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In 1948, De Bruijn and Erdös proved that a finite linear space on v points has at least v
lines, with equality occurring if and only if the space is either a near-pencil (all points but one
collinear) or a projective plane .

In this paper, we study finite linear spaces which are not near-pencils . We obtain a lower
bound for the number of lines (as a function of the number of points) for such linear spaces . A
finite linear space which meets this bound can be obtained provided a suitable projective plane
exists . We then investigate the converse : can a finite linear space meeting the bound be
embedded in a projective plane .

1. Introduction

A finite linear space is a pair (X, @), where X is a finite set, and @ is a set of
proper subsets of X, such that

(1) every unordered pair of elements of X occurs in a unique B E ~,

(2) every B E 93 has cardinality at least two .
the elements of X are called points ; members of @ are called lines or blocks .

We will usually let v = IX 1 and b =1 @ 1 . The length of a line will be the number of
points it contains ; the degree of a point will be the number of lines on which it
lies. We will abbreviate the term `finite linear space' to FLS .

A linear space in which one line contains all but one of the points (and hence all
other lines are of length two) is called a near-pencil. An FLS which is not a
near-pencil is said to be non-degenerate . A non-degenerate FLS will be denoted
NLS.

A projective plane of order n is an FLS having n 2 + n + 1 points and lines, in
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which every line has length n+1 . A projective plane of order n is known to exist
when n is a prime power .
An affine plane of order n is an NLS having n 2 points and n 2 +n lines, in which

every line has length n . Affine and projective planes of order n are co-extensive .
A well-known theorem of De Bruijn and Erdős [1] states that in an FLS the

relation b > v holds, with equality if and only if the space is either a near-pencil or
a projective plane .

In this paper we obtain similar results for NLS . In an NLS having v > 5 points,
we show that b,B(v), where

n2 +n+1 if n 2 +2--v~_- n 2 +n+1,

B(v)= n 2 +n

	

if n 2 -n+3<v<_ n 2 +1,

n 2 + n - 1 if v=n 2-n+2.
(*)

Equality can be attained if n is the order of a projective plane .
An NLS is said to be minimal if no NLS on v points has fewer lines . We

consider the embeddability of minimal NLS with b = B(v) lines in projective
planes, and prove several results . For example, if v = n 2 -a, for some integer r.,
with a--0 and a 2 +a(2n-3)-(2n 2 -2n)--0, then a minimal NLS with v points
and B(v) lines can be embedded into a projective plane of order n . Minimal NLS
with v = n 2 -n42 (v>8) and b = n 2 + n -1, can likewise be embedded .

2 . Some preliminary results

We require the notion of an (r, 1)-design. An (r, 1)-design is a pair (X, 93)
where X is a finite set of points, and @ is a family of proper subsets of X called
blocks satisfying :

(1) every point occurs in precisely r blocks,
(2) every pair of points occurs in a unique block .
As before we will use v and b to denote respectively the number of points and

blocks . By deleting blocks of length one from an (r, 1)-design one obtains an FLS,
and conversely, given an FLS, the addition of sufficiently many blocks of length
one will produce an (r, 1)-design for some r.
An (r, 1)-design (X, R) is said to be embedded in an (r, 1)-design (X', W) if
(1) X c X', and
(2) 93 _ {B n X: B E A'}

(note 93 and _@' are multisets) . We will make use of the following results
concerning embeddability of (r, 1)-designs .

Lemma 2 .1 . (1) Suppose an (n + 1, 1)-design D with v points and b ; n 2 + n + 1
blocks has a point which occurs in s blocks of length n . Then D can be embedded in
an (n + 1, 1)-design D* having v + s points and at most n2 ± n + 1 blocks .



(2) Any (n + 1, 1)-design with v .>- a z points and b -_ n 2 + n + 1 blocks can be
embedded in a projective plane of order n .

Proof . See [4] . F

An FLS is defined to be embedded in a larger FLS analogously .

Lemma 2.2. An NLS with v = n2 points is embeddable in a projective plane of
order n if and only if it has at most n 2 + n + 1 lines .

Proof . See [5]. El

The following two arithmetic results will be of use .

