Some asymptotic formulas on generalized divisor functions, III

by

P. Erdös and A. Sárközy (Budapest)

1. Throughout this paper, we use the following notation:

 $c_1, c_2, \ldots, X_0, X_1, \ldots$ denote positive absolute constants. We denote the number of elements of the finite set S by |S|. We write $e^x = \exp(x)$. We denote the least prime factor of n by p(n), while the greatest prime factor of n is denoted by P(n). We write $p^a ||n|$ if $p^a | n|$ but $p^{a+1} \not\in n$. $\omega(n)$ denotes the number of all the prime factors of n so that $\omega(n) = \sum_{p^a ||n|} a$ and

we write

$$\omega(n, x, y) = \sum_{\substack{p^a \parallel n \ x$$

The divisor function is denoted by d(n):

$$d(n) = \sum_{d|n} 1.$$

Let A be a finite or infinite sequence of positive integers $a_1 < a_2 < \dots$ Then we write

$$N_A(x) = \sum_{\substack{a \in A \\ a \leqslant x}} 1, \quad f_A(x) = \sum_{\substack{a \in A \\ a \leqslant x}} \frac{1}{a}, \quad d_A(n) = \sum_{\substack{a \in A \\ a \mid n}} 1$$

(in other words, $d_A(n)$ denotes the number of divisors amongst the a_i 's) and

$$D_A(x) = \max_{1 \le n \le x} d_A(x).$$

The aim of this series is to investigate the function $D_A(x)$. (See [1] and [2]; see also Hall [4].) Clearly,

$$\sum_{1 \leq n \leq x} d_A(n) = x f_A(x) + O(x).$$

Thus if $f_A(x)$ is large then we have $D_A(x)/f_A(x) \ge 1$. In Part II of this

series (see [2]), we showed that $f_A(x) \rightarrow +\infty$ implies that

$$\lim_{x\to+\infty}\sup D_A(x)/f_A(x) = +\infty,$$

in fact, we have

$$\lim_{x \to +\infty} \sup D_A(x) \exp\left(c_1 (\log f_A(x))^2\right) = +\infty.$$

We proved this by showing that if $f_A(x)$ is large (in fact, it is sufficient to assume that $N_A(x)$ is large) then there exists an integer y such that $x \leq y \leq \exp((\log x)^2)$ and $D_A(y)$ is large. In this paper, our aim is to prove that if we have more information about $f_A(x)$ then $D_A(x)/f_A(x)$ must be large for the same x. In fact we prove that

THEOREM 1. For all $\omega > 0$ and for $x > X_0(\omega)$,

 $f_{\mathcal{A}}(x) > (\log \log x)^{20}$

implies that

$$(2) D_A(x) > \omega f_A(x).$$

(Note that by Theorem 1 in [1], the lower bound $(\log \log x)^{20}$ in (1) cannot be replaced by $\log \log x$.)

Sections 2 and 3 are devoted to the proof of this theorem while in Sections 4 and 5 we discuss some other related results.

2. In order to prove Theorem 1, we need some lemmas.

LEMMA 1. There exists an absolute constant c_2 such that for all $u \ge 0$ and $y \ge 1$ we have

(3)
$$\sum_{\substack{u < n \leq uy \\ p(n) > y}} \frac{1}{n} < c_2.$$

Proof. Lemma 1 can be proved easily by using Brun's sieve. In fact, (3) is trivial for $u \leq 1$ (since in this case, the left-hand side is equal to 0), while for u > 1, (3) is a consequence of [7], p. 53, Theorem 4.10.

LEMMA 2. Let us write

(4)
$$Q(x) = x - (1+x)\log(1+x).$$

Then for $1 \leq y$, $2y < z \leq v$, $0 \leq a \leq 1$ we have

(5)
$$\sum_{\substack{n \leq v \\ \omega(n,y,z) \leq (1-a)}} \sum_{\substack{y$$

Proof. Let $1 \le v$, $0 \le a \le 1$, and let E be an arbitrary nonempty set of prime numbers not exceeding v. Put $E(v) = \sum_{p \in E} 1/p$. K. K. Norton

proved (see [5], Theorem (5.9); see also Halász [3]) that

$$\sum_{\substack{n \leqslant v \\ p^{\beta} \parallel n, p \in E} \beta \leqslant (1-a) E(v)} 1 < c_4 v \exp\left(Q(-a) E(v)\right).$$

By using this theorem with $E = \{p: y (note that <math>E \neq \emptyset$ by 2y < z), and with respect to the well-known formula

(6)
$$\sum_{p \leq x} 1/p = \log \log x + c_5 + o(1),$$

we obtain (5).

LEMMA 3. For $1 \leqslant y, \ 2y < z \leqslant v, \ 0 < a \leqslant \beta < 1$ we have

(7)
$$\sum_{\substack{n \leq v \\ \omega(n,y,z) \geq (1+\alpha)}} \sum_{\substack{y$$

(where Q(x) is defined by (4)).

