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@ﬂrmcr. Let a= (an), X = (xn) denote nonnegative sequences; x= (x” fn)] denotes

the rearranged sequence determined by the permutation m, a* x denotes the dot product
tanx ; and S(a,x) denotes {a - x s 7 is a permuation of the positive integers}. We
axamine S(a,x) as a subset of the nonnegative real line in certain special circum—
Mtances. The main result is that if an+m, then S{a,x) = [a* x,=) for every Xn ; 0
It and only if a /a_ is uniformly bounded.
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An elementary classical result of Riemann on infinite series states that a condi-
tionally convergent series that is not absolutely convergent can be rearranged to sum
to any extended real number. A slightly similar group of questions arose in connec-
tion with certain formulas in operator theory [1, p. 181]. Namely, if we let a= (an).
l=(xn) denote any two non-negative seguences and X denote the sequence (xﬂ{n))
Where # is any permutation of the positive integers, then what can be said about the
Yet of non-negative real numbers S(a,x) = {a+*x :7 is a permutation of the positive
ttegers}. More specifically, which subsets of the non-negative real line can be
ttalized as the form S(a,x) for some such a and x?

Various facts about S(a,x) are obvious
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(1) S(a,x) [0,=]. The values 0 and = may be obtained.

(2) I1f a and x are strictly positive seguences or are at most finitely zero,
then Sia,x) C (0,=].

(3) Not all subsets of [0,«] are realizable as an S(a,x) set. This follows by
a cardinality argument. If ¢ denotes the cardinality of [0,=], then the
cardinality of the class of subsets of [0,=] 1is 3¢ , but the cardinality
of the class of sequences a and x is ¢ and thus the cardinality of the
subsets S(a,x) is less than or egqual to c+*c = ¢ .

{4) If either a or x is finitely non-zero then S(a,x) 1is countable.

(5) An example: if a = (0,2,0,2,...) and x = (3-n}. then S(a,x) is precisely
the Cantor set except for those non-negative real numbers whose termary expan-

sion consists of a tail of 0's or a tail of 2's (i.e., a subset of the

rational numbers.),

It seems too ambitious to consider the general guestion at this time. For this
reason we shall restrict our attention to the cases when a 1s a non-decreasing
sequence and x 1s a non-increasing seguence,

If a0 or x =0, the problem is trivial and S(a,x) = {0}. If a #0
and xn;& 0, the problem is trivial and S(a,x) = {=} . If an is bounded by M,
then S(a,x) (0, Mﬁjxn]. In any case, hereafter we shall assume an + = and
X 4 0, unless otherwise specified.

The Lemma that follows is a well-known fact, but we give a proof for complete-
ness and because the proof contains some of the ideas used in the main result.

LEMMA. If a t and x ¥ then S(a,x)¢ [a* x,«]. In addition, a-*x e S(a,x),
and if an + = and xn # 0 for all n or if an t and an > 0 for some n and
xn # 0, then < g S(a,x).

PROOF. It suffices to show that for every permutation = of the positive
integers, we have a-*x < anx“(“) or, eguivalently, a-*x 5_; aw{nlxn for

every 7. The rest of the lemma is clear.

Define nl in terms of 1© as follows. Set
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1 n=1

I
=
-
=
—

ultnl = n(l) n
n{n) otherwise

it is straightforward to verify that 171 is also a permutation of the positive

integers (one-to-cne and onto) which fixes 1. We assert that a_ *x < a *x
m

—y
s 1
f see this, note that w(l) > 1 and = l[l} * 1. Hence a (1) - al > 0 and
= £ " s
‘1 -X -1 > 0. Therefore
T (1)
E[a - a Ix = (a -a Jx_ + (a r -a _ )x _
w(n) 1) n(l1) nltl) 1 an l“” n 1(1,'-) o 1{1]
= (a -—a )({x -x )
m(l) 1 5 1{1)
> 0

proceeding inductively, we obtain a sequence of permutations ﬂk that fix 1,2,...,k

ki)

for which a11 Ll RN | * %X . Hence, for every k,
k k=1

I~

k
iy anxn - nzl ank(n)xn = a'nk —
letting k - =, we obtain a'x:a"'x %
The main question of this paper is: for which a,x with an t = and xn + 0
§s Sla,x) = la~-x,=]?
The main result of this paper gives a partial answer. Namely, we can char-

acterize which a t = have the property that S(a,x) = [a* x,»2] for every x

such that Xn ;. 0.

