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We prove that every group G of order n has r<log nilog 2+ Oflog log n) elements x,.....,x,
such that every group element is a product of the form x% - -+ x%' £, € {0, 1}. The result is true more
generally for quasigroups. As a corollary we obtain that for n even, every one-factorization of the
complete graph on n vertices contains at most 1 one-factors whose union is connected.

1. Introduction

The aim of this note is to solve two problems by one theorem. The first problem is
related to the title of the paper, the second to one-factorizations of the complete graph.
Let G be a finite group of order n. The first problem is: does there exist a small

ordered set x,.....> x, of generators of G such that every group element occurs as a
subproduct
X5+ x&  where g €{0, 1}, (1)

Clearly r>log n/log 2. On the other hand, we prove that

logn loglogn
210g2+ log 2 +2 (2)
is sufficient.

Erdés and Rényi [3] (see also [6., Vol. 3., pp. 319-329.]) studied a similar problem
for abelian groups. They proved that for an abelian group G and a random choice of
group elements x,, . ... x, the probability that every element of G can be represented
in the form (1) goes to 1 with n—oc provided

logn loglogn (3)
- +_'-_—
Floa2” dogd T

where w, tends to infinity arbitrarily slowly.
We don’t know the answer to the same problem for non-abelian groups.

Problem 1. Does there exist a constant ¢ such that for an arbitrary group G of
order n and a random choice of elements x,, ..., x, of G, the probability that every
member of G is represented in the form (1) tends to 1 while n—o0 and t=¢ logn?
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It has also been proved in [3] that if r>(2log n+c)/log 2 for a sufficiently large
positive number C then the representation of the elements of the abelian group G
in the form (1) is nearly uniform, i.e. each element has nearly the same number of
representations (1) for almost all t-sets x;. . . ., x, of elements of G. The latest improve-
ments upon this result [ 2] show that

logn
t ;@ (1+Of(log log log n/log log n))

is sufficient for the number of representations of every member of G to be between
(1—#)2'/n and (1 +#)2'/n for >0 arbitrarily small. We don’t know anything in this
direction on non-abelian groups.

Problem 2. Does every group G of order n have a sequence x,...., x, of elements
such that the number of representations (1) of each element of G is between 2'~!/n
and 2" !/n, where t <(log n)* for some constant ¢?

We note that the set of subproducts of sequences of elements of (non-abelian)
groups have been considered by White [7]. Several unrelated problems and results
are listed in a recent monograph by Erdos and Graham [1].

Our result (2) leaves the following interesting problem open:

Problem 3 (R. J. Lipton). Given a group G of order n, a set of generators of G, and an
element g € G, is there a short straight-line program computing g from the generators?

By a straight-line program computing g we mean a sequence g, . . ., gmof members
of G such that g,, =g and each g; is either one of the generators or a product g;=g;gi
for some j, k<i. The program is ‘short’ if m<(log n).

We remark that for a permutation group G acting on a set of s elements, such a
straight-line program of length m=0(s*) always exists [4].

Of course in such a program we have to allow multiplications of pairs of previously
computed elements. Our result is more particular as it does not operate from a given
set of generators. On the other hand, in our representation, only multiplications
from the right by generators are used.

The other problem partially solved in this note asks for the minimum number
t=t(n) such that from every one-factorization K,=F,u -+ UF,_, of the complete
graph on n vertices (n even), one can select at most ¢ one-factors whose union is a
connected graph. We prove

logn
t(n) {@ + Of(log log n).

On the other hand, t(n)>log n/log 2 for n=2* as shown by the following example.
Let V be the k-dimensional vector space over GF(2). With every nonzero vector
x € V we associate the one-factor F.={(y, x+y):y € V}. The family {F,:x € V, x#0}
is a one-factorization of the complete graph on V. The union of any k — 1 of these one-
factors is disconnected since the set of corresponding vectors x does not generate V.
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We conjecture that this example is the extreme case:

Conjecture. t(n)<logn/log 2.

2. Results

A quasigroup is set endowed with a binary operation such that the equations ax=»
and ya=b have unique solutions for each a, b.

This notion is a common generalization of groups and of one-factorizations of the
complete graph. By a one-factorization of a graph we mean a representation of its
edge set as the union of disjoint one-factors (perfect matchings).

Theorem. Let Q be a finite quasigroup of order n. Then there is a sequence xy, ..., X,
of elements of Q such that

logn loglogn
{_._-— e —

log2 log2
(ii) every element of Q is represented as the product of a subsequence
(oo Uxg, xi,)x5) .2 )xg, for some 1<y <ip< -+ <ig<t.

(i) +2;

Corollary. Let K,=F,u - UF,_ be a one-factorization of the complete graph
K, (n even). Then there is a subset of t of these one-factors F; ..., F; such that
Fi,u -+ UF; is a connected graph, where t satisfies the inequality (i).

3. Proofs
The proof is not constructive. We use a counting argument.

Lemma. Let A be a subset of the quasigroup Q. Then for some x €Q,

Q-4
[/

Proof. Let |Q|=n, |4|=k. Let us count the triples {(a, x, y):a€ A4, x€Q, yeQ\A,
ax=y} in two ways. x is uniquely determined by a and y hence the number is k(n — k).
On the other hand, counting by x, we obtain ), _, |4x — A|. Therefore, for some x,

k{n—k)
n

0 —A4—Ax|<

[Ax —A| =

and hence

=3 _kz
0 —A—Ax|<n—k— k‘“n B_ - i

proving the lemma. |
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Proof of the theorem.We choose x,....,x, €Q successively as follows. Let x; be
arbitrary. Set A,={x,} and 4;=A4;_,UA;_ x;. Select x;,, such as to maximize
|4ix; ., — Aj|. We stop when 4,=Q. _

Let p;=|Q — A;|/n where n=|Q|. By the lemma, p,., <p?. Hence p;.,<p}.

We have p; =1—1/n and p,_, = 1/n (because p, is the first member of the sequence
P1s P2, - .. such that p,<1/n, namely p,=0).

We conclude that

-2 N2 1
exp(——)>(l--—) =—
n n n

so 2" ?<nlogn and

logn loglogn

log2 " log2

The proof is complete. O

Proof of the corollary. Let us label the vertices of K, by vo,...,v,-. Let us define
multiplication on this set as follows:

voUi=tito=v; (i=0,...,n—1);
vivj=vx if(v, o) eF; (j=1,....,n=1)

This way we obtain a quasigroup, as readily verified. An application of the theorem
yields a sequence x,,..., x, of elements. Let x;=v;.. Then the union of the one-
factors F;,, F,, ..., F;, is connected since, by (ii) of the theorem, every vertex is reach-
able from x, using edges of these one-factors only. In fact, the distance of any vertex
from x, in this graph is at most t — 1. O
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