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1. Introduction

Let S be a set of n points in the plane not all on one straight line . Let T be the
maximal area and t the minimal area of nondegenerate triangles with all vertices
in S. Let f (S) = T/t and f (n) = inf, f (S) .

In this note we prove that

(1.1)

	

f(n) _ [i(n - 1)]

for all sufficiently large n (we conjecture that (1 .1) holds for all n, > 5) . It is known
[1] that f(5)= 2'(,[5-+I), attained in case 5 is the set of vertices of a regular
pentagon .

The fact that f(n) < [2(n -1)] can be verified by considering the set

So = {(0, 0), (1, 0), - . . , ([i(n - 1)], 0), (0, 1), (1, 1), • - , ([z(n - 2)], 1)}
of equally spaced points on two parallel lines .

We shall use the notation le(S) for the convex hull of S, 9 - (W) for a triangle of
maximal area contained in the convex set le and JXJ for the area of the convex set
X.

In Section 2 we state and prove our main result . In Section 3 we give some
related problems and conjectures .

We need the following result about extremal values of I`el/ig(W)J .

1.2. Theorem. For all convex regions IC we have

lwi/19(10 <
33

< 2.4184 .

The maximum is attained if and only if W is elliptic .

Proof . See [2] .

Finally we need a result about the triangulation of polygons .
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1.3. Theorem. Let S be a set of n points in the plane not all on one straight line . If
there are k points of S on the boundary of the convex hull W(S) and n - k in the
interior of ce(S), then any triangulation of 16(S) whose vertices are all the points of S
contains 2n - k - 2 triangles .

Proof . Obvious by induction on n .

2. Evaluation of f(n)

In this section we prove our main result .

2.1. Theorem . If n > 37, then

f(n) _ [z(n- 1)] .

If n is even and n >-38, then any set S with f(S) = f(n) is affine equivalent to the set
Sa of the introduction .

The proof is via a sequence of lemmas .

2.2. Lemma. If f (S) = f (n) and S has k points on the boundary of W(S), then

k > (2 - 3 )(n -1) > 0.7908 (n -1) .

Proof. By Theorem 1.3 we have

(2.3)

	

11VI>-(2(n-1)-k)t

and by Theorem 1 .2 we have

(2.4)

	

1 ,e I
<~~ T_3~ In 2 1 J t,3~ (n-1)t.

The result now follows from (2.3) and (2.4) .

2.5 . Lemma. If f (S) = f (n) and n > 37, then every maximal triangle J has one
edge on the boundary of W(S) .

Proof . Assume that there exists a J with no edge on the boundary of W and
triangulate the three portions of W which are exterior of J using the points of S
on the boundary of ce . Assume that the three boundary arcs contain kl , k 2 and k3
points of S respectively. Then k l + k2 + k3 = k + 3 . By Theorem 1 .3 the triangula-
tion of 16 \ J yields k, + k2 + k3 - 6 = k - 3 triangles. Thus, by Lemma 2.2,

~`P - J1 > (k -3)t % ((2-3~)(n -1)-3 It.



On the other hand

1 ,6 -91 < (3~-1)T_ (3~-1)[n 2
1]

.

Thus

that is n -- 37 .

2.6. Lemma . If a convex region c6 contains a maximal triangle .l with two sides on
the boundary of le, then Í`6l , 2191 .

Proof . Let 3 = A ABC with sides AB and AC on the boundary of W. Then
through the vertex B there is a line of support l of W parallel to AC and through
the vertex C there is a line of support l' of W parallel to AB. Let D be the point
of intersection of l and l' then `e is contained in the parallelogram ABDC whose
area is 2191 .

2.7 . Lemma. If f (S) = f (n) and 116(S) I -- 2T, then f (n) _ [z(n

Proof . By Theorem 1.3 we have

(2(n-1)-k)t--11~01 --2T--2[1(n -1)]t

and hence

[2'(n-1)]%T/t>n-1-zk,zn-1 .

This proves the lemma in case n is even.
If n is odd pick a maximal triangle J . If J contains at least 2(n + 3) points of S,

then a triangulation of J yields T--2(n -1)t and we are finished. We may
therefore assume that J contains no _ Z(n + 1) points of S . But then the closure of
~\ J contains at least n - no + 2 = z(n + 3) points and triangulation of - J gives
at least ~(n-1) triangles . Thus

In view of Lemmas 2.5, 2 .6 and 2.7 we may assume from now on that for all
maximal triangles J the set 16\J consists of two convex regions . By afffine
transformation we can normalize the situation so that one maximal triangle is an
equilateral A ABC with side AB on the boundary of le (Fig. 1) . By the
maximality of AABC we have that 16 is contained in the trapezoid ABDE, and by
assumption we can choose ABC so that there are points of S in the interiors of

On a problem in combinatorial geometry

(2-
3 ,5
21T

)(n-l)-3< (3w- 1)(n-1)
or

n-1<6/(5-
38u-

<36 .7644,
,)
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A

Fig. 1 .

