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PSTRACT . Let a = (a n), x = (x n ) denote nonnegat�ve sequences ; x = (xn(n) ) denotes

the rearranged sequence determ�ned by the permutat�on IT, a , x denotes the dot product

�sn x n ; and S(a,x) denotes {a • x n :n �s a permuat�on of the pos�t�ve �ntegers) . We

Nxam�ne S(a,x) as a subset of the nonnegat�ve rea� ��ne �n certa�n spec�a� c�rcum-

btances . The ma�n resu�t �s that �f a n +

	

then S(a,x) _ [a • x,W] for every xn

	

0

dfand on�y �f an+1/an �s un�form�y bounded .

OV WORDS AND PHRASES . Dot rnoduct, seA,:es �eavrangements, condí.tíonaf conveAgenee .

14&2 MATHEMATICS SUBJECT CLASSIFICATION CODE . 40A05 .

An e�ementary c�ass�ca� resu�t of R�emann on �nf�n�te ser�es states that a cond�-

t�ona��y convergent ser�es that �s not abso�ute�y convergent can be rearranged to sum

to any extended rea� number . A s��ght�y s�m��ar group of quest�ons arose �n connec-

t�on w�th certa�n formu�as �n operator theory [1, p . 181] . Name�y, �f we �et a = (an ),

�°(xn ) denote any two non-negat�ve sequences and x n denote the sequence (x,(n) )

%ere n �s any permutat�on o£ the pos�t�ve �ntegers, then what can be sa�d about the

�et of non-negat�ve rea� numbers S(a,x) _ {a • x :n �s a permutat�on of the pos�t�ve

�ntegers} . More spec�f�ca��y, wh�ch subsets of the non-negat�ve rea� ��ne can be

rea��zed as the form S(a,x) for some such a and x ?

Var�ous facts about S(a,x) are obv�ous
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(1) S(a,x)C: [0,m] . The va�ues 0 and - may be obta�ned .

(2) If a and x are str�ct�y pos�t�ve sequences or are at most f�n�te�y zero,

then S(a,x) C (0,-] .

(3) Not a�� subsets of [0,m) are rea��zab�e as an S(a,x)

a card�na��ty argument . If c denotes the card�na��ty of [0,m], then the

card�na��ty of the c�ass of subsets of [O,-] �s 2c, but the card�na��ty

of the c�ass of sequences a and x �s c and thus the card�na��ty of the

subsets S(a,x) �s �ess than or equa� to e- c = c .

(4) If e�ther a or x �s f�n�te�y non-zero then S(a,x) �s countab�e .

(5) An examp�e : �f a = (0,2,0,2, . . .) and x = (3- n ), then S(a,x)

	

�s prec�se�y

the Cantor set except for those non-negat�ve rea� numbers whose ternary expan-

s�on cons�sts of a ta�� of 0's or a ta�� of 2's (� .e., a subset of the

rat�ona� numbers.),

It seems too amb�t�ous to cons�der the genera� quest�on at th�s t�me . For th�s

reason we sha�� restr�ct our attent�on to the cases when a �s a non-decreas�ng

sequence and x �s a non-�ncreas�ng sequence,

If a -- 0 or x = 0, the prob�em �s tr�v�a� and S(a,x) _ (0} . If a� ¢ 0

and xn 71. 0, the prob�em �s tr�v�a� and S(a,x) _ [m} . If an �s bounded by M,

then S(a,x) C [0, M L x n ] .

x n ~ 0, un�ess otherw�se spec�f�ed .

The Lemma that fo��ows �s a we��-�nown fact, but we g�ve a proof for comp�ete-

ness and because the proof conta�ns some of the �deas used �n the ma�n resu�t .

LEMMA. If a t and x L thenn

	

n

x

	

0, then

	

a E S(a,x) .n

set . Th�s fo��ows by

In any case, hereafter we sha�� assume a 1 - andn

S(a,x) C [a- x,-J . In add�t�on, a • x e S(a,x),

and �f a t - and x Y4 0 for a�� n or �f a t and a > 0 for somen

	

n

	

n

	

n

PROOF . It suff�ces to show that for every permutat�on n of the pos�t�ve

�ntegers, we have a • x < L anxn(n) or, equ�va�ent�y, a • x < L au(n)xn for

every 'n . The rest of the �emma �s c�ear .

