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ABSTRACr . Let G be a connected graph on n vertices with no more than n(1 + e)
edges, and Pk or Ck a path or cycle with k vertices . In this paper we will show that
if n is sufficiently large and a is sufficiently small then for k odd

r(G, Ck ) = 2n - 1 .

Also, for k > 2,

r(G,Pk)=max{n+[k/2]-1,n+k-2-á -ő},
where á is the independence number of an appropriate subgraph of G and ő is 0 or
1 depending upon n, k and a' .

Introduction . Let G and H be simple graphs . The Ramsey number r(G, H) is the
smallest integer n such that for each graph F on n vertices, either G is a subgraph
of F or H is a subgraph of F, the complement of F. Calculation of r(G, H) for
particular pairs of graphs G and H has received considerable attention, and a
survey of such results can be found in [2] .

Chvátal [5] proved that if T„ is a tree on n vertices and K,,, is a complete graph

on m vertices, then r(T,,, Km) _ (n - 1)(m - 1) + 1 . In [4] it was shown that if T„
is replaced by a sparse connected graph G„ on n vertices the Ramsey number
remains the same (i .e. r(G,,, K_ (n - 1)(m - 1) + 1). For m = 3 Chvátal's
theorem implies r(T,,, K3) = 2n - 1. In this paper we will show that if T„ is
replaced by any sparse connected graph G on n vertices and K3 is replaced by an
odd cycle Ck, then for appropriate n the Ramsey number is unchanged. In
particular we will prove the following.

THEOREM. If G is a connected graph on n vertices and no more than n(1 + e) edges,
then

r(G,Ck)=2n- 1

for n sufficiently large, e sufficiently small (both depending upon k) and k odd .

This theorem falls into a larger category of results considered by Burr [3]. A
graph G on n vertices is H-good if r(G, H) _ (n - 1)(X(H) - 1) + t(H), where
X(H) is the chromatic number of H and t(H) is the minimum number of vertices in
any color class of any X(H) vertex coloring of H . The above theorem states that G
is Ck-good .

Received by the editors July 1, 1980 .
1980 Mathematics Subject Classification. Primary 05C99, 05C35, 05C55 .

© 1982 American Mathematical Society
0002-9947/82/0000-0768/$04 .00

501



502

	

S. A. BURR ET AL .

Gerencsér and Gyárfas [7] proved that r(P,,, P,,,) = n + [m/2] - 1 for n > m,
where Pk denotes a path with k vertices . Also, Parsons [10] verified for ap-
propriately large n that r(5,,, P,,,) = n + m - 2 - S (S„ is a star on n vertices),
where S = 0 if m - 1 divides n - 2 and S = 1 otherwise . For large n we will
generalize these two results by replacing the star and the large path by a sparse
graph. The following theorem will be proved .

THEOREM . Let G be a connected graph with n vertices and no more than n(1 + E)
edges . Then for k > 2, n sufficiently large, and e sufficiently small (both depending
upon k),

r(G,Pk)=max{n+[k/2] -1,n+k-2-a'-8},

where a' is the independence number of an appropriate subgraph of G, and 8 = 0 if
k - 1 divides n - 2 - a' and 8 = 1 otherwise .

We now mention some notation that will be used in the paper . Notation not
specifically mentioned will follow [9] . The vertex set and edge set of a graph G will
be denoted by V(G) and E(G) respectively. The edge with endvertices a and v will
be written uv . A path with k vertices and endvertices a and v will be denoted by
Pk(u, v) . If the vertices of the path are {v 1 , v2 , . . . , uk } then this will be expressed
by (v 1 , v2 , . . . , vk ) . The corresponding cycle will be written (v 1 , v2, . . . , vk , v 1 ). A
path P which is a subgraph of a graph G is a suspended path of G if each vertex of
P, except for its endvertices, has degree 2 in G . If a graph H is isomorphic to a
subgraph of G, this will many times just be expressed as H is a subgraph of G. The
graph G - H will be the subgraph of G induced by the vertices of G not in H. The
graphical parameters a, 8 and A will denote the independence number, minimum
degree, and maximum degree of a graph respectively . Also as usual, {x} and [x]
will denote the least integer greater than or equal to x and the greatest integer less
than or equal to x respectively .