Proof. Let $0 < a \leq \beta < 1$, and let *E* be an arbitrary nonempty set of prime numbers not exceeding *v*. Put $E(v) = \sum_{p \in E} 1/p$. K. K. Norton proved (see [5], Theorem (5.12); see also Halász [3]) that

$$\sum_{\substack{n \leqslant v \\ p^{\gamma} || n, p \in E}} 1 < c_7(\beta) a^{-1} v \big(E(v) \big)^{-1/2} \exp \big(Q(a) E(v) \big).$$

By using this theorem with $E = \{p: y (again, <math>E \neq \emptyset$ by 2y < z), and with respect to (6), we obtain (7).

3. In this section, we complete the proof of Theorem 1. Define the positive integer R by

(8)
$$x^{1-1/2^{R-1}} \leqslant x e^{-f_A(x)/3} < x^{1-1/2^R},$$

i.e.,

$$2^{R-1} < \frac{3\log x}{f_A(x)} \leqslant 2^R, \quad R-1 < \frac{1}{\log 2} \log \frac{3\log x}{f_A(x)} \leqslant R.$$

Then for large x, we have

(9)
$$R < \frac{1}{\log 2} \log \frac{3 \log x}{f_{\mathcal{A}}(x)} + 1 < 2 \log \log x.$$

For i = 0, 1, ..., R, let

$$x_i = x^{1-1/2^i},$$

and for i = 1, 2, ..., R, put

$$A_i = A \cap [x_{i-1}, x_i).$$

Then by (1) and (8), for large x we have

$$(10) \qquad \sum_{i=1}^{n} \left(\sum_{a \in A_{i}} \frac{1}{a} \right) = \sum_{\substack{a \in A \\ a < x_{R}}} \frac{1}{a} = \sum_{\substack{a \in A \\ a < x_{R}}} \frac{1}{a} - \sum_{\substack{a \in A \\ x_{R} < a < x}} \frac{1}{a}$$
$$\geqslant f_{\mathcal{A}}(x) - \sum_{\substack{x_{R} < n < x}} \frac{1}{n} \geqslant f_{\mathcal{A}}(x) - \sum_{\substack{x_{R} < n < x}} \frac{1}{n} \geqslant f_{\mathcal{A}}(x) - \sum_{\substack{x_{R} < n < x}} \frac{1}{n}$$
$$= f_{\mathcal{A}}(x) - (1 + o(1)) \log e^{f_{\mathcal{A}}(x)/3} > f_{\mathcal{A}}(x) - \frac{f_{\mathcal{A}}(x)}{2} = \frac{f_{\mathcal{A}}(x)}{2}.$$

Obviously, there exists an integer j such that $1 \leq j \leq R$ and

$$\sum_{n \in \mathcal{A}_j} \frac{1}{a} \geq \frac{1}{R} \sum_{i=1}^{R} \left(\sum_{a \in \mathcal{A}_i} \frac{1}{a} \right)$$

hence with respect to (9) and (10),

(11)
$$f_{A_j}(x) = \sum_{a \in A_j} \frac{1}{a} > \frac{1}{R} \frac{f_A(x)}{2} > \frac{f_A(x)}{4 \log \log x}.$$

Let us fix an integer j $(1 \le j \le R)$ satisfying (11), and write A_j in the form

$$(12) A_j = A'_j \cup A''_j$$

where A'_{j} consists of the integers a such that $a \in A_{j}$ and there exists an integer d satisfying

$$(13) \qquad (\log x)^3 < d \leqslant x^{1/2^{j+1} \omega f_A(x)}$$

and d|a, while A''_{j} consists of the integers a such that $a \in A_{j}$ and $d \nmid a$ for all d satisfying (13). (For $x^{1/2^{j+1}\omega f_{A}(x)} \leq (\log x)^{3}$, we have $A'_{j} = \emptyset$.) We have to distinguish two cases.

Case 1. Assume first that

$$f_{A_j'}(x) = \sum_{a \in A_j'} \frac{1}{a} > \frac{1}{2} f_{A_j}(x).$$

Then by (11), we have

(14)
$$f_{A'_j}(x) = \sum_{a \in A'_j} \frac{1}{a} > \frac{1}{2} f_{A_j}(x) > \frac{f_A(x)}{8 \log \log x}.$$

For $a \in A'_i$, write a in the form

$$a = d^*(a)b(a),$$

where $d^*(a)$ denotes the least integer d such that d satisfies (13) and d|a. Then for $a \in A'_j$ we have $b(a) \leq a < x_j = x^{1-1/2^j}$ and $(\log x)^3 < d^*(a)$ so that

(15)
$$\sum_{a\in A'_{j}} \frac{1}{a} = \sum_{a\in A'_{j}} \frac{1}{d^{*}(a)b(a)} = \sum_{b\leqslant x^{1-1/2j}} \frac{1}{b} \sum_{\substack{a\in A'_{j} \\ b^{*}(a)=b}} \frac{1}{d^{*}(a)}$$
$$< \sum_{b\leqslant x^{1-1/2j}} \frac{1}{b} \sum_{\substack{a\in A'_{j} \\ b^{*}(a)=b}} \frac{1}{(\log x)^{3}} = \frac{1}{(\log x)^{3}} \sum_{\substack{b\leqslant x^{1-1/2j} \\ b^{*}(a)=b}} \frac{1}{b} \sum_{\substack{a\in A'_{j} \\ b^{*}(a)=b}} 1$$
$$\leq \frac{1}{(\log x)^{3}} \Big(\max_{1\leqslant b\leqslant x^{1-1/2j}} \sum_{\substack{a\in A'_{j} \\ b^{*}(a)=b}} 1 \Big) \sum_{b
$$< \frac{1}{(\log x)^{3}} \Big(\max_{1\leqslant b\leqslant x^{1-1/2j}} \sum_{\substack{a\in A'_{j} \\ b^{*}(a)=b}} 1 \Big) 2\log x = \frac{2}{(\log x)^{2}} \Big(\max_{1\leqslant b\leqslant x^{1-1/2j}} \sum_{\substack{a\in A'_{j} \\ b^{*}(a)=b}} 1 \Big).$$$$