on first sight, it might appear that S(a,x] can never be |[a* x,~] or that
jt is quite rare. The first result in this direction was that if 2 =0 for every
p, then S(a,x)] = [a* x,~] for every x such that xn # 0. That S(a,x) may not

be [a*x,®)] was first decided by an example due to Robert Young. Namely, let

n n+l
2 and x = 2 2 . Both results are unpublished. The succeeding results

ad technigues are due to the work of the authors in collaboration with Hugh

Katgomery.
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THEOREM 1. (The Main Theorem) Let a = (an} where an > 0 for every n andg
a —+ ®=. Consider the following conditions:
a i ded.
(1) an+l/ n 18 bounded

(2) For the non-negative seguence x = (xn), there exist subsequences (an )

k
and (x ) of a and x respectively such that
(a] a x =+0 as k + = , and
n
k
k) Ja x ==
k ™ ™

{3) s(a,x} = la*rx,=]

Then (1) implies (2)for every strictly positive seguence x=‘(xn} that tends to 0.

Also if an t+ = and xn + 0 where an.xn #0 for all n, then (2) implies (3).

PROOF. To prove that (1) implies that (2) holds for every strictly positive

sequence X = {xn] that tends to 0, suppose an+l/an <M for all n . We assert

that for every positive integer k, there exist arbitrarily large positive integers
; -1 -1 : ;
n and m for which (k+1) < a X < Mk . If this assertion were true, ther
3 = % % 2
k '
clearly we could choose two strictly increasing subsequences of positive integers

(n.}) and (m ) such that a x -+ 0 as k =+ = to prove the assertion.
k k n D‘\k
k
For each fixed positive integer k, (k+l)~1 z_anxn_i Mkﬁl if and only if

* ¥ M(anki-l]. All we need show is that there exist arbitrarily

Lowa ™.
n

x_ e [la_(k+1))
m n
large n,m for which xm £ [(an(k+1))_

Suppose to the contrary that there exists a positive integer N for which

1

xm Z [lan{k+lJ)_ , M(ankl-ll for every n,m > N. In other words, for every m >

x ¢ U [(anuum"l. M(a k)" 1]. (Note: This would imply that \J [:an[mm"
T n3N n n>N

M{aﬂk)-l] cannot contain any interval of the form (0,e) for some & > 0, since
x + 0 as m=+ « ., However, this is not the case. Indeed, the proof below can b
m

used to show that for every N, there exists & > 0 such that

©ere U e e ™, ma ™.

n>N

For each m > N, let n denote the least positive integer n such that
&= m

= i . ) -1
k) 1 < xm , which exists since an + «© as n <+« and hence H(an k) +

M(a *1

n+l
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as n+=, For m sufficiently large, we have Ml(a klnl < x < Ma_ k)
n_+1 — n

1

1

Also, since M(a“ k)77 < X and xm +0 as m- =, we have m -+ « implies

m+1
LIy + « and hence T There fore = N for all m sufficiently large,
5 =
m
and for these m, L ¢ [(an (k+l]) > , Mta k) 1]. Hence, for infinitely many m,
s 2 m oy -1
we have x < M(a k) and x_ ¢ [la_ (k+1)) , Mla k) 7). Therefore, for
m - n m n n
k m m
infinitely many m, we have M{a ”k}—l < x < (a (k+1})-1 . This implies that
) i n m L
u(an +lk] < {dn (k+1)) for infinitely many m, or equivalently,
m m
‘n +1/an > M(k+l)/k » M for infinitely many m, which contradicts our assumption
m m

that an+1/an <M for all n. Hence (2) is proved.

To prove (2) =+ (3) whenever an1 ™ and xn ; 0, suppose (2) holds for a

and X, SO that there exist subsequences (a_ ) ‘and (x ) such a 0 as

x -
"k " o
k+=, and Ekan xmk = =, We first assert that without loss of generality we may

assume that a-+x = Zanxn < ®, To see this suppose a-+* x = ):a xn =w ., Then by
n

the lemma we have that S(a,x) = {«} , and hence (3) holds.

Assuming that Eanxn < ®w, we next assert that without loss of generality we

can assume that nk - nxﬂ for every k. To see this, let 21 denote the set

{Ic:nk > mk} and let z, denote the set {k: ns rnkl . 'Then

.=

Kan Xn = ¥ a % + i a x
x ™ kez x ™ kez, "x ™

1 2
But a x < )_ a x - }_ a X < «, Therefore F a x = w, Let Z
L = =
kez, "k "k kez, "k onn kez, "k ™ L
2 2 1
determine subsequences of (nk} and {mk.}, whirch for simplicity we again call {nkl

and {mki. respectively, by taking only those entries nk ' mk {in increasing order)
1’ This glves us subsSeguences {dn J and (x )} of a and x
k
2 A it d . nd i
which satisfy conditions a and b in the 2 condition of the theorem, and in

for which k ¢ 2

ition satisf £ all k.
addition Y nk > mk or a

Next we assert that without loss of gencrality we may assume n # mJ for all
k,j. To see this, note that we have no>om for all k and that (nk > and < mk>

are strictly increasing (a property of subsegquences). Therefore if n = rni for
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some k,j, then k < i and nk # m, for all i # j. That is, nk can occur at

