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1. Throughout this paper, we use the following notations: 
G Cl,CZ, * * ., X0, X1, , . . denote positive absolute constants. We denote the number 

of the elements of the finite set S by (SI. We write r?=exp(x). v(n) denotes the number 
of the distinct prime factors of n. We denote the least prime factor of n by p(n), while 
the greatest prime factor of n is denoted by P(n). 

Let A be a finite or infinite sequence of positive integers aI < a2 < . . . . Then we write 

(in other words, d,(n) denotes the number of divisors amongst the q’s) and 

DA(x)= max d,&) . 
14n(x 

The aim of this paper is to investigate the function DA(x). Clearly 

(1) c dA@) =xfA(x) + qx) 
16n$x 

One would expect that if NA(x)+ + CO theh also 

ljm w=+m X’ + 6) .fAb) . 
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(2) is trivial if &(x) K C thus we can assume 

(3) fA(Xb + 52. 

The special case when 

(4) (Ui, Uj)= 1 for all 1 s i <j 

was posed as a problem in [2]. Furthermore, we guessed there that condition (4) can be 
dropped, in other words, (2) holds for all infinite sequences. To our great surprise, we 
disproved (2); Section 2 will be devoted to the counter-example. On the other hand, we 

prove in Section 3 that lim inf NA(x) > c1 implies (2). We believe that 
x-r+02 

also the weaker condition j”(x) (log log x)- ’ --+ + co implies (2). We hope to return to 
this question in a subsequent paper. 

Furthermore, we prove in Section 3 that (3) implies that 

(5) 
DA(X) lim supfAo =+a. 

X’+oC 

Perhaps 

lim sup DA(x)IfA(x)(l--E)lOgfA(x)= + CO 
X’fao 

also holds; we will return to this problem in Part II of this paper. In Section 3, we prove 
several other theorems concerning various sharpenings of (2) and (5). 

llmrem 1. There exist positive constants c2, c3 and an infinite sequence A ofpositive 
integers such that for an infinite sequence x1 <x2 < . . . <x,, c . , . qf positive integers we 
have 

(6) f&k) ’ % log log xk 

and 

Proof. We are going to construct finite sequences satisfying inequalities 
corresponding to (6) and (7) at first. 

By a theorem of HARDY and RAMANUJAN [5], there exist positive constants 6 and X, 
such that if’x>X, then uniformly for all fisusx, the conditions b_ly and v(b)< 

<2 log log x hold for all but J’ ___ integers b. (See also Cl].) 
mt XT 
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For any positive integer x 2 10 and for 1 s;.jS(log x)&“, let Bj(X) denote the set of 
those integers b for which 

(ii) p(b) > 2j, 

(3 Ab) $0 

and 

(iv) v(b) ~2 log log x 

hold and let 

We will show that there exist constants Xz and cq such that for x 1 X2, we have 

(8) 

and 

1 
c b >c,loglogx 

be B(x) 

(9) D&x) < 2 log log x . 

By using standard methods of the prime number theory (see e.g. [3] or [4]), it can 
be shown easily that there exist constants cs and X3 such that if x > XJ then uniformly 
for all y and z for which ,,,& -C y and z 5 2(‘- x)d’z, the number of the integers b satisfying 
the conditions y 5 b s 2y, p(b) > z and p(b) # 0 is greater than 

Thus for x>X3, the number of the integers b satisfying (i), (ii) and (iii) (for tixedj) is 
greater than 

x/2’ X 

c6 log =c7j$ 

uniformly for 14 j 5 (log x)6’2. 
On the other hand, by 
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the definition of 6 yields that for x>X,, (iv) holds for all but 

x/2j-' X 
-= 
(log x1* 2'-'(log xy 

of the integers b satisfying (i). 
Thus for x2X,, we have 

X 
JBj(X)l >C7 7 - 

X 

j2' 2J- ‘(log x)6 > 
>c,$. 