If x is large enough (in terms of ω) then (14) and (15) yield that

$$\max_{1\leqslant b\leqslant x^{1-1/2^j}}\sum_{\substack{a\in A'_j\\b^\bullet(a)=b}}1>\frac{(\log x)^2}{2}\sum_{a\in A'_j}\frac{1}{a}>\frac{(\log x)^2}{16\log\log x}\,f_A(x)>\omega f_A(x)+1$$

so that there exists an integer b_0 for which

$$(16) 1 \leqslant b_0 \leqslant x^{1-1/2^J}$$

(17)
$$\sum_{\substack{a \in A'_j \\ b^*(a) = b_0}} 1 > \omega f_{\mathcal{A}}(x) + 1.$$

Put $s = [\omega f_{\mathcal{A}}(x)] + 1$. Then by (17), there exist distinct integers a_1, a_2, \ldots, a_s such that a_i can be written in the form

$$a_i = b_0 d^*(a_i) = b_0 d_i$$

where

(18) $((\log x)^3 <) d_i \leq x^{1/2^{j+1} \omega f_A(x)}.$

Let

$$u = b_0 d_1 d_2 \dots d_s.$$

Then by (16) and (18), we have

(19)
$$u = b_0 d_1 d_2 \dots d_s \leqslant x^{1-1/2^j} (x^{1/2^{j+1} \omega f_A(x)})^s \\ < x^{1-1/2^j} (x^{1/2^{j+1} \omega f_A(x)})^{2\omega f_A(x)} = x,$$

and obviously, $a_i = b_0 d_i / u$ and $a_i = b_0 d_i \in A$ so that

(20)
$$d_A(u) \ge s = [\omega f_A(x)] + 1 > \omega f_A(x).$$

(19) and (20) yield (2) and this completes the proof of Theorem 1 in this case.

Case 2. Assume now that

(21)
$$f_{A'_{j}}(x) = \sum_{a \in A'_{j}} \frac{1}{a} \leq \frac{1}{2} f_{A_{j}}(x) = \frac{1}{2} \sum_{a \in A_{j}} \frac{1}{a}.$$

Then (12) and (21) yield that

(22)
$$f_{A_{j}''}(x) = \sum_{a \in A_{j}''} \frac{1}{a} \ge \sum_{a \in A_{j}} \frac{1}{a} - \sum_{a \in A_{j}'} \frac{1}{a} \\ \ge f_{A_{j}}(x) - \frac{1}{2} f_{A_{j}}(x) = \frac{1}{2} f_{A_{j}}(x) > \frac{f_{A}(x)}{8 \log \log x}.$$

For $u \ge 1$, let

$$g(u) = \left(\frac{3\log f_A(x)}{u}\right)^u.$$

Then for $1 \leq u < \frac{3}{e} \log f_A(x)$, the function g(u) is increasing since

$$g'(u) = g(u)\log\frac{3\log f_A(x)}{eu} > 0$$

and for large x, we have

$$g(1) = 3\log f_A(x) < \frac{f_A(x)}{(\log \log x)^2}$$

and

$$g\left(\frac{3}{e}\log f_{\mathcal{A}}(x)\right) = \left(f_{\mathcal{A}}(x)\right)^{3/e} > \frac{f_{\mathcal{A}}(x)}{(\log \log x)^2}$$

Thus there exists a uniquely determined real number t such that

$$(23) 1 < t < \frac{3}{e} \log f_A(x)$$

and

(24)
$$g(t) = \left(\frac{3\log f_{\mathcal{A}}(x)}{t}\right)^t = \frac{f_{\mathcal{A}}(x)}{(\log \log x)^2}.$$

We need a lower bound for this number t. By (1), we have

(25)
$$g\left(\frac{1}{2}\log f_{\mathcal{A}}(x)\right) = (6^{1/2})^{\log f_{\mathcal{A}}(x)} = (f_{\mathcal{A}}(x))^{(1/2)\log 6}$$

$$< (f_A(x))^{9/10} = rac{f_A(x)}{(f_A(x))^{1/10}} < rac{f_A(x)}{(\log \log x)^2}.$$

(23), (24) and (25) imply that

$$\frac{1}{2}\log f_A(x) < t$$

(since g(u) is increasing for $1 < u < \frac{3}{e} \log f_A(x)$).

