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Introduction

In earlier papers [1, 2, 3] we discussed sets S with the Euclidean Ramsey

Property, ERP, that is sets S in a Euclidean space E n with the property that

for every r there exists an N = N(r,s) so that in every r-coloring of Em with

m > N, there exists a monochromatic set S' congruent to S . We proved [1] that a

necessary condition for the Euclidean Ramsey Property is that S is a finite subset

of a sphere . More generally, if S has a k-chromatic congruent copy in all

r-colorings of sufficiently high dimensional Euclidean spaces (we call this property

k-ERP) then S must be embeddable in k concentric spheres .

In this note we describe some sets which have this k-ERP but not the

(k -1)-ERP. In the process it is useful to consider simplicial colorings of a

Euclidean space, that is colorings which simultaneously color each set of congruent

6-tuples of Em in a fixed number of colors .

1 .1 Definition . A finite set S in E n has simplicial ERP if for the colorings

of the sets congruent to the subsets of S with a fixed number of colors there

exists an N so that for all m > N there is a set S' c E m congruent to S so

that all its congruent subsets have the same color .
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Direct consequences of Ramsey's Theorem

2 .1 Theorem . The regular simplex Sn has the simplicial ERP .

With the help of Theorem 2 .1 we can construct a variety of point sets with the

exact k-ERP, that is k-chromatic but not (k -1)-chromatic congruent copies exist

in every high-dimensional r-colored Euclidean space . For example we have the

following .

2 .2 Corollary . Let 0 < it < i2 < • • • < ik < n - 1 and let Pi denote the set of

centroids of the i-subsimplices of a regular simplex S n . Then the set

S = P . U P
1
. 1 . . . U P

l
,

	

has the exact k-ERP . The coloring can be chosen so that
1 1

	

2

	

k
each Pi c S has a monochromatic copy .
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Proof . The fact that S has the k-ERP follows directly from Theorem 2 .1
where each Se. is given the color of its centroid . It is easy to see that the con-
centric spheres which contain P i and whose center is the centroid of Sn consti-
tute a minimal set of concentric spheres containing S . Thus S does not have the
( k - 1) -ERP .

The examples of Corollary 2 .2 by no means exhaust the possibilities of applying
Ramsey's Theorem to the Euclidean case . These possibilities exist whenever we have
a highly transitive group of isometrics (i.e . either the alternating or the symmet-
ric group) acting on a family of subsets of a large set . For example, we can
restrict attention to the isometrics of a regular n-simplex Sn which keep some
sub-simplex S . fixed and then we can color the sub-simplices S . SS by the
color of any point in the (i+ 1) -plane through S i and the centroid of S

i
.

2 .3 Example . In the case S i = S p and S
i

= Sl we get a set with the exact 2-ERP
by picking the vertices of two regular n-simplices which have one common vertex and
whose edges through that vertex are collinear . We can pick the coloring so that the
vertices of one simplex are monochromatic and the remaining vertices are monochroma-
tic . The illustration shows the case n = 2 .

The same reasoning can be applied to a rectangular solid with a large number of
congruent sub-boxes through a common sub-box . We illustrate it again by picking
edges through a vertex . We then can get a set with the exact 2-ERP by taking the
vertices of a cube and, say, the midpoints of the edges through one vertex .

There was no need to color the sub-simplices or sub-boxes in terms of the
colors of single points .

2 .4 Example . The set of vertices of a regular (unit) n-simplex together with the
points that divide the edges incident to one vertex into consecutive segments of
length xl,x2, . . .,xk-1 starting from the common vertex have the k-ERP .
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We can only prove that this set does not have the (k - 1)-ERP when none of the

division points are symmetric about the centers of the edges .

2 .5 Example . The vertices of a cube together with the points that are one third

and one half the length along the diagonal of a 2-face from a fixed vertex have

the exact 3-ERP .

30

We give one final example, applying Theorem 2 .1 where we color the edges of an

ri-simplex according to the (unordered) pair of colors of its trisecting points .

2 .6 Example . The vertices of an n-simplex plus the trisection points of its edges

have the 3-ERP . This point set lies in the union of two concentric spheres . It

therefore does not have the ERP but we cannot prove that it does not have 2-ERP .

Incidentally, this shows that the vertices of every equiangular hexagon with alter-

nate sides of equal length has the 2-ERP .