A BCD and A ACE. Let F be the point of S in A BCD with maximal distances
from BC and G the point of S in A ACE with maximal distance from AC. Then
le is contained in the hexagon AB UVWX where UV is the line through F parallel
to BC and WX is the line through G parallel to AC.
Now JA BUFI +IA CFVI is maximal when JA BCFI =2T and therefore, for

CIP = ABFCG, we have

IWI-ICI < IABUVWXI -ICI ~'ZT_4(n-1)t.

Thus there cannot be more than 4(n -1) points of S exterior to 91 and hence
there are

(2.8)

	

k, -- k -;(n -1) > 0 .5408(n -1)

points of S which are boundary points of W on the boundary of -OYI .

2.9. Lemma. If an edge W of the boundary of ce contains c(n-1)+1 points of S
and f (S) = f (n), then either all points of S \ W are collinear, or

B

c <
2,ir

-1 + 2	 < 0.2092 + 2
3-,/-3

	

n-1

	

n+1

Proof. Let the length of W be L . The shortest interval determined by points of S
on W has length at most Llc(n -1) . Thus any point of S \ has distance at least

h=
2tc(n-1)

>

4c T

L

	

L

from W. Since IICI > 2T the two edges adjacent to W have sum of interior angles
> -a with K . Thus the part of 16 within a distance h of K has area greater than

hL , 4cT.

Thus, by Theorem 1.2, the convex hull lig 1 = ce(S \ e) has area less than

(
4zr

-4c)T- (	2~ -2c)(n-1)t
3~

	

3,5



so that
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and contains at least (1- c)(n -1) points of S . If JW 1 I > 0 then triangulation of `P1
yields at least (1-c)(n-1)-2 triangles. Hence

( 27r
-
2c)(n - 1)t > (1 - c)(n - 1)t - 2t

3Ná

2,tT
-

	

2 <0.2092 +
2

c <
33

1 +
n-1

	

n-1
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Comparing inequality (2.8) and Lemma 2.9 we see that there must be at least
three edges of on the boundary of W. Moreover there must be two adjacent

edges of 91 which together contain more than

(2.10) 2+(0.5408-0.2092)(n-1)=2+0.3316(n-1)

point of S .

2.11. Lemma. If two adjacent edges of 04 lie on the boundary of le and contain
2 + c l(n -1) and 2+ C 2(n -1) points of S respectively, where c l C 2> 0, then for
f (S) = f (n) and n > 37 we have

C 1 +C 2 <4+(c l - C2)2 .

Proof. Let 4, 93 be the two edges and V the common vertex . Let a, b be the

lengths of si,,. Since by assumption no triangle of maximal area has two edges

on the boundary of `6, it follows that the triangle J o with sides s4, A has area
137,1 < T. Let xa be the minimal distance from v to (S n A\93 and let yb be the
minimal distance from v to (S n A)\sd. Then .l contains an interval of length at
most (1-x)a/cl(n-1) with endpoints in S . This interval, together with the nearest
point to v of (S n A) \ si forms a triangle whose area is at most

Y(1-x)
19-o1<

	 Y(1-x)
T~	 Y(1-x) n-1 t=y(1-x)

t.
cl(n - 1)

	

cl(n - 1)

	

cl(n - 1) 2

	

2Cl

Thus we must have

(2.12) 2c l < y -xy .

In a completely analogous manner we get

(2 .13) 2C2 < x - xy .

Combining (2.12) and (2.13) we have

xy > (2c 1 + xy)(2C 2 + xy)
so

0= (xy +cl +c2 -2)2 < (c l + c 2 -2)2 -4C 1C 2

_ (Cl - C2) 2 - (c l + C2) + 4

as was to be proved .
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Now, by (2.10), we have
1

c1 +c2 >0 .3316-
n--1

(2.14)

cl -c2 =2c 1 -(cl+c2)<0 .4184+ n 4 1 -0.3316+n1
1

= 0.0878 +-5
n-1

5

Thus Lemma 2 .11 yields

2
0 .3316- n 1 1 < 0.0878+ n 5 i +0.25

- (

	

-

which is false for n > 37 .
Thus there must be at least four edges of the pentagon on the boundary of 16 .