Let us write

$$z_j = \max\{x^{1/2^{j+1}\omega f_A(x)}, \ (\log x)^3\}.$$

Let A_j^* denote the set of the integers a such that $a \in A_j''$ and

$$\omega(a, z_j, x^{1/2^j}) > t.$$

Now we are going to give an upper estimate for

$$\sum_{\substack{a\in A_j^{\prime\prime}}}rac{1}{a}=\sum_{\substack{a\in A_j^{\prime\prime}\ arphi(a,z_j,x^{1/2^j})\leqslant l}}rac{1}{a}.$$

If $a \in A_j''$ and $\omega(a, z_j, x^{1/2^j}) \leqslant t$ then by the definition of A_j'' , we have $x^{1-1/2^{j-1}} = x_{j-1} \leqslant a < x_j = x^{1-1/2^j}$

and a can be written in the form

$$a = u p_1^{a_1} \dots p_m^{a_m} v$$

where $P(u) \leq (\log x)^3, z_j < p_1 < \ldots < p_m \leq x^{1/2^j}, \ m \leq \omega(a, z_j, x^{1/2^j}) \leq t$ and $p(v) > x^{1/2^j}$.

Thus by Lemma 1, we have

(27)
$$\sum_{\substack{a \in A_{j}^{n} \\ a \notin A_{j}^{*}}} \frac{1}{a} \leq \sum_{P(u) \leq (\log x)^{3}} \frac{1}{u} \left\{ \sum_{0 \leq m \leq i} \sum_{\substack{z_{j} < p_{1} < \dots < p_{m} \leq x^{1/2^{j}} \\ n \leq x^{1/2^{j}}} \frac{1}{\prod_{i=0}^{m} p_{i}^{\alpha_{i}}} \times \left(\sum_{\substack{x_{j-1} < up_{1}^{\alpha_{1}} \dots p_{m}^{\alpha_{m}} v < x_{j} = x_{j-1}x^{1/2^{j}}} \frac{1}{v} \right) \right\}$$

$$< c_2 \left(\sum_{P(u) \leqslant (\log x)^3} rac{1}{u}
ight) \left(1 + \sum_{m=1}^{[l]} rac{1}{m!} \left(\sum_{z_j < p \leqslant x^{1/2^j}} \sum_{a=1}^{+\infty} rac{1}{p^a}
ight)^m
ight)$$

 $= c_2 \left(\prod_{p \leqslant (\log x)^3} \sum_{a=0}^{+\infty} rac{1}{p^a}
ight) \left(1 + \sum_{m=1}^{[l]} rac{1}{m!} \left(\sum_{z_j
 $= c_2 \left(\prod_{p \leqslant (\log x)^3} rac{1}{1 - 1/p}
ight) \left(1 + \sum_{m=1}^{[l]} rac{1}{m!} \left(\sum_{z_j$$

It is well-known that

$$\prod_{p \leqslant y} \frac{1}{1 - 1/p} < c_{\mathfrak{z}} \log y$$

and

$$\sum_{p\leqslant y}\sum_{a=1}^{+\infty}\frac{1}{p^a}=\log\log y+c_g+o(1).$$

Thus with respect to (1), (23), (24) and (26), and by using the Stirlingformula, we obtain from (27) that for $x > X_1(\omega)$,

$$\begin{aligned} (28) \qquad \sum_{\substack{a \in A_{j}'\\a \neq 4}} \frac{1}{a} &< e_{10} \log \left((\log x)^{3} \right) \left(1 + \sum_{m=1}^{[l]} \frac{1}{m!} \left(\log \log x^{1/2^{j}} - \log \log z_{j} + e_{11} \right)^{m} \right) \\ &= e_{10} \log \log x \left(1 + \sum_{m=1}^{[l]} \frac{1}{m!} \left(\log \frac{\log x^{1/2^{j}}}{\log z_{j}} + e_{11} \right)^{m} \right) \\ &\leq e_{10} \log \log x \left(1 + \sum_{m=1}^{[l]} \frac{1}{m!} \left(\log \frac{\log x^{1/2^{j}} + e_{11}}{\log x^{1/2^{j+1}} \omega_{f_{d}}(x)} + e_{11} \right)^{m} \right) \\ &= e_{10} \log \log x \left(1 + \sum_{m=1}^{[l]} \frac{1}{m!} \left(\log 2 \omega f_{A}(x) + e_{11} \right)^{m} \right) \\ &< e_{12} t \log \log x \frac{(\log \omega f_{A}(x) + e_{13})^{l}}{t!} \\ &< e_{14} t^{1/2} \log \log x \left(\frac{e \left(\log \omega f_{A}(x) + e_{13} \right)^{l}}{t!} \\ &< \frac{1}{16} \log \log x \left(\frac{3 \log f_{A}(x)}{t} \right)^{l} = \frac{1}{16} \log \log x \frac{f_{A}(x)}{(\log \log x)^{2}} \\ &= \frac{1}{16} \frac{f_{A}(x)}{\log \log x}. \end{aligned}$$

(22) and (28) yield that

(29)
$$f_{Aj}^{*}(x) = \sum_{a \in Aj} \frac{1}{a} = \sum_{a \in Aj'} \frac{1}{a} - \sum_{\substack{a \in Aj' \\ a \notin Aj'}} \frac{1}{a} - \sum_{\substack{a \in Aj' \\ a \notin A$$

Let S denote the set of the integers n such that $n \leq x$ and n can be written in the form

(30)
$$n = au$$
 where $a \in A_j^*$ and $\omega(u, z_j, x^{1/2^j}) > \frac{18}{19} \log f_A(x)$.

