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Abstract: A projective (Zn, n, 1,1)-design is a set 9 of n element subsets (called blocks) of a 2n- 
element set V having the properties that each element of V is a member of A blocks and every two 
blocks have a non-empty intersection, This paper establishes existence and non-existence results 
for various projective (Zn, n, I, I)-designs and their subdesigns. 
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This paper deals exclusively with projective (0, k, A, t)-designs for k = n, o = 2n and 
t = 1. A projective (0, k, A, f)-design is a set 9 of k-element subsets (called blocks) of a 
u-element set V having the properties that (i) each t-element subset of V is a subset of 
1 blocks in 9 and (ii) every two blocks in L@ have a non-empty intersection. We omit 
the word projective from this point on. A (a, k, A, t)-design is primitive if it contains 
no proper (0, k, ,I’, t)-design. A (2n, n, A, I)-design is often referred to as a L&pie 
cover, for example, a (24 n, 2, I)-design is called a double cover. 

Although this paper is essentially self-contained, it is an out-growth and extends 
some of the work of Ehrenfeucht, Faber and Simmons (1979) and the reader is 
referred to that paper for a discussion of the origins of this work and related refer- 
ences. Most of the results follow strongly from the Erdos-Ko-Rado theorem (1961). 

The main results in this paper are as follows. 

Theorem 5. A (212, n, A, I)-design exists if and only if n 13 and either 
(a) nisapowerof2and2rils[)(2,“)]-1, or 
(b) nisnotapowerof2and211~+(~,“)-2or~=)(~,”). 

Theorems 11 and 12. Every (2n, n, $(F), l)-design contains a triple cover and at least 

disjoint double covers. 
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Theorem 13, Every (24 n, A, l)-design 9 with 

contains a (2n, n, y, I)-design for some y with 2 I y s 2n, and hence is not primitive, 

Theorem 14. Every (2n, n, A, l)-design with A r++(9) -2 can be extended to a 
(2~4 n, L + 2, I)-design. 

We proceed with the results and proofs. 

Theorem 1. If n = 2’ with I r 1, there is a (2n, n, [ )( 9)] - 1, l)-design 9n which is the 
disjoint union of (2n, n, 2,1)-designs. 

Proof. We form the design gn on V= (1,2, . . . ,2n} as follows. Let Sk = {2k- 1,2k), 
k=l,2,..., n. For each k, we partition Y- Sk =X U Y into two equal parts of size 
n - 1 in such a way that for each 1 <k, either S, E X or S, G Y. The number of such 
partitions is 

(We can construct a given partition by first choosing r of the S’s with I< k to be 
contained in X (Olr~ k- 1). This can be done in (k;‘) ways. The remaining $3 
with I< k are made elements of Y. We must now specify n - 2r - 1 of the remaining 
2n - 2k elements of V to be included in X. This can be done in (iL’;,.?r) ways. Since 
the roles of X and Y can be reversed, each partition is counted twice.) Now, Nk is 
always even since (:?!2;2_kl) is always even and in the case where there are an odd 
number of summands (k odd), the term 

is divisible by 4. Consider two of the partitions X U Y = I/- Sk = U U Z. A double 
cover is formed by the blocks 

(2k-l}UX, (2k-l)UY, {2k}UU, {2k}UZ. 

The union of all these double covers and their complements contains all the n 
element subsets of V except those which are the union of +n of the n sets S,. By 
induction, inside the remaining (,,y2) sets, a (n, #n, [+( ,&)I - 1, l)-design can be 
found which is the disjoint union of double covers, unless n = 4, in which case the 
desired (4,2,0,1)-design is empty. The design 9n is then taken to be the union of all 
of these double covers. 

Theorem 2. If n = 2’ with 111, then (2n, n, A, I)-designs exist if 2~ A s [+(%)I - 1. 
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Proof. By Theorem 1, the theorem holds if A is even. Now we claim that if fr2, 
then the design ~9~ in Theorem 1 can be decomposed into two triple covers and 
double covers. As in the proof of Theorem 1, this fact will be true by induction if it 
can be verified for the (8,4,16,1)-design G&. Consider the three double covers in the 
decomposition of the (8,4,16,1)-design 4 formed by the blocks 

AI = {1,3,4,5), A2 = (1,6,7,8}, 4 = (2,3,4,6}, A4 = {2,5,7,8), 

4 = {2,%6,8), B2 = (2,3,4,7), B3 = {1,3,5,7}, B4 = {1,4,6,8), 

C,=(3,5,6,8), C,={1,2,3,7), C,={4,5,7,8}, C,={1,2,4,6). 