Def�ne n� �n terms of n as fo��ows . Set

n and



It

X - X

	

> 0 . Therefore
1

	

n-1 (1)

Le tt�ng � -> - , we obta�n a • x < an • x .-
The ma�n quest�on of th�s paper �s : for wh�ch a,x w�th a t - and x ) 0n

	

n
f5 s(a,x) _ [a • x,w]?

The ma�n resu�t of th�s paper g�ves a part�a� answer . Name�y, we can char-

&cter�ze wh�ch an t - have the property that S(a,x) _ [a , x,-] for every

such that xn ~ 0 .

On f�rst s�ght, �t m�ght appear that S(a,x) can never be [a - X ' -] or

o

Montgomery .

> 0 .

proceed�ng �nduct�ve�y, we obta�n a sequence of permutat�ons �r � that f�x 1,2, . . .,�

for wh�ch aTT • x < an

	

• x . Hence, for every � ,
�

	

�-1
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n � (n) =

	

x(1)

	

n = n-1 (1)

rr(n) otherw�se
�s stra�ghtforward to ver�fy that n � �s a�so a permutat�on of the pos�t�ve

�ntegers (one-to-one and onto) wh�ch f�xes 1 .

	

We assert that a

	

x < an • xr

	

-
1

	

1-So see th�s, note that n (1) > 1 and n (1) > 1 .

L (a �r(n) -
% (n) )xn = (a,,(1) -% (1) )x1 + (a

	

-1

	

-a

	

-1

	

)x -11

	

1

	

n (rr

	

(1))

	

'T

	

rr

	

(1))

	

n

	

(1)

_ (a~ (1)

	

a1)
(x� -

x¶
-1 (1) )

�C

	

�

L� anxn

	

nF� an�(n)xn < a~� • x
n

	

< a T x

Hence an(1) - a � > 0 and

x

that

�t �s qu�te rare . The f�rst resu�t �n th�s d�rect�on was that �f a n = n for every

p, then S(a,x) _ [a • x,w] for every x such that xn ¢ 0 . That S(a,x) may not

pe [a •x ,m] was f�rst dec�ded by an examp�e due to Robert Young .

n

	

1-211+
� =22

	

and x = 2

	

Both resu�ts are unpub��shed . The succeed�ng resu�tsn

Name�y, �et

xad techn�ques are due to the wor� of the authors �n co��aborat�on w�th Hugh
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THEOREM 1 . (The Ma�n Theorem)

	

Let a = (an ) where an > 0 for every n and

a

	

~. Cons�der the fo��ow�ng cond�t�ons :n

(1) an+1/an �s bounded .

(2) For the non-negat�ve sequence x = (x
n

), there ex�st subsequences

and (x ) of a and x respect�ve�y such that
~c

(a) a x -r 0 as �

	

andn� m�

(b) L a x

	

=

	

.
� n� m�

(3)

	

s(a,x) _ [a • x,-] .

Then (1) �mp��es (2) for every str�ct�y pos�t�ve sequence x = (x
n
) that tends to 0,

A�so �f a t m and x 1 0 where a x # 0 for a�� n, then (2) �mp��es (3) .n

	

n

	

n n

PROOF . To prove that (1) �mp��es that (2) ho�ds for every str�ct�y pos�t�ve

sequence x = (xn ) that tends to 0, suppose a n+�/an < M for a�� n . We assert

that for every pos�t�ve �nteger �, there ex�st arb�trar��y �arge pos�t�ve �nteger:

n� and m� for wh�ch (�+�) -� < a x

	

< M�-1 . If th�s assert�on were true, theyn� m� -

c�ear�y we cou�d choose two str�ct�y �ncreas�ng subsequences of pos�t�ve �ntegers

(n� ) and (m� ) such that an x

	

as � -~ - to prove the assert�on .
� ~c

For each f�xed pos�t�ve �nteger �, (�+�) -� < a
n
x
m

< M�-1 �f and on�y �f-

	