Main theorems. There are several facts that are used in the proofs of both of the
main theorems as well as in the proofs of other results. Some of these common
facts are included in the next lemmas .

LEMMA 1 . Let u and v be distinct vertices of a graph G on s + t vertices

(t > s > 2). Assume G contains a path P which is a P,(u, v) but G contains no

P, 1(u, v) •

	

_
(i) If t > 2s, then G contains a P2{s12}+i •
(ü) If t > 5s - 1, then G contains a P2s, +i .

(iii) If t > 5s - 1, then G contains a P2s _ 1 between any pair of vertices not in P or
G contains a K2,+1 .

PROOF . Denote the path P by (x 1 , x2, . . . . x,) and let S be the set of vertices of
G not in P . Since the path P cannot be lengthened, no vertex of S is adjacent in G
to two consecutive vertices of P . Thus for any pair { x i , xi +I ) of consecutive
vertices of P, two of any three vertices of S are commonly adjacent in G to either xi
or x,+1 .
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(i) Since t > 2s repeated application of the above fact implies that there exist

two vertex disjoint paths Q l and Q2 satisfying the following .

(a) Their first and last vertices are in S .

(b) Their vertices alternate between S and P.
(c) S C V(Q1) U V(Q2) •

With no loss of generality we can assume that Q, contains at least {s/2} vertices of

S. If Q, contains at least {s/2} + 1 vertices, then Q, is the desired path. If Q,

contains precisely {s/2} vertices of S (and {s/2} - 1 vertices of P), then Q l can
be extended to a P2,,12) +1 by adjoining a vertex from P to each end of Q 1 . This is

possible since each vertex of S is adjacent in G to at least s vertices .
(ü) and (iii) . If a vertex w of S is adjacent in G to x; and xj of P (i < j < t), then

xi+ l xj+ l is in G. Otherwise, (x l , . . . , xi , W, xj , xj_ l , . . . , xi+ l , xj+ l , . . . , x,) is a

Pi+1(u, v) . Therefore if a vertex w of S is adjacent in G to 2s + 1 vertices of P, the

2s vertices which are successors (the last vertex may not have a successor) of these
vertices along P together with w form a K2s+ , in G. We can thus assume that each
vertex of S is adjacent in G to at most 2s vertices of P . This implies that each pair
of vertices of S are commonly adjacent in G to at least s - 1 vertices of P . Hence
for any pair of vertices w l and W2 Of S there exists a P2s -,(w l , w2) in G such that
the vertices alternate between S and P . This path can be extended to a P2s+, since

each of w, and W2 are adjacent in G to at least 3s - 1 vertices of P .

LEMMA 2. Let G be a graph on n vertices and n + t edges . If G has no isolated
vertices and no suspended path with more than s vertices, then G has at least
{n/(2s) - 3t/2) vertices of degree 1 .

PROOF. Let H be the graph (possibly multigraph) obtained from G by replacing

each suspended path of G by an edge . Thus if H has m vertices, then H has m + t
edges and every vertex has degree 1 or at least 3 . If x is the number of vertices in G
(and in H) of degree 1, then

x + 3(m - x) < 2(m + t) .
Since G has no suspended path with more than s vertices, G can be obtained

from H by replacing each edge of H by a suspended of appropriate length less than
or equal to s. Thus

n < s(m + t) .
Therefore the two displayed equations imply

x > n/2s - 3t/2
which completes the proof .

LEMMA 3. Let m > n, n, > n2 > n i > 1, k > 3 and l > {k/2} - l be
positive integers . Let H be a graph on n - Eli -, ni vertices with 1 distinct vertices
designated v l , v 2 , . . . . vi , and G a graph on n vertices obtained from H by adjoining
for each i (1 < i < 1), a star with ni edges and center at vi . If

( {k/2}-1

	

)r(H,Pk)<m-

	

nr (k-1),
i=1
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then
r(G, Pk ) < m + [ k/2] - 1 .

