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1. Introduction

Let § be a set of n points in the plane not all on one straight line. Let T be the
maximal area and t the minimal area of nondegenerate triangles with all vertices
in S. Let f{8)= T/t and fin)=inf, f(S).

In this note we prove that

(1.1)  fln)=[n-1}]

for all sufficiently lgrge n (we conjecture that (1.1) ho'ds for all n=5). It is known
[1] that f(5)=3(/5+1), attained in case 5 is the set of vertices of a regular
pentagon.
The fact that f(n)=[3(n—1)] can be verified by considering the set
So={(0,0),(1,0),...,(B{n—1)],0),(0, 1}, (1, 1),...,{[3{n = 2)], 1)}

of equally spaced points on two parallel lines.

We shall use the notation (S} for the convex hull of S, (%) for a triangle of
maximal area contained in the convex set € and |X| for the area of the convex set
X

In Section 2 we state and prove our main result. In Section 3 we give some
related problems and conjectures.
We need the following result about extremal values of |%]/|7(%)|.

1.2. Theorem. For all convex regions € we have

lell| i)l sl T

33

The maximum is attained if and only if % i3 elliptic,
Proof. See [2].

Finally we need a result about the triangulation of polygons.
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1.3. Theorem. Let S be a set of n points in the plane not all on one straight line. If
there are k points of 8§ on the houndary of the convex hull €(8) and n—k in the
interior of €(8), then any triangulation of €{5) whose vertices are all the points of §
containg 2n—k—2 triangles.

Proof. Obvious by induction on n.

2. Evaluation of f(n)
In this section we prove our main result.

2.1. Theorem. If n =37, then
fin)y=0Lin—-1}L
If nis even and n=38, then any set 8 with f(8) = fin) is affine equivalent to the set
S, of the introduction.
The proof is via a sequence of lemmas.

2.2. Lemma. If f(S)=fin) and 8§ has k points on the boundary of %(S), then

k }(2—%)(:1— 1)>0.7908 (n - 1).

Proof. By Theorem 1.3 we have
(2.3) [l =(2(n—1)— k)
and by Theorem 1.2 we have

e 41 [m—1 2
(2.4) |} = T= [ ]r-& in—1)1
33 3al 2 W3

The result now follows from (2.3) and (2.4},

2.5, Lemma. [If f(S)=f{n) and n>37, then every maximal triangle T has one
edge on the boundary of %(8).

Proof. Assume that there exists a T with no edge on the boundary of % and
triangulate the three portions of % which are exterior of T using the points of §
on the boundary of €. Assume that the three boundary arcs contain k. k, and k,
points of S respectively. Then k;+k,+ks=k+3. By Theorem 1.3 the triangula-
tion of €\ F vields ky+ ks+ ks —6=k—3 triangles. Thus, by Lemma 2.2,

6—a1=k-3=((2 *%){n -1-3)t
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On the other hand

e~ ﬂ-::(h l)Ti(i—i)["_Ir

33 33 2
Thus
( —%){n 1)-3< (Szji—%){n—u
or

n— 1{6/(5——){36 T644,

that is n=37.

2.6. Lemma. If a convex region € contains a maximal triangle T with two sides on
the boundary of €, then [€|=2|7|.

Proof, Let =4 ABC with sides AB and AC on the boundary of %. Then
through the vertex B there is a line of support 1 of € parallel to AC and through
the vertex C there is a line of support I' of % parallel to AB. Let D be the point
of intersection of ! and [" then ¥ is contained in the parallelogram ABDC whose
area is 2|7}.

2.7. Lemma. If f(§)=f(n) and |€(5)|=2T, then fin)=[Ein—1)]

Proof. By Theorem 1.3 we have
(2in—1)—kn=|%=2T=2HUn—-12]
and hence
Bin-1]=T/t=n-1-3k=in—1.

This proves the lemma in case n is even.

If n is odd pick a maximal triangle . If § contains at least 3(n +3) points of §,
then a triangulation of J yields T=3n—1)t and we are finished. We may
therefore assume that 7 contains ny=4(n+1) points of 5. But then the closure of
¥\ contains at least n—n,+2=3%n+ 3) points and triangulation of ¥ —J pives
at least 3(n —1) triangles. Thus

T=le\ Fl=in—1Dt

In view of Lemmas 2.5, 2.6 and 2.7 we may assume from now on that for all
maximal triangles 7 the set €\ 7 consists of two convex regions, By affine
transformation we can normalize the situation so that one maximal triangle is an
equilateral A ABC with side AB on the boundary of ¥ (Fig. 1). By the
maximality of A ABC we have that % is contained in the trapezoid ABDE, and by
assumplion we can choose ABC so that there are points of S in the interiors of
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Fig. 1.