For fixed $n \in S$, let $\varphi(n)$ denote the number of representations of n in the form (30).

Then we have

(31)
$$\sum_{n \leqslant x} \varphi(n) = \sum_{a \in A_j^*} \sum_{\substack{au \leqslant x \\ \omega(u, z_j, x^{1/2^j}) > \frac{18}{19} \log f_{\mathcal{A}}(x)}} 1$$
$$= \sum_{a \in A_j^*} \Big(\sum_{u \leqslant x/a} 1 - \sum_{\substack{u \leqslant x/a \\ \omega(u, z_j, x^{1/2^j}) \leqslant \frac{18}{19} \log f_{\mathcal{A}}(x)}} 1 \Big).$$

In order to estimate the last sum, we use Lemma 2 with z_j , $x^{1/2^j}$, x/a and 1/400 in place of y, z, v and a, respectively. Then $1 \leq y$ and 2y < z hold trivially by the definition of z_j (and by $j \leq R$), and also $z \leq v$ holds by

$$z = x^{1/2^j} = rac{x}{x^{1-1/2^j}} = rac{x}{x_j} < rac{x}{a} = v$$

(since we have $a \in A_j^*$ and thus $a < x_j$). Thus Lemma 2 can be applied, and we obtain with respect to (1) and the definition of z_j that for large x

(32)
$$\sum_{\substack{n \leqslant x/a \\ \omega(u,z_j,x^{1/2^j}) \leqslant \frac{399}{400} \sum_{z_j
$$< c_3 \frac{x}{a} \exp\left(-3 \cdot 10^{-6}\log\frac{\log x^{1/2^j}}{\log x^{1/2^j+1} \omega f_A(x)}\right)$$
$$= c_3 \frac{x}{a} \exp\left(-3 \cdot 10^{-6}\log 2\omega f_A(x)\right) < \frac{1}{3} \frac{x}{a}.$$$$

Furthermore, by (6) we have

(33)
$$\frac{399}{400} \sum_{z_j \frac{399}{400} \left(\log \frac{\log x^{1/2^j}}{\log z_j} - c_{15} \right).$$

By (8), we have

(34)
$$\frac{f_{\mathcal{A}}(x)}{6} \leqslant \log x^{1/2^R} \leqslant \log x^{1/2^j}.$$

We obtain from (1) and (34) that

$$(35) \qquad \log z_{j} = \log \max \{(\log x)^{3}, x^{1/2^{j}+1\omega f_{A}(x)}\} \\ = \max \left\{ 3\log \log x, \frac{\log x^{1/2^{j}}}{2\omega f_{A}(x)} \right\} \\ = \max \left\{ \log x^{1/2^{j}} \frac{3\log \log x}{\log x^{1/2^{j}}}, \frac{\log x^{1/2^{j}}}{2\omega f_{A}(x)} \right\} \\ \leqslant \max \left\{ \log x^{1/2^{j}} \frac{3\log \log x}{f_{A}(x)/6}, \frac{\log x^{1/2^{j}}}{2\omega f_{A}(x)} \right\} \\ \leqslant \max \left\{ \log x^{1/2^{j}} \frac{3(f_{A}(x))^{1/20}}{f_{A}(x)/6}, \frac{\log x^{1/2^{j}}}{2\omega f_{A}(x)} \right\} \\ = \frac{18\log x^{1/2^{j}}}{(f_{A}(x))^{19/20}}.$$

(33) and (35) yield for large x that

$$(36) \qquad \frac{399}{400} \sum_{z_j \frac{399}{400} \left(\log \frac{\log x^{1/2^j}}{\log z_j} - c_{15} \right)$$
$$\geqslant \frac{399}{400} \left(\log \frac{(f_A(x))^{19/20}}{18} - c_{15} \right) > \frac{18}{19} \log f_A(x)$$

hence

(37)
$$\sum_{\substack{u \leqslant x/a \\ \omega(u,z_j,x^{1/2^j}) < \frac{18}{19} \log f_A(x)}} 1 \leqslant \sum_{\substack{u \leqslant x/a \\ \omega(u,z_j,x^{1/2^j}) \leqslant \frac{399}{400} \sum j \leqslant x^{1/2^j} j}} 1.$$

(32) and (37) yield that

$$\sum_{\substack{u \leqslant x/a \\ w(u,z_j,x^{1/2^j}) > \frac{18}{19} \log f_{\mathcal{A}}(z)}} 1 < \frac{1}{3} \frac{x}{a}.$$

Thus we obtain from (29) and (31) that

(38)
$$\sum_{n \leqslant x} \varphi(n) \ge \sum_{a \notin A_j^{\bullet}} \left(\left[\frac{x}{a} \right] - \frac{1}{3} \frac{x}{a} \right) > \sum_{a \notin A_j^{\bullet}} \frac{x}{2a}$$
$$= \frac{x}{2} f_{A_j^{\bullet}}(x) > \frac{x f_A(x)}{32 \log \log x} .$$

Now we are going to give an upper estimate for $\sum_{n \leqslant x} \varphi(n)$. Obviously, for $n \leqslant x$ we have $\varphi(n) \leqslant d_A(n) \leqslant D_A(x)$ hence

(39)
$$\sum_{n \leqslant x} \varphi(n) = \sum_{n \in S} \varphi(n) \leqslant \sum_{n \in S} D_{\mathcal{A}}(x) = |S| D_{\mathcal{A}}(x).$$

Thus in order to obtain an upper bound for $\sum_{n \leq x} \varphi(n)$, we have to estimate |S|.

