
Solved and unsolved problems in combinatorics

and combinatorial number theory

P . Erdős

In this report I discuss as usual some combinatorial uroblems which

interested me and where some progress has been made . I do not claim

that I give a survey of the subject but restrict myself to my problems

or to problems which interested me during my very long life .

1 . The first problem which was (unfortunately) not mine is due

to van der Waerden . Van der Waerden conjectured more than 50 years ago

that the permanent of a doubly stochastic mxm matrix is at least

m :/m - and equally holds if and only if all the entries are 1/m . For

a long time this problem did not get the attention it deserved but for

the last 25 years many mathematicians worked on it . Last year Legonihev

finally settled the conjecture affirmatively . He used a geometric

inequality of Alexandroff-Fenchel on mixed volumes .

2 .

	

Nearly 50 years ago Sidon asked me the following question :

An infinite sequence of integers 1 < a,< a 2< . .- is said to have

property B 2 if the sums a i + aj are all distinct . Sidon observed

that there is a B 2 sequence satisfying a k < ck 4 for all k and he

asked me to try to improve this . I observed that the greedy algorithm

gives the existence of a B 2 sequence satisfying ak < ck 3 and I

proved that for every B 2 sequence lim sup ak /k2 = - and TurAn and I

constructed a B 2 sequence with lim ínf ak /k2

	

< - .

I could never prove that there is a B 2 sequence for which

(1) lim at/k3 = 0 .

In fact I conjectured that for every e > 0 there is a

sequence for which for k > kO (s)
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(2) ak k2+e

R6nyi and I proved by probabilistic methods that there is a sequence

2
(2)

	

cl (log n)2 < r(.3,n) < c 2 n 2 loglog n/log n

50

a .+a .=m is less thani J
satisfying (2) for which the number of solutions of

C .
F

Last year Ajtai, Komlds and Szemer&di proved (1) . More precisely

they proved that there is a B 2 sequence for which ak< c1k3/log k .

Their basic tool is a remarkable new result in graph theory which I will

state in the next chapter and which will no doubt have many applications .

M. Ajtai, J . Komlds and E . Szemerédi, A dense infinite Sidon sequence,

European Journal of Combinatorics 2(1981), 1-11 . For the older results

on Sidon sequences see the book by H . Halberstam and K . F . Roth,Sequences,

Oxford University Press, 1966 .

3 .

	

Let G(n ;e) be a graph of m vertices and a edges . Put

t = Ze . Turdn's well known theorem easily implies that a(G) ? n/t+l
n

where a(G) is the largest independent set of our G(n ;e) . This

estimation as it is well known is best possible, to see this let

G(n ;e) be the union of complete graphs of size Cn/t+1] . SzemerAdi had

the lucky and ingenious idea that if we assume that G(n ;e) has no

triangle then a(G) > t+1 can perhaps be significantly improved .

Ajtai, Komlós and Szemer6di in fact proved the following Theorem: Let

G(n;e) be a graph which has no triangle . Then

(1)

	

a (G) > 100t log t .

(1) is best possible apart from the value of the contant 1100
(1) was the main tool in constructing dense Sidon sequences . But (1)

and its extensions have many further applications . Here is a sample .

Let r(3,n) be the smallest integer for which if we color the edges of

K(r(3,n)) (the complete graph of r(3,n)) vertices) by two colors than

either there is a monochromatic triangle in color I or a K(n)

	

in

color II . It was known that (the lower bound is due to me the upper

bound to Graver and Yackel) .



Ajtai, Komlós and Szemerédi proved that

(3)

	

r(3,n) < e3n 2 /log n

At first sight (3) seems only a,modest improvement, but there is

some hope that perhaps (3) gives the correct order of magnitude of n

though the proof of this is nowhere in sight at present .

Komlós, Pintz and Szemerédi using related results for hypergraphs

disproved a well known conjecture of Heilbronn . They proved the existence

of a set of n points Xl , . . ., Xn in the unit circle so that all the

triangles (X,,XJ.,Xi) have area > c log n/n 2 .

M . Ajtai, J . Komlós and E . Szemerédi, A note on Ramsey Numbers,

J .C .T .

