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Abstract: A projective (2n, n, A, 1)-design is a set & of n element subsets (called blocks) of a 2n-
element set ¥ having the properties that each element of V is a member of 4 blocks and every two
blocks have a non-empty intersection. This paper establishes existence and non-existence results
for various projective (2n, n, 4,1)-designs and their subdesigns.
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This paper deals exclusively with projective (v, k, A, t)-designs for k=n, v=2n and
t=1. A projective (y, k, A, f)-design is a set 7 of k-element subsets (called blocks) of a
v-element set V" having the properties that (i) each #-element subset of V is a subset of
A blocks in Z and (ii) every two blocks in # have a non-empty intersection. We omit
the word projective from this point on. A (v, &, A, f)-design is primitive if it contains
no proper (v, k, A, t)-design. A (2n,n, A, 1)-design is often referred to as a A-tuple
cover, for example, a (2n,n,2, 1)-design is called a double cover.

Although this paper is essentially self-contained, it is an out-growth and extends
some of the work of Ehrenfeucht, Faber and Simmons (1979) and the reader is
referred to that paper for a discussion of the origins of this work and related refer-
ences. Most of the results follow strongly from the Erd6s-Ko-Rado theorem (1961).

The main results in this paper are as follows.

Theorem 5. A (2n,n, A, 1)-design exists if and only if n =3 and either
(a) nisapowerof2and2<i<[+(3M)]-1, or
(b) 7 is not a power of 2 and 2<A<+(3)-2 or A=}(3)).
Theorems 11 and 12. Every (2n, n, +(3?), 1)-design contains a triple cover and at least
s+ (7))
22n—-1) 4 \ n
disjoint double covers.
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Theorem 13. Every (2n,n, A, |)-design & with

1 1 /2n
i (1= ) () 2

contains a (2n, n, y, 1)-design for some y with 2<y=<2n, and hence is not primitive.

Theorem 14, Every (2n,n, A, 1)-design with A<4++(3")=2 can be extended to a
(2n,n, A +2,1)-design.

We proceed with the results and proofs.

Theorem 1. [f n=2/ with =1, there is a 2n, n, [+(2)] -1, 1)-design 9, which is the
disjoint union of (2n,n, 2, 1)-designs,

Proof. We form the design 7, 0on V' ={1, 2,...,2n} as follows. Let S, = {2k — 1, 2k},
k=1,2,...,n. For each k, we partition V-S, =X UY into two equal parts of size
n-1 in such a way that for each /<k, either §;C X or §, ¢ Y. The number of such
partitions is
1 & k-1 2n-2k
Nk:?,go ( r )(n—Zr—l)'

(We can construct a given partition by first choosing r of the S,’s with /<k to be
contained in X (0<r=<k—1). This can be done in (*7!) ways. The remaining S;’s
with /< k are made elements of Y. We must now specify n—2r—1 of the remaining
2n—2k elements of ¥ to be included in X. This can be done in (,2"5,2%,) ways. Since
the roles of X and Y can be reversed, each partition is counted twice.) Now, N, is
always even since (,2"3,2%) is always even and in the case where there are an odd
number of summands (k odd), the term

k—1 2n—-2k
k-1 /\ n-1
is divisible by 4. Consider two of the partitions XUY =V -8, =UUZ. A double
cover is formed by the blocks

{2k-1}UX, {2k-1}UY, {2k}UU, {2k}UZ.

The union of all these double covers and their complements contains all the »
element subsets of V except those which are the union of 47 of the n sets S;. By
induction, inside the remaining (,/,) sets, a (n, 4n, [+(,72)] —1,1)-design can be
found which is the disjoint union of double covers, unless n=4, in which case the
desired (4,2, 0, 1)-design is empty. The design &, is then taken to be the union of all
of these double covers.

Theorem 2. If n=2! with I=1, then (2n, n, A, 1)-designs exist if 2< 1 <[$+(¥")]-1.
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Proof. By Theorem 1, the theorem holds if 4 is even. Now we claim that if /=2,
then the design %, in Theorem 1 can be decomposed into two triple covers and
double covers. As in the proof of Theorem 1, this fact will be true by induction if it
can be verified for the (8,4, 16, 1)-design %;. Consider the three double covers in the
decomposition of the (8,4,16,1)-design %, formed by the blocks

A ={1,3,4,5}, A,=1{1,6,7,8}, A;=1{2,3,4,6}, A,=1{2,57,8},
B, =1{2,5,6,8}, B,=1{2,3,4,7}, B;=1{1,3,5,7}, B,={1,4,6,8},
C =1{3,56,8}, C={1,2,3,7}, C;=1{4,57,8}, C,={1,2,4,6}.