Lemma 2.3 . Given an FLS which has the longest line of length k, the inequalities

(1)

	

b ,1 +
k	vv lk)

and (2) b %
Ik [ k -111

must hold, where as usual, [x] denotes the least integer no less than x .

Proof. (1) is proved in Stanton and Kalbfleisch [3] . (2) is easily proved since every
point has degree at least [(v -1)/(k -1)] . 0

Lemma 2.4 . Suppose k t , . . . , kb are non-negative integers, and I6 , k i > qb + r
where 0 _- r < b and q > l . Then

(k`)'r{q
t

1)+(b r)(9),

with equality if and only if precisely r of the k,'s equal q+1 and the remaining k g 's
equal q (hence fib_, ki = qb + r) .

Proof. See [2] . 0

For v % 4, denote by h(v) the number of lines in a minimal NLS having v
points . We seek to determine the behaviour of the function h(v) . This we shall do
mainly in the next section, but we first prove a couple of simple results here .

Lemma 2.5 . h(4) = h(5) = 6 .

Proof. Trivial . F1

Lemma 2.6 . For v,4, h(v+1),h(v) .

Finite linear spaces and projective planes
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Proof . The result is true for v-4 by Lemma 2 .5. Thus, let F be a minimal NLS
on v + 1 points, v % 5 . If F contains no line of length v -1, the result is clearly
true, so suppose F contains such a line l . For any other line l' of F, the sum of the
lengths of l and l' does not exceed v + 2, so l' has length at most 3 . Since v , 5, l
is the unique line of length v - l . Then we may delete any point x of l from F, and
also delete any `lines' of length one produced by this operation, to obtain an NLS
on v points having at most h(v+1) lines. Thus h(v+1),h(v), as required. D

3. Minimal non-degenerate finite linear spaces

Let f(k, v) =1 + k 2(v - k)/(v -1) . We have the following .

Lemma 3.1 . If an FLS has a longest line of length k, and 2 , kl , k , k 2 < v - 2,
then

b--min{f(k,, v), f(k2 , v)} .

Proof . Apply Lemma 2.3(1) . As observed in [2], the function f(x, v), for fixed v,
is unimodal on the interval [2, v - 2], having its maximum at x = 3v . D

For future reference, we record some values of the function f.

Lemma 3.2.

(1)

	

f(v-2, v)=2v-1+
2

.
V-1

	 2
(2)

	

f(n+2,n2 +2)=n2 +n+
n2+1

(3)

	

f(n+1, n 2 +2)= n2+3n-
n2 1
+1

13n 2
(4)

	

f(n+2, n 2 -n+2)=n2 +3n-1-
n2-n+1

3n 3
(5)

	

f(n+l,n2 -n+2)=n2 +n-1-
n2-n+1

Lemma 3.3 . Suppose v>- n 2 +2 and n-_2 . If an NLS on v points has a line of
length n + 2, then b :-:- n2 + n + 2 .

Proof. Clearly f(v, k) is monotone increasing in v for fixed k, and also
f (v -1, v + 1) < f (v -2, v) for all admissable v . Thus, by Lemma 3 . 1, we have

b>min{f(n+2, n2 +2), f(n 2, n 2 +n)} .



If n>2, then f(n+2, n2 +2)<f(n2 , n2 +2), so b% f(n+2, n2 +2). By Lemma
3 .2(2), we have

3

	

2 -
f(n+2, n2 +2)= n2+3n- nn+

_
1 = n2+n+1+

2n
n n

5n
2 + 1

For n--2, 2 n 3 > n2 + 5 n, so the result follows . 0

By a similar argument, one can prove the following

Lemma 3.4 . Suppose v>n2 -n+2 and n--3 . If an NLS on v points has a line of
length n + 2, then
(1) b%n 2 +n+l if n>4,
(2) b%n 2 +n if n=3 .

Proof . As in Lemma 3 .3,

b%f(n+2,n2 -n+2)

13n-2
=n2 +3n - 1 - n2 _ n+1

=n2 +n+

Finite linear spaces and projective planes
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2n'-3n 2 -lOn+1
n2 -n+1

For n , 4, 2n 3 >3n2 + 1On -1, which establishes (1) . To prove (2), we note that
f(5, 11) > 11, so b ,12 . (]

Lemma 3.5 . Suppose v % n 2 + 1 and n > 2. If an NLS on v points has no line of
length exceeding n, then b > n 2 + 2 n + 2 .