	

A 29(1981), 354-360 .

J . Komlós, J . Pints and E . Szemer&di . A lower bound for Heílbronn's

problem, will appear in J . London Math . Soc .

See also a forthcoming paper of M . Ajtai, J . Komlós, J . Pints,

J . Spencer and E . Szemerédi, Extremal uncrowded hypergraphs .

4 .

	

Ajtai, Komlós, Szemerédi and I investigated the following

general problem : Let H be a graph . Denote by f(n ;t,H) the largest

integer for which every G(n ;e),t = 2e/n which does not contain H

satisfies

a(G(n;e)) >_ f(n ;t,H) .

As stated in paragraph 3 Ajtai, Komlós and Szemerédi proved that

f(n;t,K(3)) > 100t log t .

We proved the following theorem :

(1)

	

f(n;t,K(p)) > c t log A, where A = logt
p

(1) shows that for p = o(logt) the trivial bound cn /t for a(G)

can be improved by a factor tending to infinity . There are three big

gaps in our knowledge in connection with these problems .

The first gap is that p=o(log t) can perhaps be replaced by

p = o(tc ) and a(G)t/n will nevertheless tend to infinity . The second
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big gap is that in (1) log A can perhaps be replaced by log t - at

least for every fixed p as t - - . For p = 3 this is the result of

Ajtai, Komlós and Szemerédi . Unfortunately we can not even settle it

for p = 4 .

The third big gap concerns hypergraohs . Let G(r) (n,c) be an r-graph

with c edges (i .e . n-tuples) . Put t = (re/n)1/r-1

	

Spencer proved

that

(2)

	

a(G(r)(n ;c)) > cn/t .

Denote by f(n;t,H(r)) the largesL integer for which every G(r) (n ;c)

which contains no H (r) has an independent set of size f(n;t,H(r)) .

Ajtai, Komlós, Pintz, Spencer and Szemerédi improved (2) by a factor

(log t) 1/r-1 if G(r) (n ;c) contains no cycle of length <_ 4 . Is it true

that

f(n;t,K(3)(4)) n-> -

This is the third big gap in our knowledge in this fascinating

subject .

M. Ajtai, P . Erdős, J . Komlós and E . Szemerédi, On TllrAn's theorem

for sparse graphs, will appear in the new Hungarian Journal Combinatorica .

5 .

	

Let G(n ;c) be a graph of n vertices and c edges . Let

Fc(n) be the number of ways one can color G(n ;c) by two colors so that

there should be no monochromatic triangle . Clearly FC (n) is 0 if

c is large enough . Rothschild and I conjectured that for n > n0

(1)

	

max

	

F(n) = 2 En2/47
G(n)

	

c

The maximum is reached if and only if G(n ;c) is Turén's graph .

Recently Kostochka proved our conjecture . Many generalizations of (1)

are likely to be true, but as far as I know these have not yet been

investigated .

Kleitman, Rothschild and I proved that almost all graphs which do not

contain a triangle are bipartite . Our results on graphs not containing a

K(r) are not in such a final form .
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Denote by f3 (n) the number of graphs of n vertices which do not

contain a triangle but if we add any new edge to our graph it will contain

a triangle . Rothschild and I conjectured several years ago that

2
(2)

	

log f3 (n) _ (l+o(l)) 8 log 2 .

The proof of (2) presented unexpected difficulties and is not yet

complete . We have no satisfactory upper estimation for f 3 (n) .

The following related problem seems to be of interest : Rothschild

and I proved without much difficulty that if G(2n) is a graph without

triangles then the number of maximal independent sets of the vertices of

G is at most p12 equality when G(n) consists of n independent

edges .

Let now G(10n) be a graph without triangles each vertex of which

has valency ? 3 . Is it true that the number of maximal independent

subsets is at most 15n?

	

Equality occurs if G(10n) consists of n

vertex independent Petersen graphs .

P . Erdős, D . Kleitman and B . Rothschild, Asymptotic enumeration of

Kn-free graphs, Coll, Inter . Teoria . Comb . Roma 1973 Attí Con . Linhei

No 17 Tomo 11 19-27 .

6 .