Hence there can be points of S exterior to 95 in at most one of the triangles
A BCD or A ACE. Thus

01 ~'T --á(n -1)t.

Hence the number of points of S exterior to

	

is no greater than '(n -1) and
hence (2.8) becomes

(2.8)

	

kl > k - 8(n -1) > 0.6658(n -1) .

If there are only four edges of 91 on the boundary of W then there must be an
adjacent pair containing more than 0 .3329(n -1) points of S in contradiction to
Lemma 2.11 .

Finally, if W = 9, then k1 = k > 0.7908(n -1) . According to [1] we have

1911< -,f5-T<2 .236 T.

Thus Lemma 2.9 can be improved to show that, if any side K of 91 contains
c (n -1) + 1 points of S, then

-1+ n 2
1
<0 .1180+n 2

1

The same argument as in the proof of Lemma 2.2 now yields that

(2.15) k , (2-2~)(n -1) > 0.8919(n -1)

> 5(0.1180(n-1) + 2)

for n > 37, in contradiction to (2.14) .
Thus ce has no more that four sides . Hence jWI , 2T and the first part of

Theorem 2.1 follows from Lemma 2 .7. To prove the affine equivalence of
extremal sets to So for even n, divide the quadrilateral `e along a diagonal . One of
the two triangular parts, 9'0 , must contain at least [2(n + 3)] points of S . Thus
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triangulation of 3- 0 yields at least [z(n-1)] triangles . If f (S) = f(n), we must have
J,T j = T and all points of Jo n s on the boundary of 3- 0 . Since all points of S on
the boundary of 16 appear on two opposite edges of W, it follows that all but one
of the points of g o n S are on one side of 3- 0 . Since all triangles in the
triangulation must have area t = T/[Z(n -1)] it follows that there are exactly
[z(n + 1)] equally spaced points on one side sál of K The argument applies
equally to the triangle J ó with side -ál and opposite vertex at the other endpoint of
the opposite side . Hence 19'01 _ 19 0 1 = T and the opposite side, 0A, is parallel to si,
and contains [Zn] points of S. If n is even this shows that r is a parallelogram and
that the points of A are also equally spaced .For odd n we can vary the length of A
and the spacing of the [n/2] points on as long as b < a and none of the intervals-93
on A has length less than 2a/(n --1) where a, b are the lengths of SQ, 93.

The condition n > 37 was used primarily in the proof of Lemma 2 .2. With the
use of the integral part [2'(n -1)] instead of z(n -1) it is easy to prove the result
for smaller even n, but it would prove tedious to analyze all cases with 5 < n < 38 .

We only comment that for small odd n there are other extremal n-tuples . Thus
for n = 7 the set S consisting of the vertices and center of a regular hexagon also
yields f (S) = 3, and for n = 9 the square 3 x 3 lattice S also yields f (S) = 4 .

3 . Related problems and conjectures

One can pose the analogous problem in higher dimensions .

3.1. Problem . Let S be a set of n points in E' not all in one hyperplane and let
f,,,(S) denote the ratio of the maximal and minimal volumes of nondegenerate
simplices with vertices in S. Find fY1 (n)=inf s fm (S) .

In analogy to the solution for the case m = 2 it is easy to verify that

(3 .2)

	

f.(n)--[(n-1)/m]

by taking equally spaced points on parallel lines through the vertices of an
(m -1)-simplex . It is reasonable to conjecture that equality holds in (4.2) for
sufficiently large n .

An apparently different problem seems to lead to the same construction .

3.3. Problem . Let S be a set of n points in E' not all in one hyperplane . What is
the minimal number g-(n) of distinct volumes of nondegenerate simplices with
vertices in S?

The above example shows that g-(n) < [(n -1)/m] and we conjecture that
equality holds at least for sufficiently large n .
Theorem 1.2 and Lemmas 2 .5 and 2.6 suggest various extensions of Sas' results

[2] .
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3.4. Problem. If the inscribed triangle J of maximal area has one side on the
boundary of the convex domain 16 what is max, j`6j/jJ j?

Sas' theorem is valid for the maximal areas of on n-gon, n--3, inscribed in a
convex curve ce that is, the n-gon contains a maximal proportion of 1`61 if and only
if ce is elliptic and the n-gon is affine-regular . This leads to generalizations of
Problem 3 .4 .

3.5. Problem . Let = ptpz ° • • pn be inscribed in the convex curve W and let
1 < i t, i 2< < ik = n. If the edges Pi Pi , ,, j = 1, 2, . . . , k, are on W what is
max, IWI/19PI?
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