PROOF. Let F be a graph on m + [k/2] - 1 vertices . Assume that F does not
have G as a subgraph and F does not contain a Pk . We will show that this leads to
a contradiction.

Select a path of maximal length in F. By assumption this path has at most k - 1
vertices and the endvertices of the path are adjacent in F to all vertices not on the
path. Delete the vertices of this path and then repeat this procedure a total of
(Eik12}-i ni) - I times. This leaves a graph F' with at least m - (2;k12)-i ni )
•

	

(k - 1) vertices. Thus F' contains H as a subgraph. Let A be the set of
endvertices of the paths deleted . Hence JA I > Y_{k12?-1 ni .
The graph F would contain G as a subgraph if there were disjoint sets of vertices

S 1 , S2 , . . . , Sl (ISi l = n i ) in F but not in H such that each vertex of Si is adjacent
in F to the vertex vi for 1 < i < 1. Since F does not contain G as a subgraph, Hall's
theorem [8] implies that there exists a set L = V' I' vi e , . . . , v;) such that

r
IN n V(F - H)J < E ni,

i=1

where N is the set of vertices which is adjacent in F to at least one of v ., 1 < j < r .
Clearly then, I N U V(H) I < I V(H) I + Ej_1 n i . < n . Therefore F contains a com-
plete bipartite graph Kr (k12] . Also each vertex of A is adjacent in F to each vi ,
1 < i < 1. Since JAI j k12) ni and A n V(H) = 0, r > { k/2} . This implies that
F contains a Pk , a contradiction .

The next lemma will be needed in the inductive step of the proof of Proposition
5 . The graph G + e is a graph obtained from the graph G by adding the edge e
between two nonadjacent vertices of G .

LEMMA 4 . For any graph G and for k > 2,
r(G+ e,Pk ) < r(G,Pk)+k- 1.

PROOF . Let F be a graph on r(G, Pk ) + k - 1 vertices and assume that f does
not contain a Pk . Select a path of maximal length in F and let w be an endvertex of
this path . Since f contains no Pk, the set S consisting of w and the vertices adjacent
to w in F has at most k - 1 vertices. Therefore there is a copy of G in F which is
vertex-disjoint from S. Let a and v be the endvertices in this copy of G of the edge
e . Since w is adjacent in F to each vertex of this copy of G, replacing u (or v) by w
gives a copy of G + e .

Let G be a connected graph on n vertices and no more than [n(I + e)] edges . If n
is sufficiently large and e sufficiently small, then G has either a long suspended
path or a large number of vertices of degree 1 . This fact will be used in the proof of
the following proposition. The various cases appearing in the proof are also a
consequence of this fact.

PROPOSITION 5 . For integers n, k > 1, let G be a connected graph with n vertices
and no more than [n(1 + 1/18k)] edges . Then r(G, P,.) < n + 13ká .

S. A. BURR ET AL .



SPARSE GRAPH-PATH OR CYCLE

	

505

PROOF . The result is trivial for k = 1 or 2, so assume k > 3 . The proof will be by
induction on n . Since r(K,,, Pk) G nk, [5], the result is true if n < 13k4. Thus

assume n > 13k4 and the result is true for all appropriate graphs with less than n
vertices. Let F be a graph on n + 13k 5 vertices. We will assume that f contains no

Pk and show that G is a subgraph of F.
Case I . G has a suspended path with 3k - 3 vertices .

Let H be the graph on n = k + 1 vertices obtained from G by shortening the

suspended path by k - 1 vertices. Therefore H has at most [n(I + (1/18k))] - k
+ 1 < [(n - k + 1)(1 + 1/18k)] + 1 edges. The induction assumption and
Lemma 4 imply that F contains H as a subgraph . Of course G can be obtained

from H by lengthening the suspended path in H by k - 1 vertices. Let H' be a

subgraph of F in which this suspended path has been lengthened as much as

possible (up to k - 1) . If H' is isomorphic to G, the proof of this case is complete .