The blocks 4,, A,, Ay, B,, C;, C4 form one triple cover and the blocks 4., B, B;,
B4, C;, C; form another. This proves the claim. By combining one of these triple
covers with the proper number of double covers, (2, n, A, 1)-designs can be con-
structed for all odd A except [+(3")]-2. We show that a (2m,n, A, 1)-design with
1 =[4(3")] -2 can be constructed from %, by replacing four of the blocks in one of
the constructed triple covers by two blocks not in 7. As above, it is necessary only to
consider the (8,4,16,1)-design %,;. We replace the blocks A,, B,, C,, Cy4 in the first
triple cover by the blocks {1,2,3,4} and {3,4, 5,6} to form the double cover 4,, 4,
{1,2,3,4}, {3,4,5,6}. This proves the theorem.

Theorem 3. Suppose n=2'q with q an odd integer greater than 1. There is a
2n, n, L(3M), 1)-design %, which is the union of (2n, n, 2, 1)-designs, unless g=2"+1,
in which case there is a (2n, n, +(31), 1)-design which is the union of (2n,n,2,1)-
designs and one (2n, n, g, 1)-design.

Proof. As in the proof of Theorem 1, we let S, ={2k—1,2k} and for each k, we
form N, partitions of V- §; into two equal parts X and Y so that either S;C X or
S;cY, Wher?\r 1 S (k—l) 2n—2k
kT & r n-2r-1/"
There are two cases to consider: # odd and n even. First we consider the case n even.
In this case, N, is even for all £ by the same argument as before. Also, as before, a
collection of disjoint double covers can be formed having the property that the
union of these double covers and their complements contains all n element subsets
of V except those which are the union of in of the n sets S,. By induction, since

n+2!, we see that this case reduces to the case where # is odd. In the case where 7 is
odd, we analyze the situation as follows. Since

m-2k\ [ 2n—2k
n—-1-2r) \n-2k+2r+1)’

2n-2k % 2n-2k
n—1-2r n+l1+42r-2k

we have

( n-k ) n—k
Jn—1)—r +(4}(n+1)—k+r)

(mod 4).
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If k=2r+1,
k=1 \/2n-2k\_ . _{( k-1 n—k
(eem) ) =o= (o) (sirty) @oa®:

2Ne=1 (k: l)(ﬂnn:lf—r) = (%?n_—ll)> KRk

If n=2"+1, all of the N, are odd, otherwise all of the N, are even. In case all of the
N are even, as above, a collection of disjoint double covers can be formed having
the property that the union of these double covers and their complements contains
all n element subsets of ¥ except those which are the union of 4 of the » sets 5;. In
this case, n is odd, so the exception is vacuous. The union of these double covers is
the design %,. If n=2"+1, a (2n, n, n,1)-design is formed using one of the N, parti-
tions for each k as follows. Let

Ti=Spi2k-2USms2%41p2 U UG UG U U S .

The design is formed by the 2n blocks {2k—1}U T}, {2k}UT;, k=1,2,...,n. The
remainder of the N, —1 partitions are apportioned into double covers in the same
manner as the other cases. Since » is odd, the union of all these double covers and
the n-tuple cover form a (2n, n, $(31), 1)-design %,. This completes the proof of this theorem.

Thus

Theorem 4. If n is not a power of 2, then (2n, n, A,1)-designs exist if 2<2 =M -2
or f.fj- =J4"(Znﬂ)-

Proof. The theorem is true for n=3 by inspection. If n=35, three of the double
covers constructed in the decomposition of 2, in the proof of Theorem 3 can be re-
arranged to form two triple covers as in the proof of Theorem 2. By forming the right
combination of double covers and triple covers (and the 2™ + 1-tuple cover in the
case where n=2/(2"+1)), a A-tuple cover can be constructed for all A such that
2 <) <i(3")-2. Details are left to the reader.

Theorem 5. A (2n,n, A, 1)-design exists if and only if n=13 and either
(@) nisapowerof2and2<Ai=<[+(})]-1, or
(b) nis not a power of 2 and 2<)<4(3) -2 or A=+(¥).