We note that there are essentially two different arrangements possible for the

colorings in Example 2 .6, the one shown above, and the following "cyclic" arrange-

ment :
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By considering oriented segments we can guarantee that the first of these

occurs . Let all the unit segments be ordered, and color them according to the

ordered sequence of endpoints and trisection points . By considering a large simplex

(in a high enough dimensional space) we actually have a large tournament with the

(directed) edges colored . Then we can find a monochromatic transitive subtournament

(by the pigeon hole principle), in this case on three vertices . The resulting con-

figuration is the first of the two arrangements .

It may be that the second arrangement also has the 3-ERP . This is still an

open question . However, the use of directed segments by itself isn't sufficient to

settle the question . For this method requires that if the unit segments are all

oriented and r-colored, then we want to find a monochromatic cyclically ordered

unit triangle . Even if r = 2 this can be prevented as follows . Let all the

points be ordered . Then orient each unit segment from the lower to the higher ver-

tex . All unit triangles are of the "transitive" or non-cyclic variety . In fact,

what this example shows is that if the unit segments are oriented and r-colored,

there will always be a monochromatic configuration of type K only if K is

acyclic . This still leaves open some of the more geometric questions such as the

existence of monochromatic unit rhombuses with edges ordered, say, (a,b), (a,c),

(b,d), (c,d), and with fixed angle .
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Geometricconsiderations

3 .1 Theorem . If S has ERP and T has k-ERP then S X T has k-ERP .

Proof . The proof is completely analogous to [1] . If T has k-ERP then for

every r there must exist a finite set U so that in every r-coloring of U

there exists a k-chromatic congruent copy of T . We now embed S x U in a suffi-

ciently high dimensional r-colored Euclidean space and assign to each point of S

the coloring of U . This gives an rlUl-coloring of S and since S has ERP it

follows that in high enough dimensions there exists a copy of S so that all s x U,

s c S are colored the same . Thus we can pick corresponding k-chromatic subsets

s X Y colored with the same k colors for all s s S .

3 .2 Example . As an immediate consequence of Theorem 3 .1 we see that the vertices

of a cube together with the midpoints of 4 edges have the 2-ERP in the following

cases .

31
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3 .3 Definition . An isosceles n-simplex S n is a simplex containing a regular

(n -1)-simplex as sub-simplex called the base of S n and the remaining vertex,

called the apex of S n is equidistant from the vertices of the base .

3 .4 Theorem . An isosceles n-simplex Sn , whose edges at the apex form non-obtuse

angles, has the simplicial ERP .

Proof . We can embed Sn in an isosceles SN with the same apex and arbitrar-

ily large N . The group of isometrics of SN is the full permutation group on each

of the isometry classes of sub-simplices of S N , except for the vertices where it

keeps the apex fixed (unless S n is regular) . It therefore suffices to prove that

the set of vertices of SN has the ERP. According to Theorem 3 .1 it suffices to

prove that we can embed the vertices of S N in the vertices of a box (rectangular

parallelepiped) . For this purpose we choose the origin 0 as a vertex of the box

corresponding to the apex of SN and let a sufficiently large number of edges inci-

dent at 0 have lengths a and the remaining ones have lengths b . So the vertices

of the box are points (xl,x2, . . .,xNl,yl,y2, . . .,yNl) where each xi is 0 or a

and each y J, is 0 or b . Now consider the vertices with x l = a, xi = a,

y i - b and the rest of the coordinates 0 . These vertices have distance J 2a2 + b 2

from 0 and J 2a2 + 2bá from each other. Thus, if N1 > N we can embed any

isosceles SN with acute apex angles . The right isosceles S N is given by one

corner of an N-cube and the adjacent vertices .

One could construct other simplicially ERP sets such as certain pairs of

isosceles simplices with a common base .

As in Corollary 2 .2, one can color each simplex by the colors of a finite set

of points which are invariant under its isometrics and in this way construct varie-

ties of point sets which (exactly) have the k-ERP .

3 .5 Example . The vertices of non-obtuse isosceles triangle and the trisecting

points of its sides have the 3-ERP, but not the 2-ERP if the triangle is not

equilateral. The colors can be assigned as in the figure .
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Someproblems andadditionalresults

4 .1 Consider four collinear points which lie symmetric about a point . That is,

points on the x-axis with coordinates -b, -a, a, b where 0 < a < b . Does such

a set have the 2-ERP for any (all) values o£ a, b? We can prevent any 2-coloring

except those where the outer and inner pairs are of the same color .