-

x
m e [(an (�+�)) -1

	

M(a
n
�) -1 1 . A�� we need show �s that there ex�st arb�trar��y

�arge n,m for wh�ch x e [(a (�+�)) -� , M(a �) -1 ]1
m

	

n

	

n

Suppose to the contrary that there ex�sts a pos�t�ve �nteger

x
m

	

[(a
n
(�+�)) -1 , M(a n �) -1 1 for every n,m > N. In other words, for every m > 1

-

	

-

xm

	

U [(a (�+�)) -� , M(a �)(Note : Th�s wou�d �mp�y that U [(a
n
(�+�))

n>N

	

n

	

n

	

n >N

M(a �)-11 cannot conta�n any �nterva� of the form (0,E) for some E
n

x . 0 as mm

used to show that for every N, there ex�sts E > 0 such that

(O,E) G U ((an(�+�))-�, M(an�) -1 1 .)a n >
N

For each m > N, �et n

	

denote the �east pos�t�ve �nteger n such thatm

M(an+1�)-1 < xm , wh�ch ex�sts s�nce an W as n m and hence M(an+� �) -1 y

N for wh�ch

> 0,

(an 1
�

s�nce

However, th�s �s not the case . Indeed, the proof be�ow can b



as n

	

a .

	

For m suff�c�ent�y �arge, we have

A�so, s�nce M(a n +��) -1
m

and hence+
an +1
M

and for these m, xm

we have xm < M (a r � )
�

M ( an +��) -1

	

(an (�+�)) -1

m

xm

n m

¢ ((an (�+�)) -1 ,

-

the �emma we have that 5(a,x) _
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and xm , 0 as m +

Therefore n > N
M -

M ( a �) -1 ) .nm -and x V Ha (�+�)) 1
�n

	

nm

�) -1M(aM( .,,, +1In
for �nf�n�te�y

m
an +1/an > M(�+�)/� - M
M

	

m
that an+�/an < M for a�� n, Hence (2) �s proved .

�nf�n�te�y many m, we have
m

	

r� m

m, or equ�va�ent�y,

for �nf�n�te�y many m, wh�ch contrad�cts our assumpt�on

To prove (2)

	

(3) whenever an t

	

and xn

	

0, suppose (2) ho�ds for a

and x, so that there ex�st subsequences (a ) 'and (x ) such a x

	

0 asn�

	

�n�

	

n� �n�
that w�thout �oss of genera��ty we may�- -, and 4an xn

	

w . We f�rst assert
� ~c

assume that a , x = ~a n xn <
m, To see th�s

(-} ,

many

and hence (3) ho�ds .

Assum�ng that

	

Sanxn <

	

we next assert that w�thout �oss of genera��ty we

can assume that n � - In� for every � . To see th�s, �et Z 1 denote the set

Then{� : n � > �n�
} and �et Z2 denote the set (� : n� < �n � } .

m=

	

a x

	

= L

	

a X

	

+ F

	

á X� n� �n�

	

� t Z 1 r � '�

	

� E Z2 r � �n�

But

	

a x

	

<

	

a x

	

S a x

	

Therefore
� E Z2 n� �n� - � Z2 n� n�

	

n n r

determ�ne subsequences of (n � ) and (m� ), wh�ch for s�mp��c�ty we aga�n ca�� (n � )

and (�n � ), respect�ve�y, by ta��ng on�y those entr�es n � , �n� (�n �ncreas�ng order)

for wh�ch � E Z 1 .

	

Th�s g�ves us subsequences (a I ) and (x )

	

a and x
�n��

wh�ch sat�sfy cond�t�ons a ar�a b �n the 2 r�d cond�t�on of the theorem, and �n

add�t�on sat�sfy n� ' m� for a�� � .

�,j .

