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In this paper, we find lower bounds for the maximum and minimum numbers of cliques in
maximal sets of pairwise disjoint cliques in a graph . By complementation, these yield lower
bounds for the maximum and minimum numbers of independent sets in maximal sets of
pairwise disjoint maximal independent sets of vertices in a graph . In the latter context, we show
by examples that one of our bounds is best possible .

We use notation and terminology of [1] . Throughout this paper, G is a simple
finite graph, and n refers to the number of vertices of G. ~S1 is the number of
elements in the set S . A set S with property P is maximal (with respect to P) if no
set S' exists with S properly contained in S' such that S' has property P. A set S
with property P is maximum (with respect to P) if no set S' exists with ISI < IS'l

such that S' has property P . If S is a vertex or a set of vertices, N(S) is the set of
neighbors of S in G.
C. Berge (unpublished ; see [1, 2]) and independently C. Payan [3] conjectured

that any regular graph has two disjoint maximal independent sets of vertices .
While this conjecture has now been shown to be false [4, 6], for graphs which are
regular of degree n - k, Cockayne and Hedetniemi [2] did verify the conjecture
for 1 _- k s 7 and C . Payan [5] for k < 10 . In this paper we show it is true for
k<-2+2 2n.

Let B(G) be the maximum cardinality of a set of pairwise disjoint maximal
independent sets of vertices in G. Cockayne and Hedetniemi first introduced a
notation for B(G) in [2] . Let B`(G) be the maximum cardinality of a set of
pairwise disjoint maximal cliques in G. Let b(G) be the smallest cardinality of a
maximal set of pairwise disjoint maximal independent sets of vertices in G, and let
bc(G) be the smallest cardinality of a maximal set of pairwise disjoint maximal
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cliques in G. Clearly B(G)>-b(G), b(G)=b`(G'), and B(G)=B°(G`) . Although,
in the tradition of Cockayne and Hedetniemi [2], we are primarily interested in
b(G) and B(G), our proofs are more easily described for V(G) and B`(G) .

On three occassions in the following proof, we will use the inequality (ci -
Z(k + g)) 2 , 0, for integers g and ci, in the form

c, (k+g-ci)--4(k+g)2 .

	

(A)

Theorem 1. If G is a graph with n vertices and maximum degree k, then

V(G) -- 4n/(k + 2)2 .

Further, if G is regular of degree k, then

b°(G) % 8n/(k + 3) 2 .

Proof. Set V(G) = b. Let C={C1 , C2 , . . . , Cb } be a smallest maximal set of
pairwise disjoint maximal cliques in G . Set ci = ICi I for each i, Z = Ub=1 Ci , and
Y=V(G)-Z. If any vertex y of Y were joined to no members of Z, then any
clique containing y would be disjoint from Z, which is impossible . Also, since
each vertex of Q is adjacent to at most k - ci + 1 vertices of Y,

b

	

b

L ci(k-ci+l)--IY~=n-

	

c l .
i=1

	

i=1

Thus Y_b=1 ci (k+2 - ci)>n, or by (A)

4b(k +2)2 > n,
whence

b°(G) % 4n/(k + 2) 2 .

Now suppose y e Y has exactly one neighbor in Z . Let that neighbor be x and
suppose x E Q. If v E N(y) fl Y, then a maximal clique in G containing the edge vy
must meet Z, and the only possible such meeting is in the vertex x, so xv is in
E(G) . Since x has a neighbor in G not in Z, ci > 2 . Hence

do (x)--d,(y)+ci-1>d,(y) .
Therefore, if G is regular, every vertex of Y is adjacent to at least two vertices of
Z. Proceeding as before,

whence

Y. ci(k+l-ci)>-- 2 ~YI=2(n- Y_ ci },
i=1

	

i=1

4b(k+3)2 >2n, or V(G)>-8n/(k+3)2,

Corollary. If G has minimum degree n - k and n vertices, then

b(G)%4n/(k+1)2 .



Further, if G is regular of degree n - k, then

b(G) > 8n/(k +2)2 .

We shall now prove the first inequality in both the theorem and its corollary are
best possible . This will be done by showing that for every b and for every even
positive integer k, there exist graphs G of n vertices and maximum degree k, with
a maximal set of cardinality b`(G) of pairwise disjoint maximal cliques such that

b`(G) = 4n/(k + 2) 2 .

Letting t=2(k+2), we form a graph G' from one copy of K, and t disjoint copies
of Kt_, by assigning to each vertex of K, one of the copies of K,-, and then
joining each vertex of K, to all of the vertices of its assigned copy of K,_, . The
resulting graph has maximum degree k . Now the disjoint union of b copies of G'
is the desired graph G .

The corollary to Theorem 1 has the following consequence relative to the work
reported in the third paragraph of this paper .