The blocks AI, A2, A4, Bz, C, , C4 form one triple cover and the blocks A3, B1, B3, 
B4, C,, C, form another. This proves the claim. By combining one of these triple 
covers with the proper number of double covers, (2n, n, A, 1)-designs can be con- 
structed for all odd Iz except [$(?)I -2. We show that a (2n,n,5 1)-design with 
rZ = [+(2,“)] - 2 can be constructed from Ir, by replacing four of the blocks in one of 
the constructed triple covers by two blocks not in % As above, it is necessary only to 
consider the (8,4,16,1)-design P4. We replace the blocks A i, B2, Ci , C4 in the first 
triple cover by the blocks {1,2,3,4} and (3,4,5,6) to form the double coverA2,A4, 
(1,2,3,4}, (3,4,5,6}. This proves the theorem. 

Theorem 3. Suppose n =2/q with q an odd integer greater than 1. There is a 

(2n, n, $(2,“), 1)-design 9n which is the union of (2n, n, 2, I)-designs, unless q = 2m + 1, 
in which case there is a (2n, n, +(%), l)-design which is the union of (2n, n, 2,1)- 
designs and one (2n, n, q, I)-design. 

Proof. As in the proof of Theorem 1, we let S, = {2k- 1,2/c} and for each k, we 
form Nk partitions of V-S, into two equal parts X and Y so that either Si c X or 
Sic Y, where 

Nk=+; (k;1)(,2_n;rZ_:). 

There are two cases to consider: n odd and n even. First we consider the case n even, 
In this case, Nk is even for all k by the same argument as before. Also, as before, a 
collection of disjoint double covers can be formed having the property that the 
union of these double covers and their complements contains all n element subsets 
of V except those which are the union of +n of the n sets S,. By induction, since 
n + 2’, we see that this case reduces to the case where n is odd. In the case where n is 
odd, we analyze the situation as follows. Since 

(r?Z-) = ( n-“,“,;E+l)9 

we have 

(,“_“r_~~r)‘(n+:“;2:“2k)-(t(,n_;:-r)’(f(n:1Jkk+r) 

(mod 4). 
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Thus 

If n = 2” + 1, all of the A$ are odd, otherwise all of the Nk are even. In case all of the 
Nk are even, as above, a collection of disjoint double covers can be formed having 
the property that the union of these double covers and their complements contains 
all n element subsets of V except those which are the union of +n of the n sets 3,. In 
this case, n is odd, so the exception is vacuous. The union of these double covers is 
the design gn. If n = 2”’ + 1, a (2n, n, n, l)-design is formed using one of the Nk parti- 
tions for each k as follows. Let 

Tk=~~n+Zk-1)/2U~(rt+Zk+1)/2~“‘U~nU~lU”’~~k-l. 

The design is formed by the 2n blocks {2k- 1) U Tk, (2k) U Tk, k = 1,2, . . . , n. The 
remainder of the Nk- 1 partitions are apportioned into double covers in the same 
manner as the other cases. Since n is odd, the union of all these double covers and 
the n-tuple cover form a (2n, n, +(2i), 1)-design 9,, . This completes the proof of this theorem. 

Theorem 4. Zf n is not a power of 2, then (24 n, A, l)-designs exist if 2 s il I +(2:) - 2 
or if n = -gf>. 

Proof. The theorem is true for n = 3 by inspection. If n 15, three of the double 
covers constructed in the decomposition of .!?J, in the proof of Theorem 3 can be re- 
arranged to form two triple covers as in the proof of Theorem 2. By forming the right 
combination of double covers and triple covers (and the 2” + I-tuple cover in the 
case where n = 2’(2” + l)), a I-tuple cover can be constructed for all A such that 
2 I Iz I+(?) - 2. Details are left to the reader. 