1

least positive integer such that mkli-l = nk for some k < kl + 1. Put
(nklﬂ" mk]_ﬂ}‘"”{nkz'mkz) £ 52 where k2+1 is the least positive integer, if it

[ = s
most once among the mj 5. Put (nl.mlj,..., {nkl.mkl) € Sl where k +1 1is the

exists, such that mk2+1 =n, for some ki*l < k < k,*l. Put {nk2+1. mk2+11.....

X’ mk Y Sl such that k3+1 is the least positive integer, if it exists, such
3 3

that mk3+1 =n, for some k < kl or kz <k < k3+l. Continuing in this way, 1f

{n

no such least positive integer exists, then either 51 or 52 is finite. Otherwis

both 51,52 are infinite. For either case, no nk = mj when both (nk.nﬁ‘}.(nj,mj]

is a disjoint partition of the set of all (nk,mk

€ S, or S_,. Then clearly 51,52

1 2

and in each set, no n appears as an m, . Therefore = = za X = F an X+
3 e 8, % M
+ [ an X , and so either z a x = = or E an x = @ . Choosing Sl or
s, "k M 5, "x ™ 5, "k "

52 accordingly we produce the seguence (nk'mk) with the desired properties, (1l.e.

satisfying a) and b) in Theorem 1 and also satisfying nk # mj for all k,j and

> £ «d s
n > m for every k.)

Now consider the series zk(a -a Jlx = x ). Since n,>m., we have
B % T K

0 sa =a £a and 0<x -x <x , andso O_‘f_(an-am)(xn—xl

X e Pk M BT B 3 ko Tk
<a x =0 as k== Furthemmore, since ) a x == ,a x >0, }-kan X,

x Mk ; k}ﬁc "% N k "k
<a*x ' a x fa*x <%, and Ja_ X <j)a x <= , we have

kom M Mk T Tk
J.ta -a )ix —xl=i(ax +a x =-a x =a x )
kome M W Ty komeme MM e M
= =

We shall now show that for every € > 0, there exists a subsequence (knl of posi-

tive integers such that ¢ = f (an G ™ i = x ). This follows from the
ke ik } "k k" K

following more general fact.
Suppose (d(k)) 1is a non-negative sequence for which d(k) =0 as k * = an
id(kl = = , We assert that very every ¢ > 0, there exists a subsequence (kn} suct

that . = id(knl . The proof of this fact proceeds along the same lines as the

proof of kiem. ot -=w an rearranagments of conditionally convergent series. Fix
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¢ > 0 and choose n 2N, so that d(k) < ¢

1

is the greatest integer greater than N

nl nl+l

1

for every k > Nl'

such that I

and so that n1
n

1
d(k) < £ . Hence

k=N1

415

J atk) < ¢ < ] d(k). This can be done since d(k) + 0 as k+= and d(k) == .
k=N k=N n

1 1 1
Choose ;}2 > nl so that d(k) < (g - Z

k=N 1

to be the largest integer greater than N

d(k))/2 for every k > N and then

n
choose n, such that E d(k) <& -
nl nz nl n
J dk). Hence [ dtk) <e- )
k=N, k=N, k=N

2
+1 2

2
atk) < §  dtk).

1 ol

(n )
P

Proceeding inductively

in this way, we obtain sequences {Npl and of positive integers for which
Pzl g
0<dk) ¢ (e~ | )

d(k}l,/Zp-l for every p and every

Pzl
<e= 1

P
Y dx)

k=N

P

This implies that
n
P 9 :.1
0<e - I ¥ d(k) < d(n_+ 1) =<

q=1 k=N_ p

”
™
~
N
'!i)
-

n
w

q
fherefore ¢ = | J d(k).

Hence, if we choose (k ) to be the strictly increasing
q=1 k=Nq R

sequence of positive integers k, where k 1s taken to range over the set

pgl k: N <k <n}, wehave ¢ = Jatk )

(a - a J)ix -~ X ), since it is non-

T

we cbtain that for every

Applying this result to the seguence

negative, tends to 0O, and sums to =« , £ > 0, there

{n )

K and

exist subsequences of (nkl and {mkl . which we shall again denote by
(m ), for which & =): fa =-a Jix =-x ).
" k o mom n,

Now recall that we wish to show that S(a,x) = [a*x,®]. We already know

S(a,x).