Proof. Only the necessity of these conditions remains to be proved. To prove this
theorem, it seems easier to prove a slightly more general result (Theorem 6) which
first requires a definition.

Definition. A (27,1, A, 1)-predesign is a set % of n-element subsets of a 2n-element
set V having the properties
(i) (1/2n) L, ., A(v, #) = A, where A(v, 7)is the number of setsin Z containing v.
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(i) A(v, 2)=A(w, 2) (mod 2) for all vand win V,
(iii) every two members of % have a non-empty intersection.

Remark 1. Note that if & is obtained from a predesign by replacing some blocks by
their complements, & is a predesign.

Theorem 6. A (2n,n, A, 1)-design exists if and only if a (2n, n, A, 1)-predesign exists. A
(2n, n, A, 1)-predesign exists if and only if n=3 and either

(@) nisapowerof2and2<i<[+(®})]-1, or

(b) n is not a power of 2 and 2<A<+(3")-2 or A=4(*").

Proof. We have already shown the existence part of this theorem in Theorems 2 and
4. It remains to demonstrate the non-existence part. Let a=a, =$(¥).

Case I. The non-existence of a (2n, n, [a], 1)-predesign when n is a power of 2.

Suppose a (2n, n, [@], 1)-predesign & exists. Since [e]=a—4, the number of
blocks either in 2 or complementary to a block in 7 is 4a—2=(%")—2. We may
assume that the two remaining n-element subsets of V" have the form {1,2,...,n}
and {n+1,n+2,...,2n}. By replacing blocks by their complements if necessary, we
may assume that every block in Z contains the element 1. Thus the blocks of % are
exactly the sets of the form {1} US withSc V- {1}, |S|=n-1and §#{2,3,...,n}.

Hence

A, #)= (2,,"__,1) -1,

AU, 9) = (2:_'22) -1 ifj=2,..,n-1,
while

2n-2
i G = o -
A(J, @) ("_2) ifj=nn+1,...,2n.
Thus & is not a predesign since (ii) of the definition is violated.

Case II. The non-existence of a (2n, n, @ —1, 1)-predesign when n is not a power
of 2.

Suppose a (2n, n, & — 1, 1)-predesign Z exists. The number of blocks either in % or
complementary to a block in @ is 4a — 4. The remaining four n-element subsets of ¥
have the form 4, A, B, B’. Let we A\ Band ve ANB. The set # = 2 U {A, B} forms
a (2n, n, o, 1)-predesign, since # can obviously be transformed into any given
(2n, n, o, 1)-design by interchanging some blocks with their complements. Now
Av, 2)=A(v, #)—2, while A(w, 2)=A(w, #)—~1, so @ can not be a predesign.

Lemma 7. Suppose the x-element subsels of a k-element set are partitioned into two
classes X and Y such that if Se X and Te Y, then |SNT|<x—2. Then either X=0
orY=0.
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Proof. If |[A|=x-1, then for all v, AU {v} must lie in the same class. We suppose
that for all v, AU {v} € X. We shall show by induction that all x-tuples are in the
class X. Let BU{w}eY with |[BUA| maximum. We know that |[BNA|<x-1.
Let BNA={v}, ..., 0}, A={v1, .0, 01}, B={U1y.r5 Upy Wpi15 .00y Wy} and B*=
{V1y vees Ups1s Wr 25 vory We—1}. Then BU{v,41} =B*U{w;.,} € X, contradicting the
fact that BU {w} e Y for all w.

Lemma 8. Let 2 be a 2n, n, +(3"), 1)-design. Form a directed graph, G(2), on the
vertices V of 2 by having an edge (u, v) if there are blocks B, and B, in 7 such that
BNB;={u} and BiUB,=V—{v}. Then G(2) is a graph, that is, G(2) is sym-
metric and irreflexive.

Proof. It is a theorem (Theorem 7) of Ehrenfeucht, Faber and Simmons (1979),
that every two points ¥ and v occur together in +(2;': 2) blocks of # and, con-

sequently, that # occurs in

i(Zn) 1 (2:1—2 1 Zn—Z)

a\n/ 2\ n-2 )_?( n-1

blocks of 2 which omit v. We divide the n-element subsets of ¥ —v into (37> 12)
pairs 4;, A, such that A, NA4,={u}. Since the pair B, B, are in %, there must be at
least one pair A;, A, such that neither A; nor A; are in 2. But then the complements
A\, A, must be in 2. Since 4;NA;={v} and A,UA,=V - {u}, (v, u) is an edge in
G(2). Since G(2) is obviously irreflexive, this proves the lemma.