4 .

	

In connection with Theorem 3 .4 we may consider an obtuse angle a . Then we can

ask whether the isosceles triangle with apex angle a has the simplicial ERP . But

an even simpler question is as follows: Color the unit segments of E n with r

colors . Then for any r is there an n so that we have a monochromatic pair of

unit segments making an angle a? Even for r = 2 we can prevent this for a = 180 ° .

However for 90° < a < 180° a new result of R.L . Graham (to appear) shows that for

each r there is an n for which there must always be a monochromatic pair of unit

segments forming an angle a .

4 .3 It is by no means obvious whether the direct product of two sets S, T with

simplicial ERP has simplicial ERP . We cannot even prove that in an r l-coloring

of the points and an r2-coloring of the unit segments there will exist a unit square

in a sufficiently high dimensional Euclidean space with monochromatic vertices and

edges . However, if S, T have simplicial ERP then the sets S 1 X Tl, S1 c S,

T1 c- T have the ERP, in the sense that for any r-coloring of the congruence

classes of sets o£ that form in a sufficiently high dimensional Euclidean space

there exists a set congruent to S x T so that, if S l,Sj c S and Tl,Tl c T with

S1 - Si, T, ~ Ti, then Sl x T, and Si x Ti have the same color .

This shows that for the square we can get a copy with monochromatic vertices

and opposite pairs of edges colored alike . Thus the vertices and midpoints of the

edges of a square have the 3-ERP .

4 .4 Are there sets S which have the ERP but not the simplicial ERP? The neces-

sary condition, that S is embedded in a sphere of some En, implies that the con-

gruent k-tuples, considered as points of E kn , are embeddable in a sphere . The

sufficient condition, that S is embedded in the vertices of a box of En , implies

knthat the k-tuples of S are embedded in the vertices of a box of E . However
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the group of isometrics o£ Ekn induced by the isometrics o£ E n is not the full

group of isometrics of E kn . Thus this does not constitute a known sufficient

condition for congruent k-tuples of S to satisfy the ERP .

4 .5 Most of the examples of S with k-ERP really consisted of a decomposition

of S into disjoint sets S l , . . .,Sk which have simultaneous ERP . That is, in

any r-coloring of sufficiently high dimensional Euclidean space there exists an S ,

congruent to S so that the corresponding subsets Si, . . .,Sk congruent to

Si , . . . . Sk are monochromatic . The set constructed in Example 2 .6 was not constructed

in this manner . Nonetheless all sets with k-ERP are obtained as unions of k sets

with simultaneous ERP .

4 .6 Theorem . If S has k-ERP then S is the disjoint union of k sets with

simultaneous ERP .

Proof . Assume otherwise . Then for each of the subdivisions of S into k

disjoint sets S l , . . .,Sk there exist r-colorings of all EN ; N = 1,2, . . . ; with

some fixed r, such that in none of the E N there is a congruent copy of S in

which all the copies of the S i. are monochromatic .

By superimposing the colorings (or the different ubdivisions of S) we get

an R-coloring of all EN ; N = 1,2, . . .

	

with R < rk SI so that no EN contains

a k-colored congruent copy of S .

On p . 554 of the paper [2] on Euclidean Ramsey Theorem there is an inaccuracy .

The problem in question states :

Let f(n) be the smallest integer with the property that if one colors the

segments of length one of f(n)-dimensional space with two colors, there always is

an n-dimensional simplex of size 1 all of whose edges are monochromatic . Clearly

34

2n-2\
f(n) < r(n) <

n-1

(where r(n) is the Ramsey number for coloring edges of a complete graph and

getting a monochromatic complete n-gon) but it is quite possible that

f(n) = o[r(n)] and it is not even clear that f(n) tends to infinity exponentially .

Also it would be interesting to decide whether there is an n so that if we

color the edges of length one by two colors there always is a monochromatic unit

square or even any three of the four sides of a square .

On the same page, 554, it is also stated that we have not settled the existence

of the edges of a unit square in the plane -- in fact it is easy to see that the

edges of a unit square (or in fact of any square [if we color the segments of any

length]) can be avoided in one color .
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