If not, then select a set S of k - 1 vertices of F not in H' . Let F' be the subgraph

of F spanned by the vertices of the suspended path of H' and the set S . Lemma 1(i)
implies that F', and hence F, contains a Pk . This contradiction completes the proof
of this case .

Case II . G has a vertex adjacent to at least 2k - 2 vertices of degree 1 .

Let S be a set of 2k - 2 vertices of degree 1 in G which are adjacent in G to a

vertex v . Let u be the endvertex of a path P of maximal length in F. The path P has

at most k - I vertices. If H = G - S, then H has n - 2k + 2 vertices and at most

[(n - 2k + 2)(1 + 1/18k)] + 1 edges. The induction assumption and Lemma 4

imply that r(H, Pk) < n - k + 1 + 130 . Therefore F contains H as a subgraph

such that H is vertex-disjoint from P. Since u is adjacent in F to each vertex of F
not on P, replacing v in H by u gives a copy of G in F.

Case III . G has no suspended path with 3k - 3 vertices and no vertex adjacent

to 2k - 2 vertices of degree 1 .

Lemma 2 implies that G has at least n/(2(3k - 3)) - 3n/36k > n/12k vertices

of degree 1 . Since n > 13k4 , G has at least { 12 k3 } vertices of degree 1 . The fact
that no vertex of G is adjacent to more than 2k - 3 vertices of degree 1 insures
that there are distinct vertices v„ v2 , . . . , v,, (I > 13k3/(12(2k - 3))) in G with

each v, adjacent to n; vertices of degree 1 . In fact we can assume that 2k - 2 > n,
n2 n, land {,-̀Zk3 } _ 2;a , n; . Let H be the graph obtained from G

by deleting those t n; vertices of degree 1 . The graph H has n - t vertices

and at most [(n - t)(1 + 1/18k + t/18k)] edges. The induction assumption and

Lemma 4 imply that

r(H, Pk) < n - t + 130 + {t/18k}(k - 1) .

A straightforward calculation implies that

1

r(H, Pk ) 6 (n + 13k 5 - Q k12] - 1)) - (
( k12)

i
E

1

n)(k - 1) .
-

Therefore by Lemma 3,
r(G, Pk) < n + 13k5 .
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Proposition 5 will be used heavily in the proof of the following theorem . Also the
outlines of the two proofs are similar in that they both use the structure of a sparse
connected graph. Some additional notation is needed before the theorem can be
stated .

If v is a vertex of a graph G, let G„ be the subgraph of G induced by the vertices
distinct from v and not adjacent to v . Let a'(G) = min{a(G,,) : v (=- V(G)) .

THEOREM 6. Let G be a connected graph with n vertices and no more than
[n(1 + 1/81k á )] edges. Then fork > 2 and n > 3á2k 12 ,

r(G, Pk) = max{n +[k/2] - 1, n + k - 2 - a'(G) - S},

where 8 = 0 if k - 1 divides n + k - 3 - a'(G) and 8 = 1 otherwise .

Note that if a'(G) is as large as f k/2), then Theorem 6 implies r(G, Pk) = n +
[k/2] - 1 . Also, unless G has a vertex of very large degree, a'(G) > k. For
example, if v is a vertex of degree < n(1 - 1/8 1 k 5 ), then G„ has t 3 n/81 k 5
vertices and at most t + n/81 k5 edges. Therefore G„ has average degree no more
than 4 . Thus Turán's Theorem implies that G„ has independence number at least
t/5 > n/405k 5 > k . Thus the only time it will be necessary to calculate a'(G) will
be when G has a unique vertex v of very large degree, and in this case a'(G) is just
the independence number of G,, .

PROOF (THEOREM 6) . The graph K. - I U K[k12]_1 has no connected subgraph
with n vertices and its complement has no Pk . Let n + k - 3 - a'(G) - 8 =
t(k - 1) + s, where 0 < s < k - 1 . Note that

n+k-3-a'(G)-8=(t-k+2+s)(k-1)+(k-1 -s)(k-2) .

Let L be the graph whose complement is the graph

(t-k+2+s)Kk_ l U(k-1-s)Kk _2.