	

Faudree, Rousseau, Schelp and I define the size Ramsay number

I(G) of G as the smallest integer for which there is a graph H

having r(G) edges, (the number of vertices of H is irrelevant) so

that for any coloring of the edges of H by two colors at least one

of the colors contains a copy of G . We could not decide whether
A,

	

Ar ,' Pn ) or r(Cd is of linear growth, where Pn is a path of n vertices

and Cn a circuit of n vertices) .
A

	

AJ . Beck just proved that both r(Pn) and r(Gn) are of linear

growth . The proof of the first inequality r(P n) < c ln is surprisingly

simple, the proof of r(Cn ) < C 2 n is much more complicated . Let Tn(d)

be a tree of n vertices and maximal valency d . Beck also proved

(1)

	

r(T (
nd) ) < cd n(log n)2 .

It is possible that the factor (log n) 2 can be omitted in (1) .
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It would be very interesting to try to characterize the graphs of

n vertices G(n) for which r(Gn) < Cn . Is there a connected graph G
Aof n(1+E) edges for which r (G(n)) < C1n ?

	

The answer is probably no .

P . Erdős, A . Faudree, C . Rousseau and R. Schelp, The size Ramsay

number, Periodica Math . 9(1978), 145-161 .

7 .

	

V .T . Sós and I started a few years ago to investigate the

following problem : Let H be a graph, f(n ; H,R) be the smallest integer

for which every G(n ; f(n ;H,R)) either contains H as a subgraph or

a(G(n ;f(n ;H,R))?£ . Usually we just assumed R=o(n) and one of our main

problems then can be stated as follows : For which graphs H is

f(n ;H,o(n)) = o(n 2 ) . Perhaps the most interesting unsolved problem states :

Is it true that f(n ;K(2,2,2), o(n)) = o(n 2 )? In other words is it true

that for every c > 0 and n > n0(c) every G(n ; c n2 ) with

a(G(n ; c n2)) = o(n) contains a K(2,2,2)? (i .e . a complete tripartite

graph with two vertices of each color .) We proved that K(2,2,2) can not

be replaced by K(3,3,3) . In fact we showed

2
(1)

	

f(n;K(3,3,3), o(n)) _ (140(1)) 4
Bollobás, Szemerédi and I proved that

2
(2)

	

f(n;K(4), o(n)) _ (1+0(1)) n8

f(n ;K(3),Q) = o(n) is trivial, since f(n ;K(3),k) s nk
2

In a forthcoming paper Hajnal, Szemeredt V.T . Sós and I prove

(among others) that (r>2)

2

	

_

	

2
(3)

	

f(n;K(2r),o(n)) = 2 3r-2 (l+o(1) ; f(n ;K(2r-1),o(n))2 r--21( 1+ (1))

Several unsolved problems remain e .g . is it true that

2
(4)

	

f(n;K(4), o(n)) ? n

	

?8

2
In other words there is a graph of n vertices and 8 edges

which has no K(4) and the largest independent set of which is o(n)?
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Our proof of (3) easily gives that to every e>0 there is an n>0

so that

2
(5)

	

f(n;K(4),nn) <
8

(1+e),

but so far we could not show that to every nl>0 there is an el >0 so

that

2
(6)

	

f(n;K(4),nl n) > 8 (l+e l ) .

Perhaps every G(n ;c n2) with a(G) = o(n) and which has no K(4)

contains a K(r,r,r) for every n > n 0 (r) .

Many interesting problems remain on hypergraphs . If G(n) is an

ordinary graph such that for every fixed c > 0 every set of c n

vertices spans a subgraph of f(c)(cn) 2 edges (f(c)>0 for every c>0)

then it is easy to see that if n > n0 (R) our G(n) contains a K(R) .

The proof, by induction on k, is almost immediate . It is easy to see

that nothing like this holds for hypergraphs . To see this consider the

following hypergraph f(r=3) :

	

Put 3m--n, the vertices of our G(3) (n)

are these integers nTl e 3i eí=0,1 or 2 and the edges are the triples
i=0 i

(X,Y,Z) where for some i, eí is 0 for X,1 for Y and 2 for Z . It is easy

3
to see that this G(3) (n;C24 J) contains no K (3) (4), in fact it does

not even contain a G (3) (4,3), but every subgraph spanned by cn vertices

has at least f(c)(cn) 3 edges, where f(c)>0 for every c>0 .