Corollary . Let G be a graph with n vertices and minimum degree n - k. If
k <-1 +2 f, then G includes two disjoint maximal independent sets of vertices .
Further, if G is regular of degree n-k and if k<-2+2 , then G includes two
disjoint maximal independent sets of vertices .

Theorem 2. Let G be a graph with n vertices and maximum degree k. Then
B°(G)>-6n/(k+3)2 .

Proof. Let H be a graph with V(H) = V(G), E(H) as small as possible with
E(H) g E(G) and B`(H) = B°(G) = b . Let {C,, C 2 , . . . , C} be a maximum set of
disjoint maximal cliques in H and let c; _ ~Ci I for each i . Further, choose the set
{C	C} such that lb=, c, is as small as possible . Let Z = Ub=, C and let
Y = V(H)-Z. Let Y' = {u,, u 2 , . . . , uJ be the set of vertices in Y such that

INH(ui) n zi =1.
First we show Y' is independent in H. For each i c {1, 2, . . . , s}, let x; be the

member of NH (u,)nZ. Suppose ueYnNH (u,) and suppose x i0NH (u) . Then a
maximal clique containing uu i is disjoint from Z, a contradiction. Thus x; is
adjacent in H to every member of NH(u,) n Y. If u, u 2 E E(H), then x, = x 2 = x
and x is adjacent to every member of NH (u,) U NH(u2) . Let H'= H- u, u 2 . Since
E(H) is as small as possible under the given conditions, B°(H') B`(H) . Now
C,, . . . , Cb are maximal cliques in H' as well as in H, so B`(H') > B°(H) . Let
D,, D2 , . . . , Db, Db+ , be b + 1 pairwise disjoint maximal cliques in H' . Since H
does not have b + 1 pairwise disjoint maximal cliques, there exist Di and D; such
that u, e Di , u 2 c D,, and u, is adjacent in H to every vertex in D; or u 2 is adjacent
in H to every vertex in Di . Since x is adjacent in H' to every member of
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NH(u l ) U NH(u2 ), x c D, nDi . But this is a contradiction . Hence Y' is independent
in H.
Choose y,EY' and suppose its neighbor in Z is x. Let Y"=NH(x)nY' and

suppose Y" _ {y,, . . . , yP} . Let {v,, . . . , v,} = NH(x) n (Y- Y") . Let C be a maxi-
mal clique in H containing xy, . Since NH(y,) n Z ={x}, C g {x, y,, v,, . . . , v,} .
Suppose x ECl ; then C n C; = o for all j E {1, 2, . . . , b}-{i} . since Ji=, ci is a
minimum, I C1 % I Q I = c;. Hence r > c, - 2 .

Further, dH (x) , r + p + c, -1 . since dH (x) _- d (H) -- k,

p-k-r-c,+l--k-2c,+3 .

	

(1)

Let f =IY'J . Then, by (1),
bf,

	

ci (k-2ci +3) .

	

(2)
j=1

Let a be the number of edges in H with one end in Z and the other end in Y .
Since any vertex in Ci is joined to at most k -(ci -1) elements of Y,

b
a< I ci(k-c;+1) .

	

(3)
i=1

Since the edges joining vertices in Y' to Z are counted by f, and since every
vertex of Y- Y' is joined to at least two vertices of Z,

b
a>2(n-~ ci (4)

i=i
Combining (3) and (4) and applying (2),

b
(2cik-3ci + 6c,) -- 2n .

i=1

Multiplying by 3 and applying (A),

b(k+3)2 ;6n,
or

B°(G)=B`(H),6n/(k+3)2 .

Corollary. If G is a graph with n vertices and minimum degree n - k, then

B(G) ;6n/(k+2)2 .

Corollary. Every graph with n vertices and minimum degree greater than n -

	

+
2 has two disjoint maximal independent sets of vertices .

Probably the result in the foregoing corollary is not best possible in the sense of
having the correct power of n subtracted from n ; the highest minimum degree we
have yet found in a graph with no two maximal independent sets disjoint is
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approximately n-(1+á)n2/3 . This example is constructed in the following
manner :

Let p be a positive integer and let

( +2
n = \p 2 +2p 2(p +2) .

Let S	Sp-2 be disjoint sets of points of cardinality Zp 2 and let Z ={zij : i # j

and i, j E {1, 2, . . . , p + 2}} . Then J
Z

J _ ( p 2 2) . Form graph G such that V(G) _
Z U Up±? Si and xy E E(G) iff either x c S, and y c S; with i j or x = z ij and y c S,
with ro{i, j}. The maximal independent sets are Z and sets of the form S, U
{zij : i = r or j = r} . It is easy to see no two of these have a non-empty intersection .
Furthermore, the minimum degree 8 is the degree of an element of Z, so S = Zp 3 .

2/3 r~- (p + 1) 2(2-2/3) and n

	

23(p+1) 2
~

3]j(2 2/3)n 2/3 so

	

n - 3

	

)2(2 n 2/38~Since n

	

-S=
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