Clearly L contains no Pk . We will show that L does not contain G as a subgraph if
a'(G) < k. Assume G is a subgraph of L and let v be the unique vertex of maximal
degree in G. The vertex v is in one of the disjoint independent sets of L, say S. The
set S has at least k - 1 - 8 vertices. Any other vertices of G in S must be
independent and not adjacent to v . Therefore S contains at most a'(G) + 1
vertices of G. Hence L must have at least

n+(k-1-8)-(1+a'(G))=n+k-2-a'(G)-8

vertices, a contradiction. The above two examples give the lower bound for
r(G, Pk) .

The proof of the upper bound for r(G, Pk) will be broken into three cases, just as
the proof of Proposition 5 . Let F be a graph on

max{n+[k/2]-1,n+k-2-a'(G)-S}

vertices whose complement F has no Pk . We will show that G is a subgraph of F.
The result is trivial for k = 2, so assume k > 3 .

Case I . G has a suspended path with at least 13ká + 3k vertices .
Let H be the graph on n - 13k5 vertices obtained from G by shortening the

suspended path by 13k5 vertices . By Proposition 5, F has H as a subgraph. Let H'



SPARSE GRAPH-PATH OR CYCLE

	

507

be a subgraph of F with a maximal number of vertices which can be obtained from
H by lengthening the suspended path as much as possible (up to 13k 5 ) . If H' is G,
the proof is complete. If not, Lemma 1(ü), applied to the subgraph of F induced by
the vertices of the suspended path of H' along with [k/2] vertices not in H',
implies that F contains a Pk . This contradiction completes the proof of this case .

Case IL G has a vertex adjacent to at least 13k5 + k vertices of degree 1 .
Let S be a set of 13k á + k vertices of degree 1 adjacent in G to a vertex v and let

H = G - S . Thus H has n - 130 - k vertices and r(H, Pk ) < n - k by Proposi-
tion 5 .

Consider a maximal length path P = (x„ x2 , . . . , x) in F. By assumption t < k .
If there exists an i (1 < i < t) such that x,x; and xi _,x, are edges in F, then the
vertices of P form a cycle (i.e . (x„ x;, x,+1, . . . , xi, xi _,, xi_2, . . . , x2, x,) is a C,) .
The maximality of the length of P implies that the vertices of P are a component of
F. If no such i exists, then the sum of the degrees in F of x, and x, is < t - 1. This
would insure that F has a vertex of degree < [ k/2] - 1 . Therefore, without loss of
generality we can assume that F is the disjoint union of complete graphs each with
less than k vertices or that i7 has a vertex of degree < [k/2] - 1 .

Let u be a vertex of f; of minimum degree, and let N be the vertices of F
adjacent to u . Then N U (u} has at most k - 1 vertices . Since r(H, Pk ) < n - k,
F has a subgraph H which is vertex-disjoint from N U ( u) .

If u has degree at most [k/2] - 1, then replace the vertex v in H by the vertex u .
Since u is adjacent in F to each vertex of H, this gives another copy of H in F.
Also, since u is adjacent in F to all but possibly [k/2] - 1 vertices, this verifies that
G is a subgraph of F.
Assume a has degree at least [k/2] . In this case F is the disjoint union of

complete graphs each with at most k - I vertices. We have that u is in some
component C of F with t < k - 1 vertices. In fact, if F has n + k - 2 - a'(G) -
S vertices, then t < k - 1 - S . Since r(H, Pk) < n - k, F has a subgraph H which
is vertex-disjoint from C . Replace the vertex v of H by u . This gives a copy of H in
F, which we will denote by H'. The graph H' has only the vertex a in common
with C. Select an independent set B of min(a(H,'), t - 1) vertices in H,, . Obtain
another copy of H, which we will denote by H", by replacing the vertices B of H'
with JBI vertices of C distinct from u . This can be done, since each vertex of C is
adjacent in F to each vertex of H' except u . Since a(H,) = a(H„) and a(G„)
a'(G), a is adjacent in F to all except at most t - 1 - a'(G) of the vertices in
F - H". Therefore the vertex u is adjacent in F to at least 13 k 5 + k vertices not in
H" . Hence F contains G as a subgraph .

