{}'J
aeA
asy
hence
(19) log X SN (y)logy,

and for large y, we have

log X= ) loga= ) loga>
aeA ae A
asy 3=asy

> ), log3=(Ny)—N,2)log 32(N()—2)log 3> N )
ag A

3gasy
thus by (18),

(20) log log X >log N (y)>log >(1—¢)logy

"
(log y)' **
for sufficiently large y.
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(19) and (20) yield that

log X logX log X
(21) Nz E; > =(1—¢) loglog X -

——loglog X
1—¢

Furthermore, we have

(22) D(X)zd(X)= } 1ZNy)

asA
alX

since X =[] ais divisible by all the N (y) integers a satisfying ac 4, a< y.

ae A
asy

(21) and (22) yield that

log X
DX)>(1—&) ———.
AX)>( 8)]0glogX

For all ¢>0, this holds for infinitely many integers X and this proves (17).

Theorem 3. If x> X, and
x log log x

(23) N (x)>5
log x

then there exists a positive integer X such that

(24) < X <exp(x)
log x
and
d (X) 1 logx )
25 - N :
(25) log X >exp (20 5 Ax)

Note that by (23) and (24), the right-hand side of (25) is

11
exp (g % NA(x)):-exp (log log x)=log x >loglog X —» +

as x— +o0.

Theorem 4. If A is an infinite sequence such that

logl =
26) lim inf N (x) (M) i
2o +m log x
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then we have

D
(27) s A
sy JOEOE
Note that for large x, we have
1 1
(28) fdx)= ) -< Y —<2logx
aed asx a
aEx
thus (25) implies that also
lim D (x) el
x— +a fA(x)

holds.
We are going to prove Theorems 3 and 4 simultaneously.

Proof of Theorems 3 and 4. Assume that x > X, and for a finite or infinite sequence A,
we have

loglo
(29) NA)>5 2 OB OBX
log x
Let t be a real number such that
5 1lo
(30) —loglogxglogrg—ﬂN,t(x].
4 4 x
Then obviously, we have
1 log x 1
logts - ———x=—
og s ot X 4lc:vg X
hence
(31) r<x'*,

X
Let A* denote the set of those integers a for which a€ 4, a £ x and P(a)> 3 hold.
It is well known that

1 1
(32) Z —=loglogy+c“+0(1—).

Py OBy

(30), (31) and (32) yield that

Y1 § Y 1=

lsngx xfi<pEx 1En=x
Pin)>x/t pin

= Hé 3 £=x(zl_zl)=

xft<psSx p xf1<psx P pP=x p pExi p
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(33)
1 1
= e O log x/t -
fions sl
logt
L T WL +0( = )43x&
log x log x log x log x e
since
+ 0 o y 2 f 0 .
o4 P s - =gy LY o=y
og( y) t;[ X < tglyl [_y y lor y 2
and
. logt 1
logx 4

by (30) and (31).
(30) and (33) yield that

1
AMZN 09— ¥ 1=NA(X}(]_N_,l(inE 1)=

lsnEx Zn<x
Pin)>x/t P(n) = xjt

(34)

log x log x log t) 1
=N 1— 1]>N 1— -3 =-N :
"(x’( 4xlog t ,gsx ) "(x}( Bl lags) AR

Pin)=>x/t

Let us denote the least common multiple of the elements of A* by X. Then with
respect to (34), we have

1
(35) dAX)zd X)=|A%> ZNA(X)-
Furthermore, if a e A* then a<x and P(a)< x/t thus we have

I p=xijt

hence

X/ I—.[ p[logx,."logp]

I p=xft

which implies that

(36) X< n pllogxfloerl < p l'l = x™x0

pxt pSxft
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Using the prime number theorem or a more elementary theorem, we obtain from (36)
with respect to (31) that

log X < nlx/t) log x <2 —

)'{
: log x=
','"r ExX=

log x/t
(37

X 8 x
29 > fagre
= log (x/x'™) X< 37

In order to deduce Theorem 3 from the construction above, assume that A satisfies
the conditions in Theorem 3, and put

11
(38) o= 2 —2 ).
4 x

Then by (23), we have
1 ]ogx'sx]oglogx 5

logt> — = -logl
39) R 5% 4Iog ogx,

while the second inequality in (30) holds by the definition of t. Thus by (23),(35).(37) and
(38), the construction above yields the existence of an integer X such that

ddX) N4/ 3 Nt 3 Nx) I_longA( B
g X > BBt -2 x — 3 x OP\3 T NAN=
1 logx 3 Nx)
—cxp(j4 —x—N,.(x]Jrlogﬁ )>
1 logx 3 Sloglogx
N e S e
>CXP(4 X Ax)+log 32 log x >

X

1 log x 1 xloglog x)
et 1—-4- . >
we {4 X NAx) ( N (x) logx

T e
X

Finally, by the definition of X and with respect to (23) and (34), we have

11
>exp(3- R N,,(x)—loglogx)>

Xgmaxagpm;lNA(x)}l_SXIOSlogX x ‘
4 4 log x log x

ae A*
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while (36) and (39) yield that