Theorem 5. A (2n, n, A, l)-design exists if and only if n L 3 and either 
(a) njsupowerof2and21AI[)(2,“)]-1, or 
(b) nisnotapowerof2and2zSA~+(Z,“)-2orA=f(2,”). 

Proof. Only the necessity of these conditions remains to be proved. To prove this 
theorem, it seems easier to prove a slightly more general result (Theorem 6) which 
first requires a definition. 

Definition. A (2n, n, A, 1)-predesign is a set B of n-element subsets of a an-element 
set V having the properties 

(9 (l/2@ C,, v J.(o, 9) = I, where J(u, P) is the number of sets in 9 containing u. 
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(ii) A[u, 9) =A(w, g) (mod 2) for all u and w in V, 
(iii) every two members of 9 have a non-empty intersection. 

Remark 1. Note that if G? is obtained from a predesign by replacing some blocks by 
their complements, 9 is a predesign. 

Theorem 6. A (2n, n, rl, I)-design exists if and only ifa (2n, n, L, l)-predesign exists. A 
(2n, n, I, 1)-predesign exists if and only if n L 3 and either 

(a) nisapowerof2and2~11[+(2,“)]-1, or 
(b) n is not apower of 2 and 2sns$(2,“)-2 or L=+(2). 

Proof. We have already shown the existence part of this theorem in Theorems 2 and 
4. It remains to demonstrate the non-existence part. Let a= a;, = i(2). 

Case I. The non-existence of a (2n, n, [a], 1)-predesign when n is apower of 2. 
Suppose a (2n, n, [a], I)-predesign 9 exists. Since [a] = a- +, the number of 

blocks either in 9 or complementary to a block in 9 is 4a- 2 = (2) - 2. We may 
assume that the two remaining n-element subsets of V have the form (1,2, . . . , n) 
and(n+l,n+2,..., 2n). By replacing blocks by their complements if necessary, we 
may assume that every block in 9 contains the element 1, Thus the blocks of D are 
exactlythesetsoftheform(l}USwithScV-(l}, ISI=n-landS+(2,3,...,n}. 
Hence 

A(l, 9) = “,“--1’ -1, 
( > 

while 

-1 ifj=% ,..., n-l, 

ifj=n,n+l,..., 2n. 

Thus D is not a predesign since (ii) of the definition is violated. 
Case II. The non-existence of a (2n, n, a- 1, 1)-predesign when n is not a power 

of2. 
Suppose a (2n, n, a - 1, 1)-predesign 9 exists. The number of blocks either in 9 or 

complementary to a block in 9 is 4a - 4. The remaining four n-element subsets of V 
have the form A, A’, B, B’. Let w E A \ B and o E A (3 B. The set 9 = 9 U {A, B} forms 
a (2n, n, & l)-predesign, since 9’ can obviously be transformed into any given 
(2n, n, a, l)-design by interchanging some blocks with their complements. Now 
,I(u, 9) = A(u, 9) - 2, while A(w, 9) = A@, 9) - 1, so 9 can not be a predesign. 

Lemma 1. Suppose the x-element subsets of a k-element set arepartitioned into two 
ciasses X and Y such that if S E X and TE Y then ) S fl T ) -cx - 2. Then either X = 0 
or Y= 0. 
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Proof. If IAl =x- 1, then for all o, A U (0) must lie in the same class. We suppose 
that for all o, A U { IJ} E X. We shall show by induction that all x-tuples are in the 
class X. Let BU {w) E Y with IBUAI maximum. We know that IBflAI IX- 1. 
Let BflA=(ol,..., o,}, A={ol,..,, 0,-i}, B={q,..., u,, w,+~, . . ..wx-i} and B*= 
{hr *** 9 4+1, %+2, ‘** 9 w,-I}. Then BU{~,,~}=B*U{W,+~}EX, contradicting the 
fact that B U (w) E Y for all w. 

Lemma 8. Let 9 be a (2n, n, +(%), l)-design. Form a directed graph, G(9), on the 
vertices V of 9 by having an edge (u, u) if there are blocks B1 and B2 in 9 such that 
B1 n B2 = {u} and B1 U B2 = V- {u). Then G(9) is a graph, that is, G(9) is sym- 
metric and irreflexive. 