32’ 

for all 15 j 5 (log x)~‘~, hence 

lgj6(log~)~!’ be&x) 

for x > X5 which proves (8). 
In order to prove (9), note that if 

for some positive integers b, E B(x), b2 E B(x), u, u, and b, < b2 then by the construction 
of the set ax), we have 

thus (b,, u)= 1 and b, = 9 I b,v, hence bl/b2. Thus if nsx, and bl < bz <. . . <b, 
u , 

denote all the positive integers bi such that bi E B(x) and bJn then 

b,lW. . . lb, 

must hold. By the construction of the set B(x), we have 

(11) 

and 

(12) 

Ab,) # 0 

v(b,)<2loglogx. 

(10) and (11) imply that 
v(b,)<v(b,)< . . . <v(b,) 
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thus with respect to (12), 

d&n) = r $ v(b,) -c 2 log log x 

for all nix which proves (9). 
Finally, let x1 = max { 10, [x2] + 11, and xk = [exp {exp (exp xk _ ,)).I i- 1 fOI’ 

k=2, 3, . . ..andlet 

A = +u” B(Xk) . 
k=l 

Then by (8), we have 

(13) 

for k=l, 2, . . . which proves (6). 
Furthermore, (9) yields that for k=2, 3, . . . and 11Sxk, we have 

k-l 

I c 1 l+DB&,,< c 1+2loglogx,= 
i=i be&J b$c,-, 

hence 

(14) DA(&) < 3 log log xk . 

(13) and (14) yield (7) and the proof of Theorem 1 is completed. 
We note that we could sharpen Theorem 1 in the following way: 

Tluwem 1’. There exists an infinite sequence A of positive integers such that for an 
infinite sequence x1 <x2 < . . . < xk < . . . of positive integers we have 

WI 

and 

lim inf 
k++m es’ log log xk 

(7’) lim sup- DA(Xk) = 1 

k-r+m f&k) 

where y denotes the Euler-constant. 

Note that (7’) is best possible as (1) shows. 
In fact, Theorem 1’ could be proved by the following construction: 
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Let x1 be a large number, and for k = 2,3, . . . , let xk be sufficiently large in terms of 
k and xk-1. For k=l, 2, . . ., let B(x,) denote the set of those integers b for which 

(i) xi/’ <b<Xl,, 

(ii) p(b)> 2 
b’ 

(iii) d-4 # 0 , 

(iv) v(b) < 

(v) if the prime factors of b are p1 <p2 < . , . -cP~(~) then pi+ 1 >pIp2. . .pi holds for 

less than 

Finally, let 

P-? log log xk of the integers 1 s is v(b). 

A = +fi B(Xp) . 
k=l 

It can be shown easily that for this sequence A, we have 

(15) lim sup _ 
DA(xk) < 1 

k++oc f? ‘loglog& = . 

Combining the methods of probability theory with Brun’s sieve (see e.g. [3] or [4])it 
can be proved that also (6’) holds. However, this proof would be very complicated; this 
is,the reason of that that we have worked out the weaker version discussed in Theorem 
1. (l), (6’) and (15) yield also (7’). 

Theorem 2 If 

(16) 

then we have 

lim fA(x)= + 00 
x*+-X 

lim sup DA(x) 
X’+CC 

Note that this theorem is best possible as the sequence A consisting of all the prime 
number shows. 

Proof. We are going to show at first that (16) implies that for all E >O, there exist 
infinitely many integers y such that 

(18) 
Y 

NAy)’ (log y)l fC ’ 



Ccneraliztd divisor functions I 

In fact, let us assume indirectly that for some E>O and y>yO(&) we have 

171 

N,(Y)2 y (log y)’ +E . 

Then partial summation yields that for x+ + 00 we have 

= ,g, -g$ + s =. i Ynlo;y)‘+E 

( p=1 

) +*(N(lopxx)~“) = 

/x 
=O \ E, y(lody)l +c ) +o((log~)l+.) =0(l) 

in contradiction with (16) and this contradiction proves the existence of infinitely many 
integers y satisfying (18) (for all E >O). 

Let us fix some E>O and let y be a large integer satisfying (18). Put 

Then 

hence 

(19) log x 5 N/j(Y) log y 7 

and for large y, we have 

logX= c loga c loga> 
UEA ClfA 
a$v 3sasJ 

> aFA log 3 =tNA(y) - N,(2)) log 3 2 (NAfd - 2) log 3 > NAb’) 

394y 

thus by (18), 

(20) l~~~“gXz~~gNA(~)~l~~~logI;)~+i >(l-&)logy 

for sufficiently large y. 
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(19) and (20) yield that 

1% x > 
N,(Y)2 - 

log x 
=(l -E) 

log x 
(21) 

1% Y & log log x 
log log X . 