Lemma 9. Suppose B, ={u,x,, ..., X,_1} and By={u, ¥, ..., ¥»_1} are the blocks in
9 which join u to v in G(2), that is, ByUB, =V — {v}. Then each x; and y; is joined
either to u or to v in G(2).

Proof. Consider (x;, ¥1,..., Ya—1). If itis in 4, then it and (i, xy, ..., X, ;) join x; to
v. Otherwise, (¥, v, X3,...,X,_1)€ % and it and (&, 3y, ..., ¥,-1) join u to x.

Lemma 10. Ifu;, us, ..., u,,u isanr-cyclein G(2), r=2or3, then % hasa(2n,n,r,1)-
subdesign.

Proof. Associated with the cycle uy, 4, ..., 4,, t; is a collection of pairs of blocks
Al, Bl,Az, Bz, R o B,- of % such that A,‘an = {u,-} and A,'U.B(= V—{LJH,I},
i=1,2,...,r (modr). Clearly these blocks are all distinct and form a r-tuple cover.

Theorem 11. Every (2n, n, +(3), 1)-design contains a (2n, n, 3, 1)-design.
Proof. We suppose no triple cover exists in the (21, n, +(37), 1)-design 2 and reach

a contradiction in a series of steps.
(1) G(2) is a complete bipartite graph.
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By Lemma 10, G(%) has no triangles. Suppose u is joined to v in G(%). Let V| =
{x|(xv)eG(2)} and V,={y|(»u)e G(2)}. If xe ¥, and y € V5, by Lemma 9, x is
joined to y or to w. If x is joined to u, a triangle is formed by x, u, and v. Thus x is
joined to y, so G(%) is complete bipartite.

(2) There exist V, and V,, subsets of V, with |V|| =k an odd integer, such that if
there exists B % such that |BNV,|=x, then no B’ € # exists such that |B'NV}|=k—x.

Let ¥} and ¥, be the bipartition found in (1). Let BNV; =S, |S|=x. Let X =
{TcV,|TUSe 9} and Y={TCV,|TUS¢ @}. By Lemma 7, if X, Y # @, then there
exists 7; € X and there exists 7> € Y such that |7;N7;| >x—2. Wehave B, =T\US€ 7
and B,=T,US¢ 2. Thus (V,—T3)U(V,—S)=B;e % We find that BNB;=T)\ T
and V\(B;UB;)=T>\T,. These sets can’t be empty for if 7} =75, then B, =B, is
both in % and not in 4. Thus |T} —T>|=|7; — T;| = 1, which contradicts the fact that
no point of V; is joined to any other. Thus for each S C ¥; with |§|=x either

(i) SUTe 2 foral TCV, and |T|=n—x, or

(i) SUT¢ 7 forall TCV; and |T|=n—x.

The symmetrical argument with ¥; and n—x shows either

(i) SUTe 2 for all SC¥, and |S|=x, or

(ii) SUT¢ 2 for all SCV; and |S|=x.

Thus for each x, 0 <x=<n, either

() SUTez forall ScV,, TcV,, |S|=x, |T|=n—-x, or

(i) SUT¢ 7 forall SCcV;, TCV,, |S|=x, |T|=n-x.

To show that |V;|=k is odd, suppose k=2r. Then with x=r (working with the
complementary design if necessary), we have that there exists SC ¥, with [S|=r
such that SUTe #with |T| =n—r. Alsosince |V, -S| =rand |V,-T|=n—r, we
have V- (SUT)=(V,-8S)U(V,—-T)e %, contradicting the fact that every two
blocks of & meet.