Proof . From Lemma 2.3(2), we obtain
z

	

z

	

2+ 1)
b

I n n 1 In-111

	

n 1 (n n
	 1)

(n+2)1 = n2 +2n+2 .

	

11

Theorem 3.6 . If an NLS has n 2 + 2 , v < n2 +n+1 for some n--2, then b
n2 +n+1, with equality holding if and only if the NLS can be embedded in to a
projective plane.

Proof. Let F be such an NLS . If the longest line in F has length other than n + 1,
then b % n 2 + n + 2 by Lemmata 3 .3 and 3 .5 . Also,

f(n+1, n2+2)= n2+n+
n2 +1'

so b > n 2 + n + 1 . If, however, F has b = n 2 + n + 1, then F can be embedded in a
projective plane by Lemma 2 .2. Conversely, if one deletes n 2 + n + 1- v points
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from a projective plane of order n, then an FLS with b = n 2 + n + 1 is
obtained . F1

Lemma 3 .7 . If an NLS F has v = n 2 - n + 2 for some n -- 3, then b > n 2 + n -1
with equality only if F contains a unique longest line of length n + 1 .

Proof . First, assume F has at most n 2 + n -1 lines, each of which has length not
exceeding n . Let x,, . . . , x„ denote the points, and let h, . . . , lb denote the lines of
F. For 1, i , v, let r; denote the degree of xi, and for 1, i -- b, let k; denote the
length of l ; . Also, let b* = n 2 +n-1, and, if b < b*, let ki = 0 for b+1 , i < b* .

We have, for 1 < i , v,

then

or
n'-2n3 +4n2 -3n+2--n '-2n 3 +4n2 + n-4

r;>
n2-n+11

n+1 .
I n-1 1 _

b*

	

~

k i = ~ r,,,(n2-n+2)(n+1) .
i=1

	

i=1

We have (n2-n+2)(n+1)=(n-1)(n2+n-1)+3n+1, and Jb', (z,)=(z) . Thus
Lemma 2 .4 implies

(n 2 - n +2)(n2 - n + 1) > (3n-1)(n)(n-1)+(n2-2n -2)(n-1)(n-2),

or 4n--6, a contradiction .
Hence if F has no line of length n + 1, then by Lemma 3 .4 and the above, F has

at least n2 + n lines . So assume F has a line l of length n + 1 . We have

3n-3
f(n+1, n2-n+2)=n2+n-1-

n2 -n+1'

so for n > 3, F has at least n 2 + n -1 lines . We wish to show that if F has exactly
n2 + n -1 lines, then l is the only line of length n + 1 .

Suppose l* is another line of length n + 1 . If l and l * contain no common point,
then b > (n + 1)2 +2>n2 + n -1, a contradiction, so we may assume l n l* = Ix~j .
Then, for i > 1, ri -- n + 1 . Also, r, , [(n2 - n + 1)/n] = n. Counting lines which
intersect l, we obtain b > n + n • n = n 2 + n, a contradiction . Thus l is the unique
line of length n + 1 in F. El

Lemma 3.8 . Let F be an NLS with v = n 2 -n+2 and b = n 2 +n-1 for some
n , 4. Then F can be embedded in a projective plane of order n .

Proof . By the previous lemma, F contains a unique line l = lb of length n + 1 .



b-1

Y ki-(n2-2n+1)(n+1) .
i=1

However

(n2-2.n+1)(n+1)=(n-2)(n2+n-2)+3n-3 .

Thus, by Lemma 2.4,

(n2-2n+1)(n2-2n)%(3n-3)(n-1)(n-2)+(n2-2n+1)(n-2)(n-3)

=(n2-2n+1)(n2-2n) .

Therefore F' contains at most 3 n - 3 lines of length n. By the remarks above, F
contains one line of length n+1, 3n-3 lines of length n, and n 2-2n+1 lines of
length n -1 . Also, the line of length n + 1 meets every other line .