X <exp §-f <exp g—x-— <exp(x)
3t 3 (log x)>'*

and this completes the proof of Theorem 3.
In order to prove Theorem 4, assume that an infinite sequence A satisfies (26) and
let y be a large number; we are going to show by using the construction above that

D
A(yr) is large. Define x by

log y

1
x= 3 log y(log log ') i

and put t=(log x)**. Then for sufficiently large y, (29) holds by (26). Furthermore,

1log x >llogx.5xlog!ogx 5
4 x 4 x logx 4

loglog x=log ¢

thus also (30) holds. The construction above yields the existence of an integer X such
that (35) and (37) hold. We obtain from (37) that

5/4
X <exp (% ?) =exp {g : % :og yloglog y) 5“} <
(Iog (3 log wlog log y}sf“))

9 (loglogy)*™*

8 log y (log1 S ,
{ex( g y (loglog ) )=y349{y,

thus with respect to (29) and (35), we have

DAy) _ ddX) 5 N (x)/4 g 4 xloglogx
logy ~ logy = logy ~ Slogxlogy

1 1
Elog y(log log y)** log log (glogy (log log y)s"‘)

(40) =

hil &

>
1
log (5 log y (log log y)’“) logy

_ 4 (loglog y)**loglog log y

2
Z (log log )V 1
15 2log log y > {5 loglog y)""* logloglog y

which completes the proof of Theorem 4.
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Theorems 3 and 4 are best possible (except the values of the constants on the right
hand sides of (23) and (26), respectively) as the following theorem shows:

Theorem 5. There exists an infinite sequence A of positive integers such that

loglog x\
(41) lim inf N ,(x) (x—ﬂf) >1
x—++x logx
and
(42) d 4x)Zlog x
for all x.

Proof. Let A consist of all the integers a of the form a = pk where p is a prime number
and 1£k<log p. Then by the prime number theorem (or a more elementary theorem)
and (32) we have

xi=3 3 1= ) 12

ae A p=x 1ZkZminflogp, x/p| x =
asx logx=2loglogx

2 T (Go)=(zg- T g)eo(as)-

X < o £
fog x—2log log x <p=x J"slo.gx—Zloglog.

=x| loglog x —log log s +OL +0 X Y=
log x —2 log log x log x log x

=—x]og(l—-IOg(IOSX_ZIOgIng +O( x )=
log x log x

-

=“+0m]xlog(logx~210glogx) +0( x )=(1+0(1}}
log x log x

x log log x
log x

which proves (41).

Let x =2 be an integer and let x=py p3:... p*~ where p, <p; < ... <p, are prime
numbers and «,, a5, . . ., &, are positive integers. Fori=1, 2, .. .,r, let S; denote the set
of the integers a for which a € 4, a/x and P(a)= p; hold.

By the definition of the set A, a € §; implies that a can be written in the form a=pk
where 1 £k <log p;. Thus obviously, we have

ISis Y  1Zlogp
‘Isk<log p;

12
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hence " p
ddr= Y 1= Y ¥ 1= |§|5 } logpi=
aeAd i=1 geA i=1 i=1
afx daix
Pla)=p;

=log(f[ p,-) élog(f[ p?f) <logx

i=1 i=1

and this completes the proof of Theorem 5.
Theorems 2 and 3 imply that

Theorem 6. If
m f(x)=+ o
then we have o
5 D (x)
(43) lim su -
x=+x J fx)
Proof. Assume at first that
. )= ( log x )
2e Ax)=0 loglogx /)’
We have
log x

DAx) Dfx) log log x
fdx)  logx fax)
log log x

s 3
Here the first factoris = 5for infinitely many integers x by Theorem 2, while the second

factor tends to -+ oo by (44) which implies (43).
Assume now that

45) lim sup—@-}—- >0.
X+ log x
log log x

We are going to show that this implies that there exist infinitely many integers x
satisfying

x log log x
(46) N {x)>5 “Sgr
Assume indirectly that for x > X, we have

x log log x

<
N Jl(x) = 5 log X
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Then partial summation yields that

1 N -Ny-1) 1 1 NAx)
A= E‘— = Ex————-——y = EINA(_V) e 1) S
asx
N Ay) NAX} N4 ) (x)
E l l < Z AJ’ N4 _
}Sxy(y+ ) X+ ySx y X
_O(Z log logy) +O(log Iogx)_‘o«mg fogath
yzx yiogy log x $

in contradiction with (45) which proves the existence of infinitely many integers
satisfying (46). By Theorem 3, this implies that

47) lim sup: Dix)

x—++oo ng

= + 00.
Obviously, we have

1 1
fdx)= Z -=< Zawlogx

ae A asx
asx
thus
(48) B it i
X+ + o JA4 x)
(47) and (48) yield that
AxX) D,.{x) logx

lim su = lim su
ot PR ot Plogx Fi0)

and this completes the proof of Theorem 6.
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