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1. Introduction

In earlier papers [1, 2, 3] we discussed sets & with the Euclidean Ramsey
Property, ERP, that is sets S in a Euclidean space E° with the property that
for every r there exists an N = N(r,s) so that in every r-coloring of E- with
m > N, there exists a monochromatic set S' congruent to S. We proved [1] that a
necessary condition for the Euclidean Ramsey Property is that S is a finite subset
of a sphere. More generally, if S5 has a k-chrometic congruent copy in all
r-colorings of sufficiently high dimensional Euclidean spaces (we call this property
k-ERP) then S must be embeddable in k concentric spheres.

In this note we describe some sets which have this k-ERP but not the
(k-1)-ERP. In the process it is useful to consider simplicial colorings of a
Euclidean space, that is cllorings which simultaneously color each set of congruent
£-tuples of E" in'a fixed number of colors.

1.1 Definition. A finite set 8 in E" has simplicial ERP if for the colorings
of the sets congruent to the subsets of 8 with a fixed number of colors there
exists an N =so that for all m> N there is a set &' ¢ Em congruent to 5 so

that all its congruent subsets have the same color.

2. Direct consequences of Ramsey's Theorem

2.1 Theorem. The regular simplex Sn has the simplicial ERP.

With the help of Theorem 2.1 we can construct a variety of point sets with the
exact k-ERP, that is k-chromatic but not (k- 1l)-chromatic congruent copies exist
in every high-dimensional r-colored Euclidean space. For example we have the
following.

2.2 Corollary. Let 0 < i < i, g0 g i, <n -1 and let P, denote the set of

centroids of the i-subsimplices of a regular simplex Sn. Then the set
Bi= Pi 8] Pi [IEEEEINY Pik has the exaet k-ERP. The coloring can be chosen so that
1 2

each Pi < 8 has a monochromatic copy.
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Proof. The fact that S5 has the k-ERP follows directly from Theorem 2.1
where each Si is given the color of its centroid. It is easy to see that the con-
centric spheres which contain P. and whose center is the centroid of S consti-
tute a minimal set of concentric gpheres containing S. Thus S does not have the
(k- 1)-ERP.

The examples of Corollary 2.2 by no means exhaust the possibilities of applying
Ramsey's Theorem to the Euclidean case. These possibilities exist whenever we have
a highly transitive group of isometries (i.e. either the alternating or the symmet-
ric group) acting on a family of subsets of a large set. TFor example, we can
restrict attention to the isometries of a regular n-simplex Sn which keep some
sub~-simplex Si fixed and then we can color the sub-simplices Sj o Si by the

color of any point in the (i+ 1l)-plane through Si and the centroid of Sj'

o = = -
2.3 Example. In the case Si SO and Sj Sl we get a set with the exact Z2-ERP
by picking the vertices of two regular n-simplices which have one common vertex and
whose edges through that vertex are collinear. We can pick the ecoloring so that the
vertices of one simplex are monochromatic and the remaining vertices are monochroma-

tic. The illustration shows the case n = 2.

The same reasoning can be applied to a rectangular solid with a large number of
congruent sub-boxes through a common sub-box. We illustrate it again by picking
edges through a vertex. We then can get a set with the exact 2-ERF by taking the

vertices of a cube and, say, the midpoints of the edges through one vertex.

There was no need to color the sub-simplices or sub-boxes in terms of the

colors of single points.

2.l Example. The set of vertices of a regular (unit) n-simplex together with the
points that divide the edges incident to one vertex into consecutive segments of

length Xya¥pse Xy o starting from the common vertex have the k-ERP.
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We can only prove that this set does not have the (k-1)-ERP when none of the
division points are symmetric about the centers of the edges,

2.5 Example. The vertices of a cube together with the points that are one third
and one half the length along the diagonal of a 2-face from a fixed vertex have
the exact 3-ERF.

1 L

We give one final example, applying Theorem 2.l where we color the edges of an

n-gimplex according to the (unordered) pair of colors of its trisecting points.

2.6 Example. The vertices of an n-simplex plus the trisection points of its edges
have the 3-ERP. This point set lies in the union of two concentric spheres. It

therefore does not have the ERP but we cannot prove that it does not have 2-ERP.

Incidentally, this shows that the vertices of every equiangular hexagon with alter-
nate sides of equal length has the 2-ERP.