Proof. It is a theorem (Theorem 7) of Ehrenfeucht, Faber and Simmons (1979), 
that every two points u and o occur together in +(2,“1:) blocks of .?3 and, con- 
sequently, that u occurs in 

blocks of 9 which omit u, We divide the n-element subsets of V-o into +(2,“1:) 
pairs Al, A2 such that AI nA2 = {u}. Since the pair B1, B2 are in 9, there must be at 
least one pair A,, A2 such that neither Al nor A2 are in 9. But then the complements 
A1,A2 must be in 6% Since Ai nA2 = (a) and Ai UA, = V- {u), (0, u) is an edge in 
G(g). Since G(g) is obviously irreflexive, this proves the lemma. 

Lemma9. SupposeB1=(u,x,,...,x,-,}andB2=(u,y~,.,.,y,_l}aretheblocksin 
9 which join u to u in G(9), that is, B1 U B2 = V- {v}. Then each xi anda is joined 
either to u or to v in G(9). 

Proof. Consider (xi, yl, . . . , x-,). Ifitisin 9, thenitand(u,xi,..,,x,-,)joinxi to 
u. Otherwise, (u, v, x2, . . . , x,-l)~~anditand(u,yl,...,y.,-l)joinutox. 

Lemma 10. Ifq, u2, . . . , ur, u1 is an r-cycle in G( 9), r = 2 or 3, then 9 has a (2n, n, r, l)- 
subdesign. 

Proof. Associated with the cycle ul, u2, . . . , u,, u1 is a collection of pairs of blocks 
A1,Bl,Az,Bz,..., A,,B, of 9 such that Aii?Bi=(ui} and AiUBi=V-(Ui+l}, 
i=l,2,..., r (modr), Clearly these blocks are all distinct and form a r-tuple cover. 

Theorem 11. Every (2n, n, +(2:), l)-design contains a (2n, n, 3,1)-design. 

Proof. We suppose no triple cover exists in the (2n, n, i(9), l)-design &3 and reach 
a contradiction in a series of steps. 

(1) G( 9) is a complete bipartite graph. 
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By Lemma 10, G(9) has no triangles. Suppose u is joined to u in G(9). Let Vi = 
(~~(~,0)~G(~))andV,={y~(y,u)~G(~)}.Ifx~~andy~V~,byLemma9,xis 
joined to y or to u. If x is joined to u, a triangle is formed by x, u, and o. Thus x is 
joined to y, so G(g) is complete bipartite. 

(2) There exist V, and V,, subsets of V, with 1 V, I= k an odd integer, such that f 
thereexists BE 9such that JBf7 V,] =x, then no B’E 9 existssuch that IB’fl V, 1 =k-x. 

Let Vi and V, be the bipartition found in (1). Let Bfl V, = S, IS I =x. Let X= 
{TcVz~TUS~~}andY={TcV~~TUS$9}.ByLemma7,ifX,Y#0,thenthere 
exists T, E X and there exists Tz E Y such that IT, fJ Tz 1 >x - 2. We have Bl = Tl US E 9 
and B2=T2US$9. Thus (V,-Tz)U(Vl-S)=Bi~9. We find that B,flBi=T,\T2 
and V\(Bl UBi)= T2\ 6. These sets can’t be empty for if Tl =T2, then B1 = Bz is 
both in 9 and not in 9. Thus 1 T, - Tz I = I Tz - Tl I = 1, which contradicts the fact that 
no point of V, is joined to any other. Thus for each S c V, with ISI =x either 

(i) SUTE 5@ for all Tc V, and ITI=n-x, or 
(ii) SUT@ 9 for all TC V, and ITI =n-x, 

The symmetrical argument with V, and n -x shows either 
(i) SUTEg for all ScV; and ISI=x, or 
(ii) SUT@g for all ScV, and JSI=x. 

Thus for each x, 0 oxen, either 
(i) SUT~gforall ScV,, TcVz, IS/=x, )TI=n-x, or 
(ii) SUT@Q for all Sr Vr, TcV*, ISI=x, ITI=n-x. 
To show that I V, I = k is odd, suppose k = 2r. Then with x= r (working with the 

complementary design if necessary), we have that there exists S c VI with I S I = r 
such that SUTE Pwith I TI =n-r. Also since ) VI-S/ =rand I V,- TI =n-r, we 
have V- (SU T) = (VI - S) U (V, - T) E 9, contradicting the fact that every two 
blocks of P meet. 