Case III . G has no suspended path with 13k 5 + 3k vertices and no vertex
adjacent to 13k 5 + k vertices of degree 1 .
Lemma 2 implies that G has at least

n/ (2(13k 5 + 3k)) - 3n/ (2 • 81k5 ) > (n/ks)(27 - 54 ) = n/54k 5

vertices of degree 1 . Since n > 352k 12 , G has at least (54 )k7 vertices of degree 1 .
Thus there exist vertices v,, v 2, . . . . v, in G (1

	

(52)k7/(13k 5 + k)) such that v ; is54
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adjacent to n; vertices of degree 1 with 13k 5 + k > n l > n 2 >

	

> n, > 1 . We
can also assume that (( 54 )k 7 ) _

	

1 n, .
Let H be the graph obtained from G by deleting these t = E;=1 n; vertices of

degree 1 . Therefore H has n - t vertices and at most [(n - t)(1 + 1/81k 5) +
(t/81 k 5)] edges. Thus Proposition 5 and Lemma 4 imply

r(H, Pk) < n - t + 130 + f 81k 51 (k - 1) .

Using very bad approximations, direct calculations verify that

( {k/z}-1 )
r(H, Pk) < n -

	

n, (k - 1) .
t=t

Therefore by Lemma 3, G is a subgraph of F. This completes the proof of the
theorem .
The lower bound on n, the number of vertices in G in Theorem 6, and the upper

bound on the number of edges in G in Proposition 5 and Theorem 6 are by no
means sharp. Sometimes to simplify the calculations slightly weaker bounds were
used, but significant improvement in these bounds will necessitate different meth-
ods of proof .

There are several interesting corollaries of Theorem 6 . The first one is a
consequence of the remarks made prior to the proof of Theorem 6, and the last
three are a result of calculating a'(G) . The last two are special cases of well-known
results .

COROLLARY 7 . Let G be a connected graph with n vertices and no more than
[n(I + 1/81k á)] edges. If 0(G) < n(I - 1/81k 5 ), n > 352k 12 and k > 2, then

r(G,Pk)=n+[k/2]-1 .

COROLLARY 8. If T„ is a tree on n vertices with A(T„) < n - k, n > 352k 12 and
k > 2, then

k .

r(T,,, Pk) = n +[k/2] - 1 .

COROLLARY 9 [6, 7] . If n > 352k 12 and k > 2, then
(i) r(P,,, Pk ) = n + [k/2] - 1,
(ü) r(C,,, Pk ) = n + [k/2] - 1 .

In the results as stated in both [6] and [7] the restrictions on n are only linear in

COROLLARY 10 [10] . If n > 352k 12 and k > 2, then
r(S,,,Pk)=n+k-2-8,

where 8= 0 if k- 1 divides n- 2 and 8= 1 otherwise .

In the result stated in [10] the restriction on n is only quadratic in k .
We will use the results on r(G, Pk ) to obtain the numbers r(G, Ck) for k odd.

Two additional lemmas will be needed . These we will state and prove now .
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LEMMA 11 . Let G be a graph with n vertices and minimum degree S > 1 . If v is a
vertex of degree S, then

r(G, Ck ) c max(r(G - v, Ck ), Sr(G, Pk _,) + n - S) .

PROOF . Let F be a graph with max(r(G - v, Ck ), Sr(G, Pk _ 1 ) + n - S) vertices
whose complement F does not contain a Ck . Therefore by assumption, G - v is a
subgraph of F. Let N be the vertices of G - v which are adjacent in G to v, and let
S be the vertices of F not in G - v. Thus N has S vertices and S has at least
S(r(G, Pk _ 1 ) - 1) + 1 vertices . If F does not contain G as a subgraph, then each
vertex of S must be adjacent in f to at least one vertex of N. Therefore some vertex
w of N has degree at least r(G, Pk_,) in F. This implies that either F contains G as
a subgraph or there is a Ck in F containing w. This completes the proof .