Nevertheless an interesting problem remains . Observe that f(c)-O

as c30 . Is it true that for every a>0 there is a c i(a)>0 so that if

G(3) (n) is such that every subgraph spanned by c z (a)n vertices contains

at least a(c z (a)n) 3 edges, then our G (3) (n) contains a K (3) (R)?

I have not even proved that it must contain a G (3) (4 ;3) .

The following further problems can be raised :

Let G(3) (n) be a hypergraph with vertices X l , . . .,Xn . Assume that for

every pair (Xí,X
J
.) there are c n elements XR so that (Xí,X

J
.,Xe ) is an

edge of our G(3) (n) . Does it then follow that our G (3) (n) contains a
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G (3) (4 ;3)? Turán's graph shows that it does not have to contain a K (3) (4)

for c 5 1 /3 , but if c > 1/3 then perhaps it will have to contain a

K 3 (4)

	

Assume in addition that every set of cln vertices spans

f(cI)n3 triples . Perhaps this further assumption wí11 force a K (3) (4)

for every c > 0, but I can not even prove that it contains a G (3) (4 ;3) .

P . Erdős and V.T . Sós, Some remarks on Ramsey's and TurAn's theorem

I and II, Coll . Math . Soc . J . Bolyai 1969 .

Combinatorial Theory and its applications, Vol . 2, 395-404 and

Studio Math . Acad . Sci . Hungar . 13 (1978) .

P . Erdős and V.T . Sós, Problems and results on Ramsey-Turán type

theorems, Proc . West Coast Conf . Combinatorics, Graph Theory and Computing,

Humboldt State Univ . Arcata Calif . Sept 1979, 17-23 .

E . Szemerődi, Graphs without complete quadrilaterals, (in Hungarian),

Mat . Lapok 23 (1978), 113-116 .

B . Bollobás and P . Erdős, On a Ramsey-Turán type problem, J .C .T .

(B) 21(1976), 166-168 .

8 . Harary posed the following problem . Let G (n) be a graph of

n edges, m(n) is the smallest integer for which there is a G (n)

for which K(m(n)) -> (G(n),G(n)) . Determine m(n), or estimate it as

well as possible .

Faudree, Rousseau, Schelp and I proved

(1)

	

cl n/log n < m(n) < c 3 n/log n

We could not get an asymptotic formula for m(n), perhaps this will

not be easy .

Let mr (n) be the smallest integer for which there is a G (n)

satisfying K(m (n)) -> (G(r ) ,K(r)) . We proved

(2)

	

cl n 3/5 < m (n) < c 2 n 2/3

We suspect that in (2) the upper bound is close to the truth .

We further conjectured that for connected G(n)

K(2n) } (G(n) , K(3)) .
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Let M (G(n) ) be the smallest integer for which K(M (G(n) )) > CG(n)K(r)) .r

	

r
We conjecture that for r ? 4 Mr

(G(n) ) is maximal if G (n) is as nearly complete

as possible . This is definitely false for r=3 (see (2) o£ paragraph 3) .

Our paper on these subjects will be published soon .

4 . It is easy to see that if we color the edges of K(n) by n-2

colors then the union of two suitable colors always contains a triangle,

but this is generally false for coloring with n-1 colors . On the other

hand one can color the edges of K(n) by

	

to n colors so that the
1+ log 2

union of two colors never contains a K(5) (the edges of the same color

will be bipartite) . Denote by f(n ;r,k) the largest integer for which if

we color the edges of K(n) by f(n;r,k) colors then there is always a

K(k) where edges have at most

	

colors. It is easy to see that

f(2n ;2,3) = 2n-2, £(2n+1 ;2,3) = 2n .

Further

(1)

	

f(n;2,4) >_ f(n ;1,4) > clogn/loglogn

Unfortunately, I have no better bounds for f(n ;2,4) . As stated

previously f(n ;2,5) < L11og
i +1.