(3) Let k=2r+l In and let 

We must have S = 0. 
Note that by (2), if there exists BE 9 such that JB Il V, I =x, every x-tuple in VI 

occurs as V, nA for some block A E 9. It is not possible that there exists a block B 
for each 1 it I r + 1 such that I V, i? B I = r + t, for then an element u E VI appears in 

blocks, an impossibility, We shall say that the number x is used by the design D if 
) Vi n B I =x for some BE 9. We know that one and only one of each pair x or 2r + 1 -x 
is used by 9 for 1 IX I r, and not all x 1 r + 1 can be used. By considering the com- 
plementary design, if necessary, we may suppose r + 1 is used by 9. If r + i - 2 and 
r- i+ 1, for some i 13, are both used by 5?, we can make a triple cover as follows. 



188 I? Erdiis et al. /Projective designs 

We construct 6 subsets of fi, called S,, S,, . . . , &with Is,l=(s,l=l$,(=ls,l=r+l, 
1 S5 I= r + i - 2 and 1 S, I= r - i + 1 by placing each element of V, in 3 of the sets until the 
sets have the proper cardinality (which elements go where is of no consequence). Since 
4(r+l)+(t-i+l)-t(r+i-2)=3(2r+l), each element of VI is covered 3 times. 
Similarly, subsets 7i, T2, . . . , T6 of V, are formed so that each element of V, is covered 
thriceand ITIl=/T2j=IT31=IT41=n-r-l, IT,I=n-(r+i-2), IThI=n-(r-i+l). 
The blocks i$lJT, i=l,2,..., 6 form a triple cover. This shows that if r+ i - 2 is 
used, then 2r+l-(r-i+l)=r+i must be used. Since r+l is used, r+3,r+S,... 
must be used. Let j r 1 be the smallest such that r + 2j is used. As before, r+ 2j + 2, 
r+2j+4, . . . . 2r must be used. Thus j # 1. This means that r- 1 is used. Now con- 
sider the greatest of the series r- 3, r- 5, . . . which is not used. Call this r- i + 1. 
Then r+i and r-i+3 must be used. Since 2(r+1)+2(r-l)+(t+i)+(r-i+3)= 
3(2r+l), a triple cover can be constructed as before. The only possibility is that 
r+l,r+3 ,..*, r-l,r-3 ,... are the integers which are used. The number of times 
o E VI is covered in 9 is 

.~.+(:--l)(n”-“r-:)+(~~l)(~~~~~)+(~~:)(nZ_n;_:)+.... 

The number of times o is not covered is 

. ..+(._:)(,Z_n~~)+(5r:)(2,n_~)+(~;:)(n~-~)+.... 

Since these two values must be equal, we must have 

(4) Let S be as in (3). Then S# 0. 
Consider 

We write 
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Let 

It is easily seen that Sj > 0 if i I r - 1 I) Then 

when r is even, and 

when r is odd. 
This contradiction proves the theorem. 

Theorem 12. Every (2n, n, a; I)-design, where (Y = #(?), contains at least 

k= [2(2nl-1) al 

disjoint double covers, and hence contains (2n, n, 2&l)-designs for all A I k. 

Proof. Let 9 be a (2n, n, a, 1)-design on Vand let u E K Consider the a subsets S c V 
of size n - 1 such that SU (u> is a block in 9. By the Erdos-Ko-Rado Theorem 
(1961), there is a pair Sr, Tr in this collection such that Sr il Tr = 0 since a> (?I$). In 
fact, if the pairs Si, q, i = 1,2, . . . , k- 1, are found with the property Sjfl T= 0 and 
removed from the collection, there will still remain a pair Sk, Tk with S,n Tk =0, as 
long as 

a-2(k-l)> 2;-22 . 
L> 

This relation can be easily seen to be satisfied if kl a/2(2n - 1). Let Ai = (v) U& 
and B,=(u}UT, i=l,2 ,..., k, where k= [a/2(2n - l)]. Now suppose u E V\(u) 
and Sj, E for 1 pi I r have the property that they are the only pairs for which 
u $ Si U z. By the argument used in the proof of Lemma 8, there must be at least r 
pairs Qi, Ri of n - 1 element subsets of V such that Qi U Ri = V- {u, o) and neither 
(O}UQi nor {b)URi are blocksof 9, i=l,2,...,r. But then Ci={U}UQi andDi= 
{u> URi are blocks in 9. In this way, the blocks Ai, B;, Cj, Di form a double cover 
foreachi=l,2,..., k. This proves the theorem. 