LEMMA 12 . If G is a graph with n vertices and I edges, then

r(G,Ck) < n+21k-21/n .

PROOF. The proof will be by induction on n . If n = 1, then I = 0 and clearly
r(G, Ck ) c 1. Proceed by induction and let v be a vertex of minimal degree S in G ;
Lemma 11 implies

r(G, Ck) c max(r(G - v, Ck ), S • r(G, Pk _ 1 ) + n - S) .

The induction assumption and the fact that r(K,,, Pk ) c nk give that

r(G, Ck) < max(n - 1 +2k(1-8)- 2(1 - 6), Skn + n - S) .

Using that S c 21/n, it is easily verified that Skn + n - S S n + 2kl - 21/n .
Therefore direct calculation gives

r(G,Ck) < n+2k1- 21 ,
n

which completes the proof.
Note that Lemma 12 implies for example that r(K,,, Ck) S n + 2n(n - 1)k/2

n2k [1] .

PROPOSITION 13 . Let G be a connected graph with n vertices and no more than
[n(1 + 1/12k2)] edges. For all n, k > 3,

r(G, Ck) c 2n + 13k á .

PROOF. Assume the proposition is not true . Then there exists a graph F on
2n + 13k 5 vertices which does not have G as a subgraph and whose complement F
does not contain a Ck . Let L be the graph obtained from G by successively deleting
vertices of degree 1 and shortening suspended paths with at least 5[(k + 1)/2] + 1
vertices by a vertex . We will show that L is also not a subgraph of F. This will lead
to a contradiction .

Case 1 . G has a suspended path with at least 5[(k + 1)/2] + 1 vertices .
Let H be the graph obtained from G by shortening the suspended path by a

vertex. If F contains H as a subgraph, then Lemma 1 implies that for any pair of
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vertices of F not in H there is a path with k (k odd) or k - 1 (k even) vertices
between them . This path can be assumed to use any [(k + 1)/2] predetermined
vertices of F not in H. Since r(G, Pk) < n + 13k 5 by Proposition 5, either F
contains G as a subgraph or F contains a Ck using the path described earlier . We
can thus conclude that H is not a subgraph of F.

Case IL G has vertex of degree 1 .
Let H be the graph obtained from G by deleting a vertex of degree 1 . Let v be

the vertex of G adjacent to this vertex of degree 1 . If F contains H as a subgraph,
then the vertex v is adjacent in F to at least n + 13k5 + 1 vertices. Since
r(G, Pk ) c n + 13k á , we can assume that F does not contain H as a subgraph .

Repeated application of the situations in cases 1 and 2 imply that L is not a
subgraph of F. The graph L has 1 vertices, no more than I + [n/12k 2 1 edges, no
suspended path with more than 5[(k + 1)/2] vertices, and no vertices of degree 1 .
Lemma 2 implies that l satisfies the inequality

1/ (2 • 5[(k + 1) /21) - 3n/ (2 • 12k2) S 0 .
Therefore I < (15n/12k 2)[(k + 1)/2] . Hence by Lemma 12,

r(L, Ck ) c
12kz [ k 2
	 I

] + 2k(
12
15
k2 [ k 2

	 I l + [ n/ 12k 2 ]) c 2n

since k > 3 . This gives a contradiction, which completes

l

the proof .
Proposition 13 will be used in the proof of the following theorem. Just as we

mentioned earlier, the bounds in Proposition 13 and Theorem 14 are not sharp .

THEOREM 14. Let G be a connected graph with n vertices and no more than
[n(1 + 1/42k á)] edges. Then for odd k > 3 and n > 7á6k 10 ,

r(G, Ck ) = 2n - 1 .

PROOF . The graph K„ _, u K„ , gives that r(G, Ck ) > 2n - 1 . Let F be a graph
on 2n - I vertices whose complement F does not contain a Ck . We will show that
F contains G as a subgraph .

