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We prove that every group G of order n has t,log n/log 2+0dog log n) elements x,	x,
such that every group element is a product of the form x,' - • X,'% e ; s 1,0, 11 . The result is true more
generally for quasigroups . As a corollary we obtain that for n even, every one-factorization of the
complete graph on n vertices contains at most r one-factors whose union is connected .

1. Introduction

The aim of this note is to solve two problems by one theorem . The first problem is
related to the title of the paper, the second to one-factorizations of the complete graph .

Let G be a finite group of order n . The first problem is : does there exist a small
ordered set x t , . . . . xt of generators of G such that every group element occurs as a
subproduct

is sufficient .
Erdős and Rényi [3] (see also [6, Vol . 3 ., pp. 319-329.]) studied a similar problem

for abelian groups. They proved that for an abelian group G and a random choice of
group elements xt , . . . , x, the probability that every element of G can be represented
in the form (1) goes to 1 with n-* x. provided

t>~
log n + log log n

+w

	

(3)
log 2

	

log 2

where a)„ tends to infinity arbitrarily slowly .
We don't know the answer to the same problem for non-abelian groups .

Problem 1 . Does there exist a constant c such that for an arbitrary group G of
order n and a random choice of elements x 1 , . . . , x r of G, the probability that every
member of G is represented in the form (1) tends to 1 while n , oo and t>clogn?
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xi'-- •x ',' whereE i e{0,1 1f
Clearly t > log n/log 2 . On the other hand, we prove that

(1)

t >1
log + logolog n 2+ (2)
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It has also been proved in [3] that if t>,(2logn+c)/log2 for a sufficiently large
positive number C then the representation of the elements of the abelian group G
in the form (1) is nearly uniform, i .e. each element has nearly the same number of
representations (1) for almost all t-sets x 1 , . . . , x, of elements of G . The latest improve-
ments upon this result [2] show that

t31og2 (1 + O(log log log n/log log n))
g

is sufficient for the number of representations of every member of G to be between
(1-q)2`/n and (I+n)2`/n for n>0 arbitrarily small . We don't know anything in this
direction on non-abelian groups.

Problem 2. Does every group G of order n have a sequence x1, . . . , x, of elements
such that the number of representations (1) of each element of G is between 2i -1 /n
and 2t + 1/n, where t<(log n)` for some constant c?

We note that the set of subproducts of sequences of elements of (non-abelian)
groups have been considered by White [7]. Several unrelated problems and results
are listed in a recent monograph by Erdős and Graham [1] .

Our result (2) leaves the following interesting problem open :

Problem 3 (R . J . Lipton). Given a group G of order n, a set of generators of G, and an
element g E G, is there a short straight-line program computing g from the generators?

$y a straight-line program computing g we mean a sequence g1	g,, of members
of G such that g,„=g and each g ; is either one of the generators or a product g;=g;gk
for some j, k < i . The program is `short' if m < (log n)` .

We remark that for a permutation group G acting on a set of s elements, such a
straight-line program of length m=O(s4) always exists [4] .

Of course in such a program we have to allow multiplications of pairs of previously
computed elements . Our result is more particular as it does not operate from a given
set of generators. On the other hand, in our representation, only multiplications
from the right by generators are used .
The other problem partially solved in this note asks for the minimum number

t=t(n) such that from every one-factorization K„=F 1 u . . . uF„_, of the complete
graph on n vertices (n even), one can select at most t one-factors whose union is a
connected graph . We prove

t(n) < log 2 + O(log log n) .
g

On the other hand, t(n) > log n/log 2 for n = 2' as shown by the following example .
Let V be the k-dimensional vector space over GF(2) . With every nonzero vector
x E V we associate the one-factor Fx = {( y, x + y) : y E VI . The family { Fx : x E V, x * 0}
is a one-factorization of the complete graph on V. The union of any k -1 of these one-
factors is disconnected since the set of corresponding vectors x does not generate V .



Representation of group elements as short products

We conjecture that this example is the extreme case :

Conjecture. t(n) < log n/log 2 .

2. Results

A quasigroup is set endowed with a binary operation such that the equations ax =b
and ya lb have unique solutions for each a, b .

This notion is a common generalization of groups and of one-factorizations of the
complete graph . By a one-factorization of a graph we mean a representation of its
edge set as the union of disjoint one-factors (perfect matchings) .

Theorem. Let Q be a finite quasigroup of order n . Then there is a sequence x l , . . . , x t
of elements of Q such that

W

	

log n log log n
t<

l0g 2 + log 2
+ 2,

(ü) every element of Q is represented as the product of a subsequence
( . . . ((x i,x i2 )x i ,) . . . )x i , for some 1 < i t < i2 < . . . < i s< t.

Corollary . Let K„= F 1 V . . . V F„ _ 1 be a one factorization of the complete graph
& (n even) . Then there is a subset of t of these one factors Fi	Fi , such that
Fi, u . . . v Fi , is a connected graph, where t satisfies the inequality (i) .

3 . Proofs

The proof is not constructive . We use a counting argument .

Lemma. Let A be a subset of the quasigroup Q . Then for some x E Q,

IQ -A-Axl<(IQ	-A I)2

IQI

Proof. Let IQI=n, JAI =k . Let us count the triples {(a,x,y) :a EA, X EQ, Y EQ\A,
ax= yj in two ways . x is uniquely determined by a and y hence the number is k(n -k) .
On the other hand, counting by x, we obtain J,,Q lAx-Al . Therefore, for some x,

IAx -AI>,
k(n-k)

n
and hence
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IQ -A-AxI<n-k-
k(n - k)

_
(n - k)Z

n

	

n

proving the lemma. F1
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Proof of the theorem .We choose x 1	x f E Q successively as follows . Let x, be
arbitrary . Set A, _ {x, } and A i=A i _, u A i ,x i . Select x i+ t such as to maximize
IA ixi+t -A i l . We stop when A, = Q .

Let p i =jQ -A i j/n where n=IQI. By the lemma, pi+,,<p? . Hence pi+t<pi , .
We have p, =1-1/n and p r -, > l/n (because p, is the first member of the sequence

p l , p 2í . . . such that p,< 1/n, namely p,=0) .
We conclude that

ex
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2`-2l
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n

so 2`- 2 < n log n and

log n log log n
t<

lo + log ~
	 + 2 .

g2

	

2

The proof is complete.

	

EJ

Proof of the corollary . Let us label the vertices of K„ by v o , . . . , t-n 1 . Let us define
multiplication on this set as follows :

vovi=vivo=vi (i=0, . . . , n-1) ;

L°iVj=Vk lf(Vi,Vk)EFj U=1, . . ,n-1) .

This way we obtain a quasigroup, as readily verified . An application of the theorem
yields a sequence x,__, x, of elements. Let xj =vij. Then the union of the one-
factors F i,, F i ,,	Fi , is connected since, by (ü) of the theorem, every vertex is reach-
able from x, using edges of these one-factors only . In fact, the distance of any vertex
from x, in this graph is at most t -1 .
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