Kmk)

a*x and = ¢ S(a,x). Suppose a*x < r <=, It suffices to show r ¢

Let € = r - a*x and choose subseguences which we again call {nkJ and

so that
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e=)(a -a )x -x )

ka, Bom,
We now choose 7, the requisite permutation on z*. as follows. Let n{nk} = mk
and n(mk} = nk for each k, and let n fix all other integers n (l.e., those

n for which n # nk,mk for every k). The permutation 7 is well-defined since

; fa s = =
ni # mj for every 1,j. Let Z“ denote the set in: n nk or n mk fcr some

k}. Hence 1n(n) =n for all n ¥ Z . Then
E & % iy ™ I ax + { (a x +a x )
n "oavz ke ™% ™% ™%
= ) ax + : la x +a x )+r(a -a Jix - x ))
nez k "™ "k " o™ & 'k
= E anx + I (a =-a )ix. = X )
"ok % ™% ™ k
= a*xX+€ =r,
and so r € Sla,x), which proves (3). Q.E.D.

THEOREM 2. Let a= (a ) where a >0 and a t «. Then a J/a 1s
n 1 n ntl” n

; ) ¥

bounded if and only if, for every x = (xn} for which X 0, Sla,x) = l[a*x,=].
. ¥

PROOF. If a /a is bounded, then by Theorem 1, 1F x 0, then x = (x)

n+l n n# n

satisfies condition (2) of the theorem. Also by Theorem 1, since a t @ and al >

condition (3) of the theorem is satisfied by x. That is, S(a,x) = [a*x, =].

Conversely, if S(a,x) = [a-x,=] for every x = (an for which x ; O, we
claim that a___/a_ must remain bounded.
n+l n

Suppose to the contrary that an+1/an is not bounded. Let h(n) dencte the

least positive integer k for which k > n and akfl/ak % 4% Clearly hin) 1is
a non-decreasing function of n. Define x_ = (a 3")-1 . Then x " by Letting
n hin) n#

X = txn}, we claim that S{a,x) # l[a=x,*]. In fact, we claim that a*x <1 but

_ n, =1 -n _ ~ i
1 ¢ Sla,x). Indeed, a*x = [anxn = ):an(ah‘n’s )" < §3™ =1/2 < 1. Furthermore

letting 7 be any permuation of z" i Af N-ltk} > h(k) for some k, then

k,~1

x )

(k)

| w

a0+ = hu+1Bh?
Kk

E anxn(nl 2 a"—l k

4 >1.
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@ the other hand, if ﬂwl(k] < h(k) for every k, then

= < = qn= <
Xanxn(n)-[aﬂ_ltn)xn 5 73 /2 <1

In any case, Eanxntn) # 1, hence 1 ¢ S{a,x). 0.E.D.

NOTE. 1In the proof of Theorem 1, each time we constructed a permutation = to
wlve the egquation Xanxn(nj = r, 1it sufficed to use only disjoint 2-cycles. That
ijs, each such 1© that we constructed was the product of disjoint 2-cycles. This
seems odd and leads us to ask if there are any circumstances in which the use of
jpfinite-cycles or n-cycles yields more. In other words, 1s it always true that
sla,x) is the same as { Eanxﬂ(n) : 1 is a permutation of Z+ which is a product of
lisjoint 2-cycles} ?

The following question seems likely to have an affirmative answer. If so, this

wuld give a characterization for those sequences a and x where an t =, al > 0,

ad xn ; 0, which satisfy Sla,x) = [a* x,=]. However, it remains unsolved.
QUESTION 1. If a and x are as above, does (3) = (2) in Theorem 1?

Finally, we wish to point out that Theorems 1 and 2 imply analogous theorems in
sich a and x switch roles. Indeed, the proofs of the following two corcllaries

follow naturally along the same lines as those of Theorems 1 and 2.

COROLLARY 3. Let x = (xn) where xn > 0 for all n, and xn + 0 as n -+ w,
wnsider the following conditions.

(1) xn/xn+l is bounded below.

(2) For the non-negative segquence a = (an}, there exist subseguences (an )
k

and (x ) of a and x, respectively, such that

a) a x + 0 as k » =, and

-]

b) E a. k. °F
koo om
Then (1) implies that (2) holds for every strictly positive sequence a = {an}

pat tends to = .
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COROLLARY 4. et x = (xn} be a non-negative sequence. Then x\/xn+l is
I

bounded below if and only if, for every a = (an) for which a tw and a, > 0,

Sla,x) = [a»x,=].

QUESTION 2. Is there anything to be said about the qualitative nature of

S{a,x)? 1Is it always a Borel set, measurable, Fu' Go ?
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