Now let x be any point on l, and let a i denote the number of lines of length i
through x, for n -1 < i _ n + 1 . Then

(n-2)an j+(n - 1)an =n2 -2n+1

and an +, = 1, so either (a„ ,, an , a nt ,) _ (0, n - 1, 1) or (n - 1, 1, 1), since n is at
least 4 . Thus x lies on either n or n + 1 lines .

Since l meets every other line, we have

1+ Y (ri-1)=n2+n-1 .
.' El

Thus there are precisely two points x, and x2 of l which have degree n . By
adjoining blocks {x,} and {x2} we obtain an (n + 1, 1) design with n2- n + 2 points
and n 2 + n + 1 blocks. Also, x l lies on n -1 lines of length n. Applying Lemma
2. 1, we can embed F in an (n + 1, 1) design on n2 + 1 points and n2 + n + 1 blocks,
which can in turn be embedded in a projective plane of order n . Hence F can be
embedded in a projective plane of order n . 1]

Lemma 3.9 . Let F be an NLS having eight points and eleven lines . Then either F
can be embedded in the projective plane of order 3, or F is isomorphic to the linear
space in Fig. 1 below.

Proof. If all points of F have degree at most 4, then as in the previous lemma, F

Finite linear spaces and projective planes
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Also, if xi E l then ri , n, and if x ; 0 l, then r; -- n + 1 . Consider

(n2-n+2)(n2-n+1)

= (n + 1)n + (3n - 3) • n(n-1)+(n-1)2(n-1)(n-2) .

Thus F has at least 3 n - 3 lines of length n, with equality occurring if and only if
the remaining lines (excluding l) have length n -1 . For 1, i , b -1, let

k i =
ki

	

if l l i n l l = o,
1k i - 1

	

if il i n l l = 1 .
Then
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can be embedded in a projective plane of order 3 . However, for n = 3 (in Lemma
3.8) there is an additional possibility for the vector (a z , a 3 , a4), namely (4, 0, 1) .
Should F contain a point - having this distribution, all other points have degree 3 .
We may easily construct F, and verify that it is unique up to isomorphism . The
unique such F is exhibited in Fig. 1 below .

-123

	

145

	

246

	

347

-4

	

167

	

257

	

356
x5
-6
-7

Fig . 1 .

Theorem 3.10. For n > 3, there exists an NLS with v = n'- n + 2 and b =
n2 +n-1 if and only if n is the order of a projective plane .

Proof . In view of Lemmata 3.8 and 3 .9, is suffices to show that if n is the order of
a projective plane, then the desired NLS exists . Let 7r be any projective plane of
order n ; and l, and 12 be two lines of 7r . For i = 1, 2, let x; be a point of l ; other
than l1 n12 . Then delete from 7r the points of 11 U 12\1x1, x 2 }, and also delete the
lines 1 1 and 12 . The resulting NLS has 11 2 - n + 2 points and n 2 + n -1 lines. El

Lemma 3.11. Let F be an NLS with v > n 2 -n+3 for some n--3 . Then b > n 2 + n,
with equality only if the longest line in F has length n or n + 1 .

Proof. First suppose that F has a line of length at least n + 2 . If n , 4, then
Lemma 3.4 implies the result . If n = 3, then we compute f(5, 9) = 27/2, so b > 14,
and the result is true here as well .
Next, suppose F has no line of length exceeding n -1 . Then by Lemma 2.3(2),

b> rn2 -n +3 rn2-n+211 ~r(n2-n+3)(n+2)1>n2+n+1
.

n-1

	

n-2

	

n-1

Next, suppose F has a longest line of length n. Every point has degree at least
r(n 2 - n + 2)/(n -1)] = n + 1 . An application of Lemma 2.4 yields b > n 2 +n-1
when v=n2 -n+3 .