Theorem 13. Every (2n, n, A, 1)-design 9 with 

I> (l-&)$(:)+2(n-1) 

contains a (24 n, y, l)-design for some y with 2 5 y I 2n, and hence is not primitive. 
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Proof. Suppose a sequence of distinct points ui, i = 1,2, . . . , k + 1, and a sequence of 
distinct blocks Ai, Bi, i = 1,2, . . . , k, of the design .9 have been found with the 
properties A i n Bi = ( ui} and V - [Ai U Bi) = ( ui+ 1). The point ok + i is a member of at 
least il -k + 1 blocks of 9 distinct from (Ai, Bi}, since ok+1 is a member of at most 
one of Ai and Bi for i=1,2, . . . . k- 1 and neither Ak nor Bk contains vk+, . If 
A - k + 1 > (y:;), The Erdk-Ko-Rado Theorem yields blocks Ak+ 1, Bk+ 1 in 9, dis- 
tinct from {Ai, Bi 1 i 5 k), such that Ak+i nBk+ r = {ok+ i} (see the proof of Theorem 
12). This inequality can be written equivalently as 

,,(l-&)$(;)+k-1, 

so by assumption, it holds for all ks2n - 1. Since there are only 2n points in V, we 
can find a sequence of distinct points Dir i = 1,2, . . . , y, and a sequence of distinct 
blocks Ai, Bi, i= 1,2, ... 9 k, such thatAinBi={bi} and I’-(AiUBi)=(Ui+l) for all 
i, where IJ~+~ = ul. This collection of blocks forms a (2n,n, y, l)-design. 

Theorem 14. Every (2~4 n, A, l)-design with 1 s #(%) - 2 can be extended to a 
(24 n, L + 2,1)-design. 

Proof. Let a= $( 2,“) Let !3 be a (23 n, il, I)-design on V. Let Y= {Ai, Ai 1 i s 2a - 2rZ) 
be the n-element subsets of V which are neither blocks in 9 nor complements of 
blocks in 9. Each element of V is covered exactly 2a - 2L times by the blocks in g 
The average over all pairs (u. w), o # w, of the number of blocks in Y which contain 
u and miss w is 

& (2a - 21). 

There must be one pair (0, w) for which this number is at least as great as the 
average. We wish to find two pairs of blocks A,, B1 and AZ, Bz such that 

A,nB1=(o}=A2nB2 and V-(AIUB1)={w)=V-(AzUBz). 

This can be accomplished by the Erdbs-Ko-Rado Theorem (see the proof of 
Theorem 12) since rZ I +a - 2 implies that n c +a - 2 + l/n which can be rearranged 
to yield 

&(Za-21)> “,“-i’ 
( > 

+2. 

We extend 9 by adding the double cover {A 1, B1, A;, B;) to it. 

Problem 1. What are necessary and sufficient conditions such that a (2n,n,il,l)- 
predesign can be transformed into a (Zn, n, Iz, I)-design by repetition of the operation 
of interchanging some block in the design with its complement? 



P. Erdh et al. /Projective designs 191 

Remark 2. This is not always possible {Simmons, 1981). 

Problem 2. How large can a primitive (2n, n, A, l)-design be? 

Problem 3. Which (2n, n, A, 1)-design can be extended? 

Problem 4. We know that if 1 is large enough, a (2n, n, 1, I)-design is not primitive, 
but does such a design always contain a double cover? 

Problem 5. What happens if we insist that every two blocks meet in at least 2 points? 

Problem 6. What can be said about general projective (n,k, A,l)-designs? 

Remark 3. BollobAs and Erdos conjectured and LovAsz (1978) proved that projec- 
tive (n, Ic, A, I)-designs exist only if k2 - k + 12 n. 
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