If
$$n \in S$$
 then by (26), (30) and the definition of the set A_j^* , we have
 $\omega(n, z_j, x^{1/2^j}) = \omega(au, z_j, x^{1/2^j}) = \omega(a, z_j, x^{1/2^j}) + \omega(u, z_j, x^{1/2^j})$

$$> t + \frac{18}{19} \log f_A(x) > \frac{1}{2} \log f_A(x) + \frac{18}{19} \log f_A(x) = \frac{55}{38} \log f_A(x)$$

hence

$$|S| \leqslant \sum_{\substack{n \leqslant x \\ \omega(n, z_j, x^{1/2^j}) > \frac{55}{38} \log f_{\mathcal{A}}(x)} 1$$

In order to estimate this sum, we use Lemma 3 with z_j , $x^{1/2^j}$, x, 17/37and 9/10 in place of y, z, v, a and β , respectively. $(1 \leq y, 2y < z \leq v \text{ and } 0 < a \leq \beta < 1$ hold trivially with respect to the definition of z_j .) We obtain with respect to (8) and the definition of z_j that for $x > X_2(\omega)$,

(41)

$$\sum_{\substack{w(n,z_j,x^{1/2^j}) > \frac{54}{37_{z_j}
$$< c_6 x \left(\sum_{\substack{z_j < p < x^{1/2^j}} \frac{1}{p} \right)^{-1/2} \exp\left(Q\left(\frac{17}{37}\right) \log \frac{\log x^{1/2^j}}{\log z_j}\right)$$

$$< c_6 x \exp\left(-\frac{91}{1000} \log \frac{\log x^{1/2^j}}{\log x^{1/2^j+1} \omega f_A(x)}\right)$$

$$< c_6 x \exp\left(-\frac{91}{1000} \log \omega f_A(x)\right) < x \exp\left(-\frac{9}{100} \log f_A(x)\right) = x(f_A(x))^{-9/100}.$$$$

Furthermore, with respect to (6) and the definition of z_i we have

$$\begin{split} \frac{54}{37} \sum_{z_j$$

and thus

(42)
$$\sum_{\substack{n \leqslant x \\ \omega(n, z_j, x^{1/2^j}) > \frac{55}{38} \log f_{\mathcal{A}}(x)}} 1 \leqslant \sum_{\substack{n \leqslant x \\ \omega(n, z_j, x^{1/2^j}) > \frac{54}{37}} \sum_{z_j$$

(40), (41) and (42) yield that

(43)
$$|S| < x (f_{\mathcal{A}}(x))^{-9/100}.$$

Finally, we obtain from (38), (39) and (43) that

$$\frac{xf_{\mathcal{A}}(x)}{32\log\log x} < \sum_{n \leqslant x} \varphi(n) \leqslant |S| D_{\mathcal{A}}(x) < x \big(f_{\mathcal{A}}(x)\big)^{-9/100} D_{\mathcal{A}}(x)$$

hence with respect to (1),

$$egin{aligned} D_{\mathcal{A}}(x) > & f_{\mathcal{A}}(x) rac{(f_{\mathcal{A}}(x))^{9/100}}{32 \log \log x} > & f_{\mathcal{A}}(x) rac{(f_{\mathcal{A}}(x))^{9/100}}{32 (f_{\mathcal{A}}(x))^{1/20}} \ &= & f_{\mathcal{A}}(x) \cdot rac{1}{32} (f_{\mathcal{A}}(x))^{1/25} > & \omega f_{\mathcal{A}}(x) \end{aligned}$$

for $x > X_3(\omega)$. Thus (2) holds also in Case 2 and this completes the proof of Theorem 1.

4. By using the same method, we can show that Theorem 1 is true also with $(\log \log x)^{2+\varepsilon}$ in place of $(\log \log x)^{20}$ ön the right-hand side of (1). In fact, in order to prove this, the only non-trivial modifications are that t must be defined as $t = \eta \log f_A(x)$ where $\eta = \eta(\varepsilon) \ (> 0)$ is sufficiently small in terms of ε , and in (30), the condition $\omega(u, z_j, x^{1/2^j})$ $> \frac{18}{19} \log f_A(x)$ must be replaced by $\omega(u, z_j, x^{1/2^j}) > K \log f_A(x)$ where $K = K(\varepsilon)$ is sufficiently large in terms of ε . Furthermore, then Lemmas 2

and 3 must be replaced by lower and upper estimates for

$$\sum_{\substack{n\leqslant v \ w(n,y,z)\geqslant L}} 1_{\substack{n\leqslant v \ y< p\leqslant z}} 1_{y< p\leqslant z}$$

where L is arbitrary large but fixed. Such estimates could be deduced by the methods used by K. K. Norton in [6]. (Norton's estimates cannot be used in the original form since the error terms in his lower and upper estimates depend implicitly on the set E of the prime numbers whose multiples we investigate. Thus in our case, these results would yield lower and upper bounds depending implicitly on $\{p: y , i.e.,$ on <math>y and z, instead of the explicit estimates needed by us.)