£ BCD and A ACE. Let F be the point of § in /A BCD with maximal distances
from BC and G the point of § in A ACE with maximal distance from AC. Then
% is contained in the hexagon ABUVWX where UV is the line through F parallel
to BC and WX is the line through G parallel to AC.

Now |A BUF|+|A CFV| is maximal when |A BCF|=4T and therefore, for
#=ABFCG, we have

|€]— |2l = | ABUVWX|—|@| =T <}n—1)t.

Thus there cannot be more than Hn—1) points of § exterior to @ and hence
there are

(2.8} ky=k~i(n=1)>0.5408(n~1)
points of § which are boundary points of € on the boundary of .

2.9. Lemma. If an edge & of the boundary of € contains cin—1)+1 points of 8§
and f(8)=fin), then either all points of S\ & are collinear, or

2 2 Z
cc:—lrf—1+ 02002 4—=—.
343 n—1 n+l

Proof. Let the length of ¥ be L. The shortest interval determined by points of §
on & has length at most L{c{n— 1). Thus any point of §% € has distance at least

2ic(n—1)_ 4c
=— T

A L L

i3

from 2. Since [€]=2T the two edges adjacent to # have sum of interior angles
=7 with #. Thus the part of % within a distance h of # has area greater than

hL =4cT.
Thus, by Theorem 1.2, the convex hull €, =%€(S\ ) has area less than

dor 2m
LIRS T
(363 (3@ i
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and contains at least (1—c){n—1) points of S. If |¥,(=0 then triangulation of ¥,
vields at least (1—c)(n—1)—2 tnangles. Hence

(%-zc)(n ~ 1= (1—e)n—1)—2t

50 that
2 2
3\-!_ I n—1
Comparing inequality (2.8) and Lemma 2.9 we see that there must be at least

three edges of @ on the boundary of ¥. Moreover there must be two adjacent
edges of # which together contain more than

(2.10) 2+(0.5408—-0.2092)(n—1)=2+0.3316(n—-1)

point of 5,

2.11. Lemma. If two adjacent edges of @ lie on the boundary of € and contain
2+4+¢ei(n—1) and 2+eyin—1) poinis of 8§ respectively, where ¢, =¢;>=1), then for
fiS)=fin) and n =37 we have

ety <itic—c).
Proof. Let o 9% be the two edpes and V the common vertex. Let a, b be the
lengths of &, @. Since by assumption no triangle of maximal area has two edges
on the boundary of %, it follows that the triangle T, with sides «f, @ has area
| Tl = T. Let xa be the minimal distance from V to (SN &)\#® and let vb be the
minimal distance from V to (SN 3B )\ Then o eontains an interval of length at

most (1 — x)ajcgin— 1) with endpoints in S, This interval, together with the nearest
point to V of (S N®&)\ « forms a triangle whose area is at most

wil—x) yil—x) 5}'l[l—Ju:}rm—l r=yu_x}r
g(n—1) ciln—=1) ciin=1) 2 e =

Thus we must have
(2.12y 2ey<y—zxy.
In a completely analogous manner we get
(2.13) Z2cy<x—xy.
Combining (2.12) and (2.13) we have
xy = {2, + xy)2ca+xy)

ol <

S0
GE[I?+CI+E=_i}2{{C1 = 51_%_}2 ""4{:152

={c,— ) — (e, +ca) +1

as was to be proved.
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Now, by (2.10), we have
1

#*

n—

Cl +Cl}ﬂ.3316_

ci—€x=2¢,— gy +f.'-,_}«:1Il+:tl]t34+i -{1,331'I5n+L
n—1 n—1
5
=0.08784+——.
n—1

Thus Lemma 2.11 vields
1 e
0.3316———={0.08784+——] +0.25
i—1 n—1,

which is false for n=37.
Thus there must be at least four edges of the pentagon 2 on the boundary of €.