Case I. G has a suspended path with [13 k 5/2] + 5(k + 1)/2 + 1 vertices .
Let H be the graph on n - [13 k 5/2] - 1 vertices obtained from G by shortening

the suspended path by [13k 5/2] + I vertices. Then r(H, Ck ) 5 2n - I by Proposi-
tion 13 . Therefore F has H as a subgraph . Let H' be the subgraph of F which can
be obtained from H by lengthening the suspended path as much as possible (up to
[13k 5/2] + 1 vertices) . If H' is G, the proof of this case is complete . If not, then
Lemma l(iii) implies that F contains a path with k vertices between any pair of
vertices not in H' . Hence any such pair of vertices must be adjacent in F. This
gives that G is a subgraph of F since F contains a complete graph on at least n
vertices .

Case IL G has no suspended path with [13ká/2] + 5(k + 1)/2 + 1 vertices .
Lemma 2 implies that G has at least

n/ (Q 13k 5/2] + ( k + 1)/2 + 1)2) - 3n/ ((42k 5)2)

vertices of degree 1 . Since n > 7á6k 10 , G has at least (n/k 5)(14 - 28 ) > 27 k 5
vertices of degree 1 .
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Let H be the graph obtained from G by deleting 13k á + (k - 1)/2 vertices of
degree 1 . Proposition 13 implies that r(H, Ck) < 2n - 1, and thus H is a subgraph
of F. Let H' be a maximal connected subgraph of G containing H which is a
subgraph of F. If H' = G, the proof is complete, so assume H' is a proper
subgraph of G. Therefore there is a vertex v of H' which is adjacent in F to each
vertex not in H'. Let S be a subset of V(F) - V(H') with n vertices and let
R = V(F) - S.
A Pk_, in Fusing only the vertices of S would imply that Ck is a subgraph of F.

If k = 3, the result is trivial . Assume for the remainder of the proof that k > 5 .
Since r(H, Pk- 1 ) < n - (k - 1)/2 by Proposition 5, there is a copy of H in F
using only vertices of S. Denote this copy of H by H, . By adding vertices of degree
1 enlarge H, as much as possible to obtain a subgraph Hí of F with H, c H, < G.
If Hl' = G the proof is complete so assume not. Thus there is a vertex v, of H, and
of S which is adjacent in F to each vertex not in H,' . Let N, be the vertices adjacent
to v, in F. Hence IN,I > n and IN, n RI > n - 13k5 - (k - 1)/2 . By induction
we will select (k - 1)/2 vertices from the set S. Assume v,, v2 , . . . , v; have been
selected. Consider S - {v,, v2 , . . . , vi } and repeat the procedure for the selection
of v, using S - (v,, v2, . . . , vi ) instead of S. This gives a vertex v,+ , . In this way
one obtains a set {v„ v2, . . . , v (k-, )/2 ) of vertices of S with corresponding
sets N; (1 c i < (k - 1)/2), which satisfy Ni l > n and INi n RI > n - 13k5 -
(k - 1)/2 .

Clearly N = (n ;k,')/2 (Ni n R) has at least

n - ((k - 1)/2)(13k 5 + (k - 1)/2)

vertices. Therefore there is a large complete bipartite graph in F since each vertex vi
(1 < i < (k - 1)/2) is adjacent in F to each vertex of N. In fact if i j, ui E Ni ,
uj E N, and ui u, E E(F), then F contains a Ck using ui , uj , and some vertices from
N and {v,, v 2 , . . . , v(k - 1) 1 2 } . Thus we can assume that ui u . E E(F) . This implies
that F contains a complete graph on the vertices of N, n N2 and each vertex of N,
is adjacent in F to each vertex in N, n N2 . Since IN, n N2 1 > n - 27k5 and
N, I > n, H is a subgraph of F . This completes the proof.
A tree is a special case of a sparse graph . Therefore we have the following

corollary .

COROLLARY 15. If T„ is a tree with n vertices, then for odd k > 3 and n > 756k 10,
r(Tn , Ck) = 2n - 1 .

It would be nice to know the smallest integer n0 = n0(k) such that if n Z n 0 then

r(Tn , Ck ) = 2n - 1 .
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