Finally, we consider the case where the longest line l has length n + 1 . If l is the
only line of length n + 1, then every point on l has degree at least 1 +
r(n2-2n+2)/(n-1)1=n+1, and b,l+(n+1)n=n2+n+1 . So assume l * is
another line of length n + 1 . If l and l * are disjoint then b >- (n + 1)2 +2, so assume
l and l * meet in a point x . The point x has degree at least r(n 2 -n+2)/nl =n,
and any other point of F has degree at least n + 1 . Thus b > 1 + n -1 + n • n =
n2 +n, and the result follows by the monotonicity of the function h.
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Corollary 3.12 . If F is an NLS with v % n 2 - n +3 and b = n 2 + n, for some n -- 3,
and if the longest line in F has length n + 1, then one point has degree n and all
other points have degree n + 1 .

Proof. In order to attain b = n 2 + n in the above lemma, we must have
(1) all lines of length n + 1 meet at a point x of degree n, and
(2) any line meets all lines of length n + 1 .

Thus x has degree n and all other points have degree n + 1 . 0

Such a situation can be realized if n is the order of a projective plane .

Lemma 3.13 . Suppose n , 3 is the order of a projective plane and n2 - n + 3 v
n2 . Then there exists an NLS having v points and b = n 2 + n lines, in which the
longest line has length n or n + 1, as desired .

Proof . Let 7T be a projective plane of order n , 3, and let v = n2 + n + 1- a,
where n+l--a<2n-2.

Let 1, and 12 be two lines of rr, which meet in a point x . If we delete all points of
1 1 , and a-(n+1) points from l2 \{x} we obtain an NLS with n 2 + n lines, in which
the longest line has length n. If we delete the points of 1, \ {x} and a - n points of
12\14 we obtain an NLS with n 2 + n lines, in which the longest line has length
n + 1 . (]

When v = n 2 + 1, we have the following .

Lemma 3.14. If an NLS on n 2 +1 points has n 2 +n lines, then the longest line has
length n + 1, and the space can be embedded into a projective plane of order n.

Conversely, if n is the order of a projective plane, then h(n2 +1)=n2 +n.

Proof . We have h(n 2 +1), n2 +n . Suppose ar is a projective plane of order n . Let
l be any line, and let x be any point of l . If we delete all points of l \ {x}, and the
line l, from ar, we obtain an NLS with v = n 2 + 1 and b = n 2 + n, having a line of
length n + 1 .
Now suppose F is an NLS with b = n 2 + 1 and b = n2 + n . We have established

(Lemma 3 .11) that the longest line of F has length n or n + 1 . The first case is
ruled out by Lemma 3.5, so the longest line has length n + 1 . Finally, F can be
embedded in a projective plane by Lemma 2 .2 . 0

We now consider the embeddability of NLS on v points and n 2 + n lines where
n2 - n +2, v <_ n 2 , in projective planes. We first consider the case where the
longest line is of length n.
Let G be an FLS . A set Y of lines is said to span F if for any line l in F there

exists a line 1 1 e -T such that l and 1 1 contain a point in common . Now, suppose T
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is a set of lines such that any two distinct intersecting lines in T span E Let U be
the set of lines of F that are disjoint from at least one line of T . For each l in T,
let D(l) denote the set of all lines of U disjoint from l, and let E(l) = D(l) U {l}.
Define a relation - on S = T U U by the rule a b if there exists l E T such that
{a, b}c E(l) .

Lemma 3.15 . If E(l,) = E(l2 ) whenever l,n 1, = o, then

	

as described above, is
an equivalence relation on S.

Proof . Suppose l, and 1, intersect, for distinct l,, 1, E T. Since {l,, 1,1 spans F,
therefore E(l,) n E(l2 ) _ (b .
Now, suppose a -V b and b - c. Let {a, b} c E(l,) and {b, c} c E(l2 ) for some

l,, 12' If l, and 12 are disjoint or equal, then E(l,) = E(l 2) so {a, c}c E(l,) and
a - c. If l, and 12 are distinct and intersect, then E(l,) n E(l2 ) _ (Ö, so we cannot
have b E E(l,) n E(l2 ) .

Lemma 3.16 . Let F be an NLS with v % n 2 -n+2 and b = n 2 + n in which the
longest line has length n. Let T denote the set of lines of length n . Then is an
equivalence relation on the set S as described above .

Proof. We must show that
(1) any pair of distinct intersecting lines l, and 12 of length n span F, and
(2) if l, and 12 are disjoint lines of length n and any line l is disjoint from l,,

then l is disjoint from 12 .