	

f(n;3,4) > cn~ is easy .

Elckes, Fur9dí and I have certain preliminary results like

f(n ;3,4) = ((n), f(n ;4,4) -5n . Many further interesting problems can

be stated for hypergraphs . Nothing is published on this subject since

our results are too incomplete .

10.

	

J. Pach and I very recently proved the following Ramsey type

results . Let f(n) be the smallest integer for which if we color the

edges of a K(f(n)) by two colors there always is a complete subgraph

K(m), m >_ n of our K(f(n)) and a color,say I,so that the valency of

each vertex of K(m) in I is greater than 2 We proved

cl n logn
(1)

	

lo lo

	

< f(n) < c2 n logn
g g n

If in the definition of f(n) we insist that m = n then our upper

bound in (1) has to be replaced by c2n2 . We believe at present that
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this is not close to the truth but is due to the fact that we did not

yet find the "right" proof .

Our results will be presented in detail at the combinatorial

conference held in Eger Hungary in July, 1981 .

10 .

	

Several mathematicians (Deuber, Neretril-R8dl, Hajnal,Posa

and I) proved simultaneously that for every G1 (n) and G2 (n) there is a

G for which if we color the edges of G by two colors then either color

I contains G I as an induced subgraph or color II contains G 2 as an

induced subgraph. This was conjectured by Hanson . Denote by R(G 1,G2 )

the smallest integer m for which there is such a graph G of m

vertices and put

f(n) = G1Tn~G2(n) R(Gl ,G2 ) .

The determination (pr good estimation) of R(Gl ,G2 ) and of f(n) seems

very difficult, probably much more difficult than the estimation of the

ordinary Ramsey functions r(G1 (n), G2 (n)) .

	

Hajnal and I recently

proved

(1)

	

f(n) < exp exp nl+e . .

Unfortunately we have no good lower bound for f(n) . We have not

even proved that

(2)

	

f(n) > r(n) = r(K(n) ; K(n)) .

No doubt very much more than (2) holds, we expect that f(n) 1/n, ~ .

Due to the meagerness and incompleteness of our results we did not publish

the details of our proof of (1), which in any case can be easily

reconstructed from our paper with Pdsa .

Simonovits believes f(n) < Cn and he even believes that

f(n) = r(n), he gave some fairly convincing heuristic arguments for his

conjecture . We hope to decide the "truth" in a finite time .

P . Erdős, A .Hajnal and L . Pdsa, Strong embeddings of graphs into

colored graphs, Coll . Math. Soc . J . Bolyai 10 Infinite and finite sets,

Kenthely (Hungary) 1973, 585-595 .

W. Deuber, Generalizations of Ransey's theorem ibid . 323-332 .

11 . Galvin and I proved that n > no(r) and we color the edges

of K(n) so that every color has at most e rn edges then there is a K(r)
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all of whose edges have different colors . Perhaps there also is a

Hamiltonian circuit all whose edges have different color, but we only

proved this í£ every color occurs at most f(n) times where f(n) >

slowly .

12 .

	

Denote by f(n ;t) the largest integer for which if X l , . . .Xn

are n points in the plane at most t of which are on a line then one can

always find at least f(n ;t) of them no three of which are on a line. It

is easy to see that

(1)

	

(2t) i
~

	

f(n ;t) s t

The upper bound in (1) is trivial and the lower bound easily follows

from the greedy algorithm . Perhaps f(n ;t) > c t (where c is an

absolute constant independent of n and t) .

Let g(n ;t) be the smallest integer for which there is a set of

g(n ;t) points no three on a line which are maximal with respect to this

property, i .e . if we add any of the other n-g(n ;t) points there will be

three of-them on a line . (1) clearly holds for g(n ;t) too, but now I

think the lower bound is close to the truth .

More generally fE (n ;t) is the largest integer so that we can

always find f k (n ;t) of the points Xl , . . .Xn no 2 on a line

(f(n ;t) = f3 (n ;t)) . f k(n ;t) can be defined analogously. It is perhaps

worthwhile to study these two functions too .