On the other hand, we guess that also the exponent $2 + \varepsilon$ could be improved, and, perhaps, Theorem 1 is true also with $(\log \log x)^{1+\varepsilon}$ or even $c_{17}(\omega)\log \log x$ on the right-hand side of (1). This is the reason of that that we preferred to work out the slightly weaker estimate given in Theorem 1 whose proof is much simpler.

5. One may expect that if we know that $f_A(y)$ is large for all $y \leq x$ then Theorem 1 can be sharpened in the sense that the lower bound given for $f_A(x)$ in (1) (for fixed x) can be replaced by a much smaller lower bound for $f_A(y)$ (for all y). In fact, we show in this section that

THEOREM 2. For all $\omega > 0$, there exists a real number $X_4 = X_4(\omega)$ such that if $x > X_4$ and writing $y = \exp\left(\frac{\log x}{(\log \log x)^{21}}\right)$, we have

(44)
$$f_A(y) > 22 \log \log \log y,$$

then

$$(45) D_{\mathcal{A}}(x) > \omega f_{\mathcal{A}}(x).$$

Furthermore, we show that Theorem 2 is best possible except the value of the constant factor on the right of (44):

THEOREM 3. There exist positive constants c_{18}, c_{19}, X_5 and an infinite sequence A such that

(46)
$$f_{\mathcal{A}}(x) > c_{18} \log \log \log x \quad \text{for all } x > X_5$$

and

(47)
$$\lim_{x \to \pm \infty} \inf \frac{D_A(x)}{f_A(x)} < c_{19}.$$

In order to prove Theorem 2, we need the following lemma:

LEMMA 4. If x > 1, $t \ge 1$ and A is an arbitrary sequence of positive integers such that

$$(48) D_{\mathcal{A}}(x) \leqslant t$$

7 - Acta Arithmetica XLI, 4

then we have

$$N_{\mathcal{A}}(x^{1/(t+1)}) \leq t.$$

Proof of Lemma 4. Assume indirectly that

$$N_A(x^{1/(t+1)}) > t,$$

i.e.,

$$N_{\mathcal{A}}(x^{1/(t+1)}) \ge [t]+1.$$

Then there exist integers $a_1, a_2, \ldots, a_{[t]+1}$ such that $a_1 \in A, a_2 \in A, \ldots$ $\ldots, a_{[t]+1} \in A$ and

(49)
$$a_1 < a_2 < \ldots < a_{[l]+1} \leqslant x^{1/(l+1)}.$$

Put $u = a_1 a_2 \dots a_{[t]+1}$. Then $a_i | u$ for $1 \le u \le [t]+1$ and thus

$$(50) d_A(u) \ge [t] + 1 > t.$$

On the other hand, by (49) we have

(51)
$$u = a_1 a_2 \dots a_{[t]+1} \leq (x^{1/(t+1)})^{[t]+1} \leq (x^{1/(t+1)})^{t+1} = x.$$

(50) and (51) imply that

$$D_A(x) > t$$

in contradiction with (48) which completes the proof of Lemma 4. Proof of Theorem 2. We have to distinguish two cases. Case 1. Let

$$f_{\mathcal{A}}(x) > (\log \log x)^{20}.$$

Then for $x > X_6(\omega)$, (45) holds by Theorem 1.

Case 2. Let

(52) $f_{\mathcal{A}}(x) \leqslant (\log \log x)^{20}.$

Assume indirectly that

$$(53) D_{\mathcal{A}}(x) \leqslant \omega f_{\mathcal{A}}(x)$$

Then by using Lemma 4 with $t = \omega f_A(x)$, we obtain that

(54)
$$N_{\mathcal{A}}(x^{1/(t+1)}) = N_{\mathcal{A}}(x^{1/(\omega f_{\mathcal{A}}(x)+1)}) \leqslant t = \omega f_{\mathcal{A}}(x).$$

Put $M = N_A(x^{1/(\omega f_A(x)+1)})$ and let $a_1 < a_2 < \ldots < a_M$ denote the *a*'s not exceeding $x^{1/(\omega f_A(x)+1)}$. Then by (52) and (54), we have

(55)
$$f_{\mathcal{A}}(x^{1/(\omega f_{\mathcal{A}}(x)+1)}) = \sum_{i=1}^{M} \frac{1}{a_i} \leq \sum_{i=1}^{M} \frac{1}{i} < \log M + c_{20}$$
$$\leq \log \omega f_{\mathcal{A}}(x) + c_{20} \leq \log \omega (\log \log x)^{20} + c_{20}$$
$$< 21 \log \log \log x.$$

On the other hand, by (51) we have

$$egin{aligned} &x^{1/(\omega f_{\mathcal{A}}(x)+1)} &= \expigg(rac{\log x}{\omega f_{\mathcal{A}}(x)+1}igg) &\geq \expigg(rac{\log x}{\omega (\log\log x)^{20}+1}igg) \ &\geqslant \expigg(rac{\log x}{(\log\log x)^{21}}igg) &= y\,. \end{aligned}$$

Thus (44) yields that

$$\begin{split} f_A(x^{1/(wf_A(x)+1)}) &\geq f_A(y) > 22 \log \log \log y \\ &= 22 \log \log \frac{\log x}{(\log \log x)^{21}} > 21 \log \log \log x \end{split}$$

in contradiction with (55) which completes the proof of Theorem 2.