(3) Let k=2r+1=<n and let

S=Smnr) =} (—1)"(2.’)(2"‘2"1).

im0 i n—i-1
We must have S=0.
Note that by (2), if there exists Be Z such that |[BNV;|=x, every x-tuple in ¥,
occurs as ¥;NA for some block 4 € 4. It is not possible that there exists a block B
for each 1 =¢=<r+1 such that |[V;NB|=r+¢, for then an element v € V; appears in

S 2r 2n-2r—-1\ _& (2r\(2n-1-2r
:z:l (r“‘f—l)( n—r—t )_sgr(-s)( n—-1-s )
1 & /2r\/2n-1-2r 1 /2n
g 2,%(5)( n—1-s )'T(n)

blocks, an impossibility. We shall say that the number x is used by the design % if
|[ViN B|=x for some Be 7. We know that one and only one of each pair x or 2r+1—x
is used by ¢ for 1 =x=r, and not all x=r+1 can be used. By considering the com-

plementary design, if necessary, we may suppose r+1 is used by & If r+/-2 and
r—i+1, for some i =3, are both used by %, we can make a triple cover as follows.
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We construct 6 subsets of V), called 5, S, ..., Ss with | S| =8| =|8;| =|Ss|=r+1,
|Ss| =r+i—2and |Sg| =r—i+1 by placing each element of ¥; in 3 of the sets until the
sets have the proper cardinality (which elements go where is of no consequence). Since
4r+1)+(r—i+D)+(r+i-2)=3(2r+1), each element of ¥, is covered 3 times.
Similarly, subsets T}, T>, ..., T of V, are formed so that each element of V; is covered
thrice and |1} | = || =|T3| = |Ty|=n—r—1, |Ts|=n— (r+i—=2), |Ts|=n—(r—i+1).
The blocks S;UT;, i=1,2,...,6 form a triple cover. This shows that if r+i—2 is
used, then 2r+1—(r—i+1)=r+i must be used. Since r+1 is used, r+3,r+35,...
must be used. Let j =1 be the smallest such that 7+ 2; is used. As before, r+2j+2,
r+2j+4,...,2r must be used. Thus j#1. This means that r—1 is used. Now con-
sider the greatest of the series r—3,r—35,... which is not used. Call this r—i+1.
Then r+i and r—i+3 must be used. Since 2(r+1)+2(r—D+(r+ D+ (r—i+3) =
3(2r+1), a triple cover can be constructed as before. The only possibility is that
r+l,r+3,...,r—1,r—3,... are the integers which are used. The number of times
veV, is covered in Z is

+(k--l) 2n—k)+(k—l) 2n—k)+ k=1\/ 2n—k s
r-2/\n-r-1 r n—-r—1 r+2/\n-r-3 '

The number of times v is not covered is
L5\ 2n=k Y\, (k=1\(2n-K\ (k-1 (Zn—k .
r=3/\n-r+2 r—1 n-r r+l1/\n—r-2 '

Since these two values must be equal, we must have

kel (k=1\[ 2n—k \ _
S=,-§o(_”( i )(n—f—l)_o‘

(8) Let Sbeasin (3). Then S#0.
Consider

2r\(2n-2r-1 s 2r 2n—-2r-1
(:)( - )J’(‘”Z : U(Zr—i—l)(n—l—(ﬁ!r—i-l))
_(2r)(2n—2r—1)_( 2r )(2::-2:-—1)

=% § n—i-1 i+1 n—i-1

_[(Zr) (Zr )} 2n-2r—1

AN ARNES! (n—i—l )

e if2r\_( 2r 2n-2r-1 , angy{ ot—2r—1
§=L K:) (i+l)]( n—i-1 )” 1y (n—Zr—l)

= ; 2r+1\/2n-2r-1 2n-2r—1
i _1)i+1]
_;');o( 1) ( i+1 )( n—i—1 )+ ( n-2r—1 )‘

We write
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S__(2r+1)(2n—2r—l _(2r+1\(2n-2r-1
T\ i+ n—i—1 i n—i t

It is easily seen that S;>0if i<r—1. Then

Let

2n-2r-1
S-»S]+S3+"'+S,-_]+(n_2r_1 ))0

when r is even, and
S=—S—§—:=5.1<0

when r is odd.
This contradiction proves the theorem.

Theorem 12. Every (2n, n, a,1)-design, where o =1(2"), contains at least

1
k=|——a
[zan—n ]
disjoint double covers, and hence contains (2n,n,2A,1)-designs for all A<k.