Furthermore, we have 

(22) DA(X) 2 dA(X) = 1 12 N,(Y) 
aca 
4X 

since X = n a is divisible by all the NA(y) integers a satisfying a E A, a 5 y, 
UEA 
fJSY 

(21) and (22) yield that 

DkX)>(l-E) log x 
. log log x 

For all E>O, this holds for infinitely many integers X and this proves (17). 

Theorem 3. If x > X0 and 

(23) NA(X) > 5 
x log log x 

log x 

then there exists a positive integer X such that 

(24) 

and 

(25) 
dA(X) 

. 
log x 

Note that by (23) and (24), the right-hand side of (25) is 

exp(i% ) NA(x) > exp (log log x) = log x > log log X + + a) 

as x++co. 

l’be~mm 4. If A is an infinite sequence such that 

(26) lim infArA(x)(X’~~gl~X)-1>5 
x-+00 
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then we have 

(27) 
lim DA(X) -=+co. 

X’fcc logx 

Note that for large x, we have 

thus (25) implies that also 

holds. 

lim DA(X) = + m 
x-+x Lb) 

We are going to prove Theorems 3 and 4 simultaneously. 

Proof of Theorems 3 and 4 Assume that x > X0 and for a finite or infinite sequence A, 
we have 

(29) 

Let t be a real number such that 

(30) 

Then obviously, we have 
1 logx 1 

log ts - ~ x= -1ogx 
4x 4 

hence 

(31) tsx”4. 

Let A* denote the set of those integers a for which a E A, n s x and P(a)> f hold. 
It is well known that 

(32) E$ =loglw+c*~+O(&). 
(30), (31) and (32) yield that 
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(33) 

=X 
I( 

lo~lo~x+cll+~(~))-~o~lo~x/t+c*l+O(~))}= 

=-xlog(l- !E) +0(&) <2x$ +0(k) <3X% 

since 

and 

-1%(1-Y)= y i < y y”= -$-j <2y for *<i< I, 
k=i k=l 

()< bst <’ 

logx 4 
by (30) and (31). 

(30) and (33) yield that 

(34) 

( 

log x 
=NA(X) 1 - ___ 

c > 4x*ogt 16n<x 

1 >N,(x)l-- 

( 

bx .3x bt 
~ = 

4x log t log x > 
; NA(X) ’ 

Rn) >xit 

Let us denote the least common multiple of the elements of A* by X. Then with 
respect to (34), we have 

(35) dA(X)LdAI(X)=(A*( > f NA(x). 

Furthermore, if a E A* then a%x and P(a)sx/t thus we have 

x 
I 

n pcwl~~Pl 

1 &x/t 

which implies that 

(36) 
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Using the prime number theorem or a more elementary theorem, we obtain from (36) 
with respect to (31) that 

(37) 

log x 2 Ix/t) log x < 2 
x/t 

---logx5 
log x/t I 

52 
X 

t log (x/x”4) 
logx= ;;. 

In order to deduce Theorem 3 from the construction above, assume that A satisfies 
the conditions in Theorem 3, and put 

(38) 

Then by (23) we have 

logr= - : F N,.+(X). 

(39) 1ogr> -__ 1 logx.5 x log log x 

4 x log x 
= ;loglogx, 

while the second inequality in (30) holds by the definition oft. Thus by (23), (35), (37) and 
(38), the construction above yields the existence of an integer X such that 

dA(X) N/Ax)/4 3 N,(x)t 3 NA(x) 
~ > -=- .- = -.- 
log x 8xf3t 32 x 32 x 

exp N,(x))= 

zexp 
3 

N,(x)+logE. 
5loglogx > 

log x > 

1 logx 
>exp 4.X NA(x)-loglogx 

> 
> 

>exp $} =exp($-~iIr~(x)). 