Proof of Theorem 3. In the proof of Theorem 1 in [1], for $x \ge X_7$ we constructed a sequence B(x) such that

(56) $f_{B(x)}(x) > c_{21} \log \log x$

and

$$(57) D_{B(x)}(x) < 2\log\log x.$$

Let us define the infinite sequence $x_1 < x_2 < \dots$ by the following recursion: let

$$x_1 = X_7$$
 and $x_k = \exp\left(\exp\left(\exp\left(\exp\left(x_{k-1}\right)\right)\right)$.

For x > 1, let

$$E(x) = \{n \colon \sqrt{x} < n \leqslant x\}.$$

Finally, let

$$A = \bigcup_{k=1}^{+\infty} B(x_k) \cup E(\log \log x_k).$$

We are going to show that this sequence A satisfies both (46) and (47).

First we prove (46). Assume that $x > X_7$. Then there exists a uniquely determined positive integer $k \ (\ge 2)$ such that $x_{k-1} < x \le x_k$. Then either

$$(58) x_{k-1} < x \leq \exp(x_{k-1}) = \log\log x_k$$

or

$$\exp(x_{k-1}) = \log\log x_k < x \le x_k$$

holds. If (58) holds, then by (56) we have

$$f_{\mathcal{A}}(x) \ge f_{\mathcal{A}}(x_{k-1}) \ge f_{B(x_{k-1})}(x_{k-1}) > c_{21} \log \log x_{k-1} \ge c_{21} \log \log \log x_{k-1}$$

while if (59) holds then

$$f_A(x) \ge E(\log \log x_k) = \sum_{(\log \log x_k)^{1/2} < n \le \log \log x_k} \frac{1}{n}$$
$$> \frac{1}{3} \log \log \log x_k \ge \frac{1}{3} \log \log \log x_k.$$

Thus in fact, (46) holds in both cases.

In order to prove that also (47) holds, it is sufficient to show that for k = 1, 2, ..., we have

(60)
$$\frac{D_A(x_k)}{f_A(x_k)} < c_{22}.$$

If $u \leq x_k$ then by (57) we have

$$\begin{split} d_{\mathcal{A}}(u) &= \sum_{\substack{a \mid u \\ a \in \mathcal{A}}} 1 = \sum_{\substack{a \leqslant \log \log x_k \\ a \mid u, a \in \mathcal{A}}} 1 + \sum_{\substack{\log \log x_k < a \\ a \mid u, a \in \mathcal{A}}} 1 \\ &= \sum_{\substack{a \leqslant \log \log x_k \\ a \mid u, a \in \mathcal{A}}} 1 + \sum_{\substack{a \mid u \\ a \in B(x_k)}} 1 = \sum_{\substack{a \leqslant \log \log x_k \\ a \mid u, a \in \mathcal{A}}} 1 + d_{B(x_k)}(u) \\ &\leqslant \log \log x_k + D_{B(x_k)}(u) < 3 \log \log x_k \end{split}$$

hence

$$(61) D_A(x_k) < 3\log\log x_k.$$

Furthermore, by (56), we have

(62)
$$f_A(x_k) = \sum_{\substack{a \le x_k \\ a \in A}} \frac{1}{a} \ge \sum_{\substack{a \in B(x_k) \\ a \in B(x_k)}} \frac{1}{a} = f_{B(x_k)}(x_k) > c_{21} \log \log x_k.$$

(61) and (62) yield (60) and the proof of Theorem 3 is completed.

References

- P. Erdös and A. Sárközy, Some asymptotic formulas on generalized divisor functions, I, Studies in Pure Mathematics to the Memory of Paul Turán, Akadémiai Kiadó, Budapest, to appear.
- [2] P. Erdös and A. Sárközy, Some asymptotic formulas on generalized divisor functions, II, J. Number Theory, to appear.
- [3] G. Halász, Remarks to my paper "On the distribution of additive and the mean values of multiplicative arithmetic functions", Acta Math. Acad. Sci. Hungar. 23 (1972), pp. 425-432.

- [4] R. R. Hall, On a conjecture of Erdős and Sárközy, Bull. London Math. Soc. 12 (1980), pp. 21-24.
- [5] K. K. Norton, On the number of restricted prime factors of an integer, I, Illinois J. Math. 20 (1976), pp. 681-705.
- [6] K. K. Norton, On the number of restricted prime factors of an integer, III, to appear.
- [7] K. Prachar, Primzahlverteilung, Springer Verlag, Berlin 1957.

Received on 9. 1. 1981 (1238)