Proof. Let 2 be a(2n,n, e, 1)-design on V and let v e V. Consider the  subsets SC V
of size n—1 such that SU{v} is a block in 2. By the Erdés-Ko-Rado Theorem
(1961), there is a pair S;, 7; in this collection such that §, N T} =4 since o> 234 1a
fact, if the pairs S, T}, i=1,2,...,k—1, are found with the property $;N7;=9 and
removed from the collection, there will still remain a pair S, T with S;N 7T, =@, as

long as

2n-2
a-—2(k—1)>( - )

This relation can be easily seen to be satisfied if k<a/2(2n—1). Let A;={v}US;
and B;={v}UT}, i=1,2,...,k, where k=[a/2(2n—1)]. Now suppose ue V' \{v}
and S;, 7; for 1 <i<r have the property that they are the only pairs for which
u¢ S;UT;. By the argument used in the proof of Lemma 8, there must be at least r
pairs Q;, R; of n—1 element subsets of ¥ such that Q;UR;=V — {u, v} and neither
{v}UQ; nor {v} UR; are blocks of %, i=1,2,...,r. But then C;={u}UQ; and D, =
{u} UR; are blocks in 2. In this way, the blocks 4;, B;, C;, D; form a double cover
for each i =1, 2, ..., k. This proves the theorem.

Theorem 13. Every (2n,n, A,1)-design 7 with

1 \1 /2n
1> (1—2n_1)7(n )+2(n—l)

contains a (2n,n, y,1)-design for some y with 2=< y<2n, and hence is not primitive.
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Proof. Suppose a sequence of distinct points v;, i=1, 2, ..., k+1, and a sequence of
distinct blocks A4;,B;, i=1,2,...,k, of the design 2 have been found with the
properties A;NB;={v;} and V- (4,;UB;) = {v;;1}. The point vy, is a member of at
least A —k+1 blocks of 2 distinct from {4;, B;}, since v; ., is a member of at most
one of A; and B; for i=1,2,...,k~1 and neither A; nor B; contains vy, . If
A—k+1>(%-3), The Erdés-Ko-Rado Theorem yields blocks A, 1, Bx.1 in 2, dis-
tinct from {A;, B; |i <k}, such that A, , ;N By, = {vs.} (see the proof of Theorem
12). This inequality can be written equivalently as

1 1 /2n
.1>( _2n—1)7(n )+k—l,

so by assumption, it holds for all k=27 —1. Since there are only 2n points in ¥, we
can find a sequence of distinct points v;, i=1,2,..., 7, and a sequence of distinct
blocks 4;, B;, i=1,2,..., k, such that A;,N B;={v;} and V —(A4;UB;)={v;.,} for all
i, where v, =v,. This collection of blocks forms a (2n, n, y,1)-design.

Theorem 14. Every (2n,n,A,1)-design with A<+4(%")—2 can be extended to a
(2n,n, A +2,1)-design.

Proof. Let a=4(%"). Let 2 bea(2n,n,A,1)-designon V. Let ¥ = {A4;, A; | is2a-24}
be the n-element subsets of ¥ which are neither blocks in 2 nor complements of
blocks in 2. Each element of V is covered exactly 2a— 24 times by the blocks in %
The average over all pairs (v.w), v+ w, of the number of blocks in & which contain
v and miss w is

n
2n-1
There must be one pair (v, w) for which this number is at least as great as the
average. We wish to find two pairs of blocks 4,, B; and A4,, B, such that
AlﬂBl = {U} =.A;nBz and V- (.A 1 UB]) = {W} =V- (AzUB}).

This can be accomplished by the Erdds-Ko-Rado Theorem (see the proof of
Theorem 12) since A <4a—2 implies that A <4a— 2+ 1/n7 which can be rearranged
to yield

(2a—24).

n 2n-3
S (2a-24) > (n—2 )+2_

We extend Z by adding the double cover {4, B;, A%, B3} to it.
Problem 1. What are necessary and sufficient conditions such that a (2n,n, 4,1)-

predesign can be transformed into a (2n, n, 4, 1)-design by repetition of the operation
of interchanging some block in the design with its complement?
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Remark 2. This is not always possible (Simmons, 1981).
Problem 2. How large can a primitive (2, n, 4, 1)-design be?
Problem 3. Which (2n, », A,1)-design can be extended?

Problem 4. We know that if A is large enough, a (2n, n, 4,1)-design is not primitive,
but does such a design always contain a double cover?

Problem 5. What happens if we insist that every two blocks meet in at least 2 points?
Problem 6. What can be said about general projective (n, k, A, 1)-designs?

Remark 3. Bollobds and Erdos conjectured and Lovasz (1978) proved that projec-
tive (n, k, A, 1)-designs exist only if k2—k+1=n.
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