Next we assert that w�thout

M(a

	

�) -1 < x < M(a �)
-1

nm+1

	

m

	

n�

ewe have m w �mp��es

for a�� m suff�c�ent�y �arge,

Hence, for

M(an �) -1 Jj
m

suppose a • x = ~a x =n n

are str�ct�y �ncreas�ng (a property of subsequences) . Therefore �f

�nf�n�te�y many

Therefore, for

m,

x

	

(a (�+�)) -1

	

Th�s �mp��es that

Then by

a x

	

=

	

Let
� L Z � n� nÁ

�oss of genera��ty we may assume n � # mJ
. for a��

To see th�s, note that we have n �

	

m� for a�� � and that < n > and < m >�

	

�

for

413
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some �,7, then � <

	

and n� # m� for a�� � # j . That �s, n� can occur at

most once among the m.'s . Put (n1 'm1

	

(n� ,m� ) e S � where � � +� �s the
J

	

1

	

1
�east pos�t�ve �nteger such that m�+1 = n� for some�

where(n�1+1' M� +1)' . . .,(n� m� ) e S2
1

	

2 '

	

2

ex�sts, such that m�2+1 = n� for some

(n� , m� ) e S I such that � 3+1 �s the
3

	

3
that m� +1 - n� for some � < � � or

3
no such �east pos�t�ve �nteger ex�sts,

both S 1 ,S2 are �nf�n�te . For e�ther

e S 1 or S 2 . Then c�ear�y S1,S2 �s a

case, no

and �n each set, no n� appears as an mj .

•

	

L a x and so e�ther F a x = or
S2 n� m�

	

S I n� M�

S2 accord�ng�y we produce the sequence (n� ,m� )

� 2 +1 �s the

��+� < � < � 2+1 . Put (n� +1' m� +1 ) ' .

	

'2

	

2
�nteger, �f �t ex�sts, such�east pos�t�ve

�2 < � < �3+1 . Cont�nu�ng �n th�s way, �f

then e�ther S, or S 2 �s f�n�te . Otherw�s

d�sjo�nt part�t�on of the set of a��
(n �' m�

sat�sfy�ng a) and b) �n Theorem 1 and a�so sat�sfy�ng n � # m
J
. for a�� �,j and

> m � for every � .) .n�

•

	

a xn� M�
•

	

a * x <

Now cons�der the

•

	

< a - a < an�

	

nI� - n �
-7 0 as �

and

'

	

a x

	

< a x < - , and--� m� m� -

We sha�� now show that for every e

ser�es F (a

	

- a )(x

	

x ) .� n�

	

~c

	

I c

	

n�
0 < x -

M�
x

	

< xn� - In�
Furthermore, s�nce

and so 0 <

a� n�xm� -

Yam x

	

< Fa x� n�

	

n� n�

y (a

	

- a ) (x

	

- x ) = F (a x

	

+ a x

	

- a x

	

- a x )
� n�

	

m� m�

	

n�

	

� n� m�

	

m� n�

	

n� n�

	

m� m�

> 0, there ex�sts

� < � � + 1 . Put

�east pos�t�ve �nteger, �f �t

n� = m
J

. when both

Therefore

	

Fa x = F a x
n� m�

	

S1 n� m�

a x =

	

Choos�ng S orS2 n� m�

	

1

w�th the des�red propert�es, (� .e .

S�nce n � > M�'
we have

(a

	

- a )(x

	

- x )n�

	

In�

	

r

	

n�

am�xn� ? 0, S.� an� xn�

, we have

a subsequence (�n )

t�ve �ntegers such that ~ = F

	

(a

	

- a )(x

	

x ) . Th�s fo��ows from the
� e {� } n�

	

m�

	

In�

	

n�n
fo��ow�ng more genera� fact .

suppose (d(�)) �s a non-negat�ve sequence for wh�ch d(�) - 0 as �

(n�,m�),(n � m3 )

of pos�-

- an(

Id (�) _

	

We assert that very every e > 0, there ex�sts a subsequence (�n ) suc�

that

	

_ ~d(� ) . The proof of th�s fact proceeds a�ong the same ��nes as the
n

proof

	

nn rearrangments of cond�t�ona��y convergent ser�es . F�x



E > 0 and choose n � > N, so that d(�) < e for every � > N I , and so that n �
n

�s the greatest �nteger greater than
n�

	

n 1+1

F d(�) < E _

	

d(�) .
�--N1

	