We note that there are essentially two different arrangements possible for the
colorings in Example 2.6, the one shown above, and the following "cyclic" arrange-

ment:
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By considering oriented segments we can guarantee that the first of these
oceurs. Let all the unit segments be ordered, and color them according to the
ordered sequence of endpoints and trisection points. By considering a large simplex
(in & high enough dimensional space) we actually have & large tournament with the
(directed) edges colored. Then we can find a monochromatic transitive subtournament
(by -the pigeon hole principle), in this case on three vertices. The resulting con-
figuration is the first of the two arrangements.

It may be that the second arrangement also has the 3-ERP. This is still an
open question. However, the use of directed segments by itself isn't sufficient to
settle the question. For this method requires that if the unit segments are all
oriented and r-colored, then we want to find a monochromatic cyclically ordered
unit triangle. Even if r = 2 +this can be prevented as follows. Let all the
points be ordered. Then orient each unit segment from the lower to the higher ver-
tex. All unit triangles are of the "transitive" or non-cyclic variety. In fact,
what this example shows is that if the unit segments are oriented and r-colored,
there will always be a monochromatic configuration of type K only if K is
acyclic. This still leaves open some of the more geometric questions such as the
existence of monochromatic unit rhombuses with edges ordered, say, (a,b), (a,c),

(b,d), (e,d), and with fixed angle.

3. Geometric considerations

3.1 Theorem. If S has ERP and T has k-ERP then S X T has k-ERP.

Proof. The proof is completely analogous to [1]. If T has k-ERP then for
every r there must exist a finite set U so that in every vr-coleoring of U
there exists a k-chromatic congruent copy of T. We now embed 8 % U in a suffi-
ciently high dimensional r-colored Euclidean space and assign to each point of 5
the coloring of U. This gives an r|U|~coloring of 8 and since 8 has ERP it
follows that in high enough dimensions there exists a copy of S8 so that all s x U,
s € B are colored the same. Thus we can pick corresponding k-chromatic subsets

5 X Y colored with the same k colors for all s e B.

3.2 Exam . As an immediate consequence of Theorem 3.1 we see that the wvertices
of a cube together with the midpoints of U4 edges have the 2-ERP in the following

CHECS .
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3.3 Definition. An isosceles n-simplex Sn is a simplex containing a regular
(n-1)-simplex as sub-simplex called the base of 8  and the remaining vertex,

called the apex of Sn is equidistant from the vertices of the base.

3.4 Theorem. An isosceles n-simplex Sn’ whose edges at the apex form non-obtuse

angles, has the simplicial ERP.

N with the same apex and arbitrar-

ily large N. The group of isometries of SN is the full permutation group on each

Proof. We can embed Sn in an isosceles 8

of the isometry classes of sub-simplices of SN’ except for the vertices where it
keeps the apex fixed (unless 5, 1is regular). It therefore suffices to prove that
the set of vertices of B has the ERP. According to Theorem 3.1 it suffices to

N

prove that we can embed the vertices of & in the vertices of a box (rectangular

parallelepiped). TFor this purpose we chooge the origin 0 as a vertex of the box
corresponding to the apex of SN and let a sufficiently large number of edges inci-
dent at 0 have lengths a and the remaining ones have lengths b. So the vertices
of the box are points {xl,xQ,...,le,yl,yé,...,le) where each xg is 0 or =

1 =8 X; =8,

¥; = b and the rest of the coordinates 0. These vertices have distance JEaE + bg

from 0 and ‘J2a2 + 2b2 from each other. Thus, if Nl > N we can embed any

isosceles SN with acute apex angles. The right isosceles SN is given by one

corner of an N-cube and the adjacent wvertices.

and each yj is 0 or b. Now consider the vertices with x

One could construct other simplicially ERP sets such as certain pairs of
isosceles simplices with a common base.

As in Corollary 2.2, one can color each simplex by the coleors of a finite set
of points which are invariant under its isometries and in this way construct varie-
ties of point sets which (exactly) have the k-ERP.