First, we note that every point in F has degree at least [(n 2 - n + 1)/(n-1)1 _
n+1.

Let x be any point on a line l of the length n . If x has degree greater than n + 1,
then there are at most n 2 + n - (1 + n • n + 1) = n - 2 lines disjoint from l. Thus the
lines disjoint from l have average length at least (n2-2n+3)/(n-2)> n, so some
line has length greater than n, a contradiction . Therefore every point on a line of
length n has degree n + 1 .

Let l, and 12 be distinct intersecting lines of length n . Since every point on l,
and 12 has degree n+1, the number of lines spanned by l, and 12 is at least
n+1+(n-1)2+2(n-1)=n2+n. Since b=n 2 +n, l, and 12 span all lines . This
proves (1) .

Now, let l, and 12 be disjoint lines of length n . Suppose a line l intersects 12 in a
point x. The point x has degree n + 1, and 12 has length n, so there is a unique line
through x which is disjoint from 12, namely, l,. Thus l intersects l,, which proves
(2) . El

Let F be an NLS satisfying the hypotheses of Lemma 3 .16, which has v = n 2 - a
points (Q , a -- n - 2). Let P,	PS denote the equivalence classes (with respect
to the relation -), and let W denote the lines of F which are in no P„ 1 , i -- s.



Now every point has degree at least n + 1 . Denote the degree of x by n + Nx

where Rx -- 1 for all points x. Let 8 = Ix ax - v .

Lemma 3.17 . The number of equivalence classes s satisfies

n(n-a)
s%1+

Proof. Let x be any point. Then in any P,, there are R x lines containing x . Thus

E k, _ E a x = v + S, for any i,
lep;

	

x

where k, denotes the length of the line l . Then

I k,=(n+l)v+8-s(8+v) .

so

lcw

n-a+8

Next we note that every Pi contains precisely n lines . This follows since a line
of length n spans n 2 + 1 lines, and is therefore disjoint from n -1 lines, since each
point on a line of length n has degree n + 1 . Thus I W 1 = n'+ n - sn .

Now, each line in W has length at most n -1, since the lines of W occur in no
P;. Thus

E k,--(n-1)1W1 .
tEw

Substituting, we obtain

(n + 1)v + 8 - s(8 + v) , (n -1)(n2 - n(s-1)) .

Thus
(n+1)v+8-(n-1)(n2+n)<s(v+8-n2+ n) .

Since v = n 2 -a, we obtain

n2-an+n-a+S~s(n-o-+8),

n(n-a)
s>1+

n-a+8
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0

Lemma 3.18 . An (n + 1, 1)-design F on v = n 2 - a points (0 _ a , n - 2), which
has n 2 + n lines, can be embedded into a projective plane of order n .

Proof. Consider the classes P	Ps . Since 8 = 0, therefore, by the proof of
Lemma 3 .17, s = n + 1 and W = 0 . Each Pi consists of n lines which partition the
point set. Let	-n+, be n + 1 new points . For 1 i _ n + 1, adjoin -, to
each line of P;, and adjoin the line 00,002

' * ' 00n+, . The NLS thus constructed has
n2 + n + 1 lines and at least n 2 points, and so can be embedded into a projective
plane of order n. This establishes the lemma . 0
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Theorem 3.19 . Suppose F is an NLS with v = n 2 - a points (0, a < n - 3) and
n2 + n lines, the longest of which has length n + 1 . Then F can be embedded into a
projective plane of order n .

Proof . In the proof of Corollary 3 .12, we have noted that all lines of length n + 1
pass through a point (say -), and that all other points have degree n + 1 . The
linear space F obtained by deleting - from F is an (n+1)-design which satisfies
the hypotheses of Lemma 3 .18 . Hence F can be embedded into a projective
plane ar of order n. It is also clear that the lines of F which passed through - (in
F) form one of the classes P i , so that the point - is restored during the embedding
of F into ar. Hence F can be embedded into 7T . F

We now return to the case of linear spaces with n2 -a points and n 2 +n lines,
the longest of which has length n . As before, we let point x have degree n + ox
and denote 8 = E on - v .