�=N 1

choose 02 > n � so that d(�)

n2 to be the �argest �nteger

n �

	

n 2

G

choose

j
�=N 1

	

�=N 2
d(�) . Hence d(�) < E

Th�s can

< (E -

�n th�s way, we obta�n sequences (N p )

p c-1
> N > n

	

0 < d(�) < (e -
nP - P

	

p-1

	

-

	

-

� > N , and

Th�s �mp��es that

so th at

n
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q=1

n �

Y
�=N1

q

�=N
q

np

	

p-1
d(�) < E - �

	

d(�)
�=NP

	

q=1 �=Nq

n
p

	

q
0 < E -

	

£

	

£

	

d(�) < d(n + 1)
q=1 �=N

	

p
q

q
Therefore c =

	

S

	

d(�) . Hence, �f we choose
q=1 �=N

4
sequence of pos�t�ve �ntegers
m

U {� ; NP < � < np } , we have E = Fd(�n ) .
p=1

negat�ve, tends to 0, and sums to

ex�st subsequences of (n� ) and (m�), wh�ch we sha��

( ), for wh�ch E = S� (a

	

-
am�

)(x
M�

- x )
~c

	

n�

	

n�

Now reca�� that we w�sh to show that S(a,x) = ja

C 1
N 1 such that L

	

d(�) < E . Hence
�=N 1

be done s�nce d(�) -+ 0 as �-; m and d(�) _ .
n �

d(�))/2 for every � > N 2 and then
�=N I

	

n 2

greater than N 2 such that

	

S

	

d(�) < E -

n2+1

	

�-N2

d(�) <

	

d(�) . Proceed�ng �nduct�ve�y
�=N2

and (n ) of pos�t�ve �ntegers for wh�ch
n

	

p

d(�))/2p-� for every p and every

n

p

+1

<

	

L
`

d(�) .
�=N

P

P-C1 nq
<

	

(E - L

	

1

	

d(�))/2p-1
q=1 �=N

q

< c/2P-1 + 0 as p y ~ .

415

(� )n
to be the str�ct�y �ncreas�ng

�, where � �s ta�en to range over the set

App�y�ng th�s resu�t to the sequence (a

	

- a )(x

	

- x ), s�nce �t �s non-n �

	

m� m�

	

n�

we obta�n that for every E > 0, there

aga�n denote by (n� ) and

x, -1 . We a�ready �now

a •x and m E S(a,x) . Suppose a •x < r <- . It suff�ces to show r E S(a,x) .

Let E = r - a •x and choose subsequences wh�ch we aga�n ca�� (n� ) and (m� )
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C = L (an - a ) (x

	

- x ) .� �

	

m�

	

In�

	

n�

We now choose tr, the requ�s�te permutat�on on Z+ , as fo��ows . Let r(n� ) - m�

and rr(In�) = n� for each �, and �et r f�x a�� other �ntegers n (� .e ., those

n for wh�ch n ¢ n� ,m� for every �) . The permutat�on r �s we��-def�ned s�nce

n� # m
7

. for every �,j . Let Zr denote the set , n : n = n� or n = m� fcr some

� ) . Hence TI(n) = n for a�� n d Z

	

Then

n an xr(n) n11Z

_

	

)

	

a x + ? (a x

	

+ a x ) + (a

	

a ) (x

	

x ))
n Z n n � n� n�

	

ff� c m�

	

n�

	

M� m�

	

n�

a x + L (a

	

- a )(X

	

- x )n n �

	

n�

	

In�

	

m�

	

n�

and so r E S(a,x), wh�ch proves (3) .

THEOREM 2 . Let a = (a n ) where a 1 > 0 and a n t m . Then a n+1 /a n �s

bounded �f and on�y �f, for every x = (x n ) for wh�ch xn + 0, S(a,x) _ [a* x,- ) .

PROOF . If an+�/an �s bounded, then by Theorem 1, �f xn # 0, then x = (x n )

sat�sf�es cond�t�on (2) of the theorem . A�so by Theorem 1, s�nce an t - and

cond�t�on (3) of the theorem �s sat�sf�ed by x . That �s, S(a,x) _ (a • x, m�� .