Hence there can be points of § exterior to @ in at most one of the triangles
& BCD or & ACE. Thus

[€|—|Pl=iT=dn—1)¢
Hence the number of points of § exterior to @ is no greater than in—1) and
hence (2.8) becomes
(2.8) k,=k—-in-1)=0.6658(n—1).

If there are only four edges of # on the boundary of € then there must be an
adjacent pair containing more than 0.3329(n — 1) points of § in contradiction to
Lemma 2.11.

Finally, if € =2, then k;=k>=0.7908(n —1). According to [1] we have

|#|=~5T<2.236 T.

Thus Lemma 2.9 can be improved te show that, if any side & of @ containg
c{n—1)+1 points of S, then
(2.14) c&i.ﬁ—1+iiﬂ.llsu+i.
n-—1 =1

The same argument as in the proof of Lemma 2.2 now yields that

(2.15) k=(2-45(r—-11=0.8919(n—-1)
=>5(0.1180(n - 1)+2)

for n=37, in contradiction to (2.14).

Thus % has no more that four sides. Hence |[%€|=2T and the first part of
Theorem 2.1 follows from Lemma 2.7. To prove the affine equivalence of
extremal sets to S, for even n, divide the quadrilateral % along a diagonal. One of
the two triangular parts, &, must contain at least [3{n +3)] points of 5. Thus
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triangulation of . vields at least [3{n—1)] tmangles. If f(5)= f(n). we must have
|| =T and all points of 7, S on the boundary of J,. Since all points of § on
the boundary of € appear on two opposite edges of €, it follows that all but one
of the points of §,MS are on one side of T, Since all triangles in the
triangulation must have area t=TJ/[3Hn—1)] it follows that there are exactly
Bin+1)] equally spaced points on one side & of %. The argument applics
equally to the triangle 77, with side o and opposite vertex at the other endpoint of
the opposite side. Hence |7,/ = |3 ,|= T and the opposite side, &, is parallel to o,
and contains [$n] points of S. If n is even this shows that € is a parallelogram and
that the points of & are also equally spaced.For odd n we can vary the length of 3
and the spacing of the [n/2] points on 9 as long as b= a and none of the intervais
on 48 has length less than 2a/(n— 1) where a, b are the lengths of o, 3.

The condition n =37 was used primarily in the proof of Lemma 2.2. With the
use of the integral part [4(n—1)] instead of 4(n—1) it is easy to prove the result
for smaller even n, but it would prove tedious to analyze all cases with 5<"n < 38.

We only comment that for small odd n there are other extremal n-tuples. Thus
for n =7 the set S consisting of the vertices and center of a regular hexagon also
vields f{S)=23, and for n =9 the square 3=3 lattice § also yields f(S)=4,

3. Related problems and conjectures

One can pose the analogous problem in higher dimensions.

3.1. Problem. Let S5 be a set of n points in £™ not all in one hyperplane and let
fulS) denote the ratio of the maximal and minimal volumes of nondegenerate
simplices with vertices in S. Find f,.(n)=infs f,.(S).

In analogy to the solution for the case m =2 it is easy to verify that
{3.2) fouln)=[ln—1)}m]

by taking equally spaced points on parallel lines through the vertices of an
{m—1)-simplex. It is reasonable to conjecture that equality holds in (4.2) for
sufficiently large n.

An apparently different problem seems to lead to the same construction.

3.3 Problem. Let S be a set of n points in E™ not all in one hyperplane. What is
the minimal number g, (n) of distinct volumes of nondegenerate simplices with
vertices in 87

The above example shows that g (n)=[{h—1}/m] and we conjecture that
equality holds at least for sufficiently large n.
Theorem 1.2 and Lemmas 2.5 and 2.6 suggest various extensions of Sas’ results

[2).
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3.4. Problem. If the inscribed triangle & of maximal area has one side on the
boundary of the convex domain ¥ what is max, [€[/|T|?

Sas’ theorem is valid for the maximal areas of an n-gon, n=3, inscribed in a
convex curve € that is, the n-gon contains a maximal proportion of |€| if and only
if € is elliptic and the n-gon is affine-regular. This leads to generalizations of
Problem 3.4.

3.5, Problem, Let #=p,p;- -+ p, be inscribed in the convex curve ¥ and let
I=iy=i;<+ - <k=n If the edges PP, ., j=1,2,....k are on ¥ what is
max, |[¥€}/|#|?
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