Lemma 3.20. If 8 > 0, then

n - a

	

if n odd,

((n-a)
n+1

	

if n even .
n-1)

S,

Proof . Recall that s denotes the number of equivalence classes P ;, and s--
1 + n(n - a)/(n - a + 8) by Lemma 3 .17 . Since there is a point x with R x , 2, and
since x occurs a x times in each P,, then counting lines through x yields sox
n + Ox , or s < 1 + [n//3 x ] where, as usual [y] denoted the greatest integer not
exceeding y. Since Nx , 2, we have s < 1 + lz n J .

Now, if n is even, ~2n J = zn, and we have

n(n-a)
1-

n-a+
-1+in,

b

so 2(n - a) < n - a + S and 5-- n - a. If n is odd, then

	

= 2'(n - 1) and we
obtain S%(n-a)(n+1)/(n-1) similarly . El

We now obtain an upper bound for S .

Lemma 3.21 . S<(a2-a)/2(n-1) .

Proof . We have

E k,=(n+1)v+S=(n-1)(n2+n)+r,
1

where r= (n-a)(n+1)+S. Note that r,n 2 +n, for otherwise the average line

4
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length would be at least n, which is an impossibility. We apply Lemma 2.4 with
q=n-1, b=n2 +n, and t=2 .

Since 1, (2) _ (Z), we obtain

v(v-1)% rn(n - 1) + (b - r)(n - 1)(n - 2) .

If we substitute v = n 2 - a, b = n 2 +n, and r = (n - a)(n + 1) + S and simplify, the
desired result is obtained . F]

We now combine the bounds of the two previous lemmata .

Lemma 3.22 . Suppose S > 0 . If n is even, then

a2 +a (2n-3)-(2n2-2n),0 .
If n is odd, then

a'- +a(2n+1)-(2n 2 +2n)a0 .

Theorem 3 .23. Suppose F is an NLS with n2 - a points (a > 0) and n2 + n lines,
the longest of which has length n. If n is even and a2 +a(2n-3)-(2n 2 -2n)<0, or
if n is odd and a 2 +a(2n+1)-(2n Z +2n)<0, then F can be embedded in a
projective plane of order n .

Proof . From Lemma 3 .22, S = 0, so F is an (n + 1, 1)-design and can be embed-
ded in a projective plane of order n by Lemma 3 .18 . El

Corollary 3.24. If F is an NLS on v points and B(v) lines, where 9 < v < 134, then
F can be embedded in a projective plane of order n (where n2-n+2--v--n2+
n+1) .

Proof . The proof follows from Theorem 3.6, Lemma 3 .8, Lemma 3 .14, Theorem
3 .19 and Theorem 3 .23 . The first instance when the hypotheses of Theorem 3 .23
are violated is n = 12 and a = 9 .

5. Open problems

There are several open questions which arise in connection with finite linear
spaces . Doyen has asked, given v, the number of points, what are the possible
values for b, the number of lines? In this regard, P . Erdős and V.T . Sós have
shown that there is an absolute constant c so that for every b satisfying

cv si2 <b< (n ,

	

b #(2
V)-i, i=1,3,

2)

will occur as the number of lines . (This result is best possible part from the value
of c .)



62

	

P. Erdős et al.

Let (k,, k 2 , . . . , k b ) be a set of integers such that each k % 2 and Y_ ki(ki -1) _
v(v -1) for some integer v . Give reasonable necessary and sufficient conditions
that there exists a finite linear space on points whose line lengths are specified by
the k i .

Let (r,, r2i . . . , r„) be a set of positive integers such that each r i -- 2 . Give
reasonable necessary and sufficient conditions that there exist a finite linear space
on v points such that the ith point lies on precisely r i lines. (These questions are
clearly very difficult and probably cannot be answered with `side' conditions .)

Given a finite linear space F with v points and b lines satisfying v , b
n2 + n + 1 for some positive integer n, then for v large, all points of F must lie on
no more than n + 1 points . Given n, is the largest value of v such that there exists
a finite linear space on v points which contains a point which lies on at least n+2
lines? We conjecture that such a v must be less than n 2 -n+2 for n>3 .
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