Converse�y, �f S(a,x) _ [a -x,- ) for every x = (xn ) for wh�ch xn 1 0, we

c�a�m that an+�/an must rema�n bounded .

Suppose to the contrary that an+�/an �s not bounded. Let h(n) denote the

�east pos�t�ve �nteger � for wh�ch � > n and a�+�/a� > 4 n . C�ear�y h(n) �s

h -1

	

+
a non-decreas�ng funct�on of n . Def�ne xn = (ah(n) 3 )

	

Then xn

	

0 . Lett�ng

X= (x ), we c�a�m that S(a,x) 74 [a - x,-) . In fact, we c�a�m that a • x < 1 but
n

� ~ S(a,x) . Indeed, a • x = Lanxn = Lan(ah(n)3n)-1 < 13-11 = 1/2 < 1 . Furthermore

�ett�ng r be any permuat�on of Z + , �f r-1 (�) > h(�) for some �, then

a x +~ (a x

	

+ a x )n n � n� m�

	

m� n�

> 4� 3-� > 1

Q.E .D .

S a x

	

> a

	

x

	

> a

	

x = a

	

(a

	

3�) -1
n r(n)

	

r-1 (�) �

	

h(�)+1 �

	

h(�)+1 h(�)



(n any case, L anxn (n) 31 1, hence 1

	

S (a, x) .

	

Q . E. D .

NOTE . In the proof of Theorem 1, each t�me we constructed a permutat�on n to

so�ve the equat�on �anxn(n) = r, �t suff�ced to use on�y d�sjo�nt 2-cyc�es . That

�s,each such n that we constructed was the product of d�sjo�nt 2-cyc�es . Th�s

6eems odd and �eads us to as� �f there are any c�rcumstances �n wh�ch the use of

�nf�n�te-cyc�es or n-cyc�es y�e�ds more . In other words, �s �t a�ways true that

S(a,x) �s the same as t San xn(n) : n �s a permutat�on of Z

	

wh�ch �s a product of

d�sjo�nt 2-cyc�es) ?

The fo��ow�ng quest�on seems ���e�y to have an aff�rmat�ve answer . If so, th�s

wou�d g�ve a character�zat�on for those sequences a and x where an t -, a� > 0,

and xn

	

0, wh�ch sat�sfy s(a,x) _ [a • x,- ) . However, �t rema�ns unso�ved .

QUESTION 1 . If a and x are as above, does (3)

	

(2) �n Theorem 1?

F�na��y, we w�sh to po�nt out that Theorems 1 and 2 �mp�y ana�ogous theorems �n

Yh�ch a and x sw�tch ro�es . Indeed,the pzuots of the fo��ow�ng two coro��ar�es

fo��ow natura��y a�ong the same ��nes as those of Theorems 1 and 2 .

COROLLARY 3 . Let x = (x ) where x > 0 for a�� n, and x -+ 0 as nn

	

n

	

n

ons�der the fo��ow�ng cond�t�ons .

(1) xn/xn+1 �s bounded be�ow .

(2) For the non-negat�ve sequence a = (an ), there ex�st subsequences (an )
�

DOT PRODUCT REARRANGEMENTS
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;��the other hand, �f n -1 (�) < h(�) for every �, then

Lanxn(n) = Fan-1(n)x_ < ah(n)xn - F3 -n = 1/2 < 1 .

Then (1) �mp��es that (2)

(hat tends to m

and (x ) of a ar�d x, respect�ve�y, such that
M�

a) a x

	

0 as � .

	

andn� m�

b} 'a x

	

=� n� m�

ho�ds for every str�ct�y pos�t�ve sequence a = (a n )
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COROLLARY 4 .

	

Let x = (x ) be a non-negat�ve sequence . Thenn

bounded be�ow �f and on�y �f, for every a = (a n ) for wh�ch a n T - and a � > 0,

S(a,x) _ [a • x, m ] .

QUESTION 2 . Is there anyth�ng to be sa�d about the qua��tat�ve nature of

S(a,x)? Is �t a�ways a Bore� set, measurab�e, F
a

, G
G

?
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