These problems can be posed in a more abstract setting . Let

ISI=n, Ai c S, 2 <_ IA,I

	

t and assume that every pair (x,y) of elements

of S is contained in one and only one Ai . Let f*(n ;t) be the largest

integer so that there is a subset S, of S, IS1 I=f*(n ;t) and for every i

JAinSlI !- 2 . It is easy to see that f*(n ;t) 5 f(n;t) and that f*(n ;t)

also satisfies (1) .

13 .

	

Several years ago the following problem occurred to me :

Let K(n) be a complete graph of n vertices . Two players alternately

choose edges of K(n), if an edge has been chosen by a player his opponent

can not choose it also . The game ends if all the edges have been used

up . Denote by G1 (n) respectively G 2 (n) the graph determined by the

edges belonging to the first (respectively to the second) player . The
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first player wins if the clique number of G1 (n)

	

is larger
than the clique number of G 2 (n)

	

(in other words if

G1 (n) contains a larger complete graph than G2 (n)) . For n=2 trivially

the first player wins . Is it true that if n > 2 then the first player

can not enforce a win?

Modify now the rules as follows : The first player wins if (v(x))

is the valency (or degree) of the vertex x of G .

v(G1) > v(G2 ) where v(G) = X
MaX
aG v(X) .

The first player wins for n=2 or 3 and loses for n=4 . I do not

know what happens for n > 4 .

Modify the rules once again . A vertex X belongs to G, if the

valency of X in G1 is larger than its valency in G 2 . The first

player wins if he has more vertices than the second player . For which

n can the first player win?

Denote by f(n) the largest integer for which the first player

can get G 1 satisfying

v(G1) ? 2 + f (n) .

It is not hard to prove that f(n) -> W but I have no good estimation

for f(n) from above or below . Recently J . Beck obtained several very

interesting results on games played on graphs and hypergranhs .

I state a few recent problems on combinatorial number theory .

14 .

	

Let 1 <_ al

	

be an infinite sequence of integers

A(X) =aEl1 Assume that our sequence is a basis of order r, in other
i

words : every sufficiently large integer is the sum of r or fewer a's .

Denote by A Q (X) the number of integers not exceeding X which are the

sum of k or fewer a's . I conjecture that if A Q (X) = o(X) then
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(1)

	

AQ (X)/A£+1M -> o .

Rursa observed that for 2=1 this follows from the results of

Freiman, but the general case is still open .

G . Freiman, Foundation of a structural theory of set addition,

Amer . Math. Soc . Translation of Math . Monographs Vol . 37 .

15 .

	

Is it true that every interval of length n contains

c n/log n distinct multiples of the primes p, 3
< p < ?

Denote by Ac (n,m) the number of distinct integers X, m < X s m+n

which have a divisor d, c n < d <_ n . Put fc (n) = max Ac(m,n) . Determine

fc (n) or at least lim f c (n)/n .' Is there a c > 0 for which this limit is

1? And in fact for which fc (n) = n? Rursa has a simple proof that

f (n) = n if c -

	

1c

	

loge

P . Erdős and Carl Pomerance, Matching the natural numbers up to n

with distinct multiples in another interval, Indag . Math . 42(1980), 147-

161 .

16 . Can one give a necessary and sufficient condition for a

sequence of integers m i < m2 < . .- to have the following property :

Let a1 < a~ < . . . be an infinite sequence of integers for which

ai + a . = mQ has no solutions . Then the density of a 1 < a2 < . . .
J

is less than ~ . Lagasias and Odlyzko proved that the squares have this

property .

17 . Denote by T(n) the number of divisors of n and let

1 = dl < d2 < " ' <dT(n)= n be the sequence of consecutive divisors of

n . Is it true that there is an absolute constant C so that for

infinitely many n

(1) T(n)-1

í~l

	

(di+1/di)2 <

I am sure that (1) remains true if the exponent 2 is replaced by

l+e . C has o£ course to be replaced by C c .

An old conjecture of mine which so far resisted all attacks states

that for almost all n (i .e . for all n if we neglect a sequence of

density o)

61
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min di+l/di < 1 + e

for e-vnry e > 0 .

It seems likely that (1) is satisfied say for n=k! or n=2,3, . *P k'
but I have not been able to prove anything .
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