Finally, by the d&&ion of X and with respect to (23) and (34), we have 

1 xloglogx 
XLmaxaLjA*I> iNA( 4.5 

x 

log x 
> 

EA’ log’ 
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while (36) and (39) yield that 

and this completes the proof of Theorem 3. 
In order to prove Theorem 4, assume that an infinite sequence A satisfies (26) and 

let y be a large number; we are going to show by using the construction above that 
DAM 
- is large. Define x by 
1% Y 

x = flog y(log log y)5’4 

and put t =(log x) 5’4 Then for sufficiently large y, (29) holds by (26). Furthermore, . 

1 logx’ 
;+v,(x)>--.5 

x log log x 

4 x log x 
= ~log*ogx=logt 

thus also (30) holds. The construction above yields the existence of an integer X such 
that (35) and (37) hold. We obtain from (37) that 

log y (log log Y)~‘~ 

(log log y)5’4 > 
= 8/9<y, 

y 

thus with respect to (29) and (35), we have 

DA(Y) > h,(X) > N,(x)/4 > 4 x log log x 
logy = logy 1% Y 5 logxlogy = 

(40) 

4 ; logy (log log y)5’4 log log 
( 
flog y (log log y)5’4 

> =- 
5 

> 

log 
( 
f log y (log log y)$“4 

> 
log y 

> 4 (log log y)5’4 log log log y 2 

15 2 log log y 
> 15 (log log y)“4 log log log y 

which completes the proof of Theorem 4. 
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Theorems 3 and 4 are best possible (except the values of the constants on the right 
hand sides of (23) and (269, respectively) as the following theorem shows: 

Theorem 5. There exists an infinite sequence A qfpositiue integers such that 

(41) 

(42) 

for all x. 

d,(x) s log x 

Proof. Let A consist of all the integers a of the form a = pk where p is a prime number 
and 1 SkSlog p. Then by the prime number theorem (or a more elementary theorem) 
and (32) we have 

( X 

=x log log X -log log 
logx-210glogx +G)> ‘“(k-g= 

=-xlog l- ( log (log x - 2 log log x 

log x 
+o x = 

( 1 log x 

=u i-41)) 
x log (log x - 2 log log x) 

log x 
+o A-- 

( ) log x 
=(I +o(l))xl;~;~x 

which proves (4 1). 
Let ~22 be an integer and let x =pf~pp. . .pF where p1 <pz < . . . <pr are prime 

numbers and a,, a2, . . . , a, are positive integers. For i = 1,2, . . . , I, let & denote the set 
of the integers a for which a E A, a/x and P(a)=pi hold. 

By the definition of the set A, a E Si implies that a can be written in the form a = pik 
where 15 k 2 log pi. Thus obviously, we have 

12 
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d,(X)= 1 I.= i C l= ;I: lSjj=< i lOgpi= 
DEA i=l OEA i= 1 i=l 

a/x (I/x 

44=p, 

and this completes the proof of Theorem 5. 
Theorems 2 and 3 imply that 

lkwem 6 Zs 

then we have 

lim fa(x)= + DO 
.V-r+m 

(43) 
DA(X) 

lim sup==+ccI. 
X’+m 

Proof. Assume at first that 

(44) 

We have 
log x 

DAM DA(x) log 1% x 

___ = log x * fA(X) ’ fA@) 

log log x 

Here the first factor is 1 i for infinitely many integers x by Theorem 2, while the second 

factor tends to + cc by (44) which implies (43). 
Assume now that 

(45) lim sup 
Lib4 ,* 

x-4-m logx . 

log log x 

We are going to show that this implies that there exist infinitely many integers x 
satisfying 

146) NAb) > 5 
x log log x 

logx - 

Assume indirectly that for x > X0 we have 

NA(X) s 5 
x log log x 

logx . 
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Then partial summation yields that 

+ NA(x) -= 
x+1 

in contradiction with (45) which proves the existence of infinitely many integers 
satisfying (46). By Theorem 3, this implies that 

(47) 

Obviously, we have 

DA(x) lim sup- 
log x 

=-l-Co. 
.X++cO 

thus 

(48) 

(47) and (48) yield that 

lim infe > 1 , 
x-+ +a0 h(x) = 

Da(X) lim sup .lcAo = DA(X) 1% x lim sup-m- 
log x f”(X) 

=+a 
X’+E x-,+* 

and this completes the proof of Theorem 6. 
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