3.5 Example. The vertices of non-obtuse isosceles triangle and the trisecting
points of its sides have the 3-ERP, but not the 2-ERP if the triangle is not
equilateral. The colors can be assigned as in the figure.
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L. Some problems and additional results

4,1 Consider four collinear points which lie symmetric about a point. That is,
points on the x-axis with coordinates -b, -a, a, b where 0 <« & <« b. Does such
a set have the 2-ERP for aay (all) values of a, b? We can prevent any 2-coloring

except those where the outer and inner pairs are of the same color.

k. In connection with Theorem 3.4 we may consider an obtuse angle «. Then we can
ask whether the isosceles triangle with apex angle  has the simplicial ERP. But
an even simpler question is as follows: Color the unit segments of E" with r
colors. Then for any r 1is there an n so that we have a monochromatic pair of
unit segments making an angle «? Even for r = 2 we can prevent this for o = 180°.
However for 90° « a < 180° a new result of R.L. Graham (to appear) shows that for
each r there is an n for which there must always be a monochromatic pair of unit

segments forming an angle (.

4,3 It is by no means obvious whether the direct product of two sets 3, T with
simplicial ERP has simplicial ERP. We cannot even prove that in an rl-coloring

of the points and an r_-coloring of the unit segments there will exist a unit square

in a sufficiently high iimens ional Euclidean space with monochromatie vertices and
edges., However, if 8, T have simplicial ERP then the sets Sl * Tl’ Sl c 8y
'I'l c T have the ERF, in the sense that for any r-coloring of the congruence
classes of sets of that form in a sufficiently high dimensional Euclidean space

l’S]'. <S5 and T:I_’Ti c T with

- L4 ]
Sl = Si, Tl ¥ T!, then Sl » T1 and Sl' ® TJ'_ have the same color.

This shows that for the square we can get a copy with monochromatic vertices

there exists a set congruent to 8 X T so that, if §

and opposite pairs of edges colored alike. Thus the vertices and midpoints of the
edges of a square have the 3-ERP.

L.4 Are there sets S which have the ERP but not the simplicisl ERP? The neces-
sary condition, that S 1is embedded in a sphere of some En, implies that the con-
gruent k-tuples, considered as points of Ekn, are embeddable in a sphere. The
sufficient condition, that S iz embedded in the vertices of a box' of En, implies
that the k-tuples of S are embedded in the vertices of a box of Ekn. However
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the group of isometries of E}m induced by the isometries of E" is not the full
group of isometries of Ekn. Thus this does not constitute a known sufficient
condition for congruent k-tuples of S +to satisfy the ERP.

4.5 Most of the examples of § with k-ERP really consisted of a decomposition
of 8 into disjoint sets Sl""’sk which have simultaneous ERP. That is, in
any r-coloring of sufficiently high dimensional Euclidean space there exists an 8
congruent to B8 so that the corresponding subsets S."L""’Sl't congruent to
sl,...,sk are monochromatic. The set constructed in Example 2.6 was not constructed
in this manner. Nonetheless all sets with k-ERP are obtained as unions of k sets

with simultaneous ERP.

L.6 Theorem. If S has Kk-ERP then S is the disjoint union of k sets with

simultanecus ERF.

Proof. Assume otherwise. Then for each of the subdivisions of 8 into k
disjoint sets 51""’51: there exist r-ccﬁorings of all EN; N=12,.0.3 with
some fixed r, such that in none of the E~ there is a congruent copy of 8 in
which all the copies of the Si are monochromatic.

By superimposing the colorings (or the different subdivisions of 8) we get
an R-coloring of all EN; Ne=1,2,4e0 with R < rf so that no EN contains
a k-colored congruent copy of 8.

On p. 554 of the paper [2] on Euclidean Ramsey Theorem there is an inaccuracy.
The problem in question states:

Let f(n) be the smallest integer with the property that if one colors the
segments of length one of f{n)-dimensional space with two colors, there always is

an n-dimensional simplex of size 1 all of whose edges are monochromatic. Clearly

2n=-2
f{n) < r(n) < ( )

n=-1

(where r(n) is the Ramsey number for coloring edges of a complete graph and
getting a monochromatic complete n-gon) but it is quite possible that

f{n) = o[r(n)] and it i= not even clear that f{n) tends to infinity exponentially.

Also it would be interesting to decide whether there is an n so that if we
color the edges of length one by two colors there always is a monochromatic unit
square or even any three of the four sides of a square.

On the same page, 554, it is also stated that we have not settled the existence
of the edges of a unit square in the plane -- in fact it is easy to see that the
edges of a unit square (or in fact of any square [if we color the segments of any
length]) can be avoided in one color.
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