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ABSTRACT

This paper investigates R(G,H) in the special case where
G is a t-matching and H 1is a 2-matching. Here R(G,H) is
the set (F|F+(G,H) and F' # (G,H) for each proper subgraph
F' of F}.

1. Introduction.

Let F,G, and H be (simple) graphs without isolated
vertices. Write F -+ (G,H) to mean that if each edge of F is
colored red or blue, then either the red subgraph of F con-
tains a copy of G or the blue subgraph contains a copy of H.
The class A(G,H) = {F|F~ (G,H)} 1is essential in Ramsey theory
and is non-empty by the classical theorem of F.P, Ramsey.

Furthermore, the gemeralized Ramsey nwmber is

R(G,H) = min 1V(F}| and the size Ramsey number is
FeA(G,H)

r(G,H) = min |E(F)] .
FeA(G,H)

In this paper we concern ourselves with the edge minimal
members of A(G,H) , called (G,H) -minimal graphs. Thus we
formally define this family as R(G,H) = {FeA(G,H)|F' 4 (G,H)
for each proper subgraph F' of F}.
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The problem of characterizing the family R(G,H) for a
fixed pair of graphs (G,H) is extremely difficult. It is the
purpose of this paper to consider such a characterization for
what should be the simplest case, when G 1is a t-matching and
H is a 2-matching.

Before we consider the difficulties involved in any general
characterization of R(G,H), we give some general information
of what is known. This information will motivate our looking
first at R(G,H) in the special case when G and H are both
matchings.

The pair (G,H) 1is called Ramsey-finite or Ramsey-infinite
depending on the cardinality of R(G,H) . An early general
result was given by NeSetril and R&dl.

Theorem 1 [9,10]. The pair (G,H) is Ramsey-infinite if at
least one of the following holds:
(1i). G and H are both 3-connected.
(1i). x(G) and x(1) > 3.
(iii). G and H are both forests, neither of
which is a union of stars.

This theorem leaves an obvious gap when G or H has con-
nectivity two or less and part (iii) is not satisfied. Special
cases for graphs which fit in this gap have been considered in
other papers [1-8]. In particular the case when G is a match-

ing has been completely settled.

Theorem 2 [2]. 1f G 1is a matching and H 1is an arbitrary
graph, then the pair (G,H) 1is Ramsey-finite.

2. The Main Results.

This result and several others in [3, 4, 5] suggest the

following <onjectures.
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(1). If the pair (G,H) is Ramsey-finite, then also
the pair (G U RSl, H U mSl) is Ramsey-finite,

where J8S denotes a j-matching.

(2). The pair l(G,H) is Ramsey-infinite, unless both
G and H are stars with an odd number of edges
or at least one of G or H contains a single
edge component.
There are examples of graphs G (and or H) which have single
edge components, yet the pair (G,H) 1is Ramsey-infinite. Hence
the converse of (2) definitely fails. The complete classifica-
tion of those pairs (G,H) which are Ramsey-finite remains a
major unsolved problem.

From Theorem 2 we know R(G,H) dis finite when either G
or H is a matching. Thus the most natural place to begin with
the difficult classification of R(G,H) is when both G and H
are matchings. In the remainder of the paper we considzr this
classification problem for G = tSl and H = 251.

It is clear that R(Sl,H) = {H} . However, the determina-
tion of even R(ZSl,H) is non-trivial., Thus as a special case
we consider the finite family R(tSl,ZSl). Clearly
(t-l-l)Sl € R(tSl,Zsl) . For convenience let
R'(t5,,25,) = R(t5,28,) - {(c+1)s,}.

Now we note that F ¢ R'(tSl,Zsl) if and only if each of
the following holds.

(a). F contains a t-matching which is maximal.

(b). For each vertex v of F, F - v contains a
t-matching.

(c¢). For each Ca =By B= Cq contains a t-matching.

This characterization is easy to verify. It follows from the

following observation. When the edges of F are two-colored
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such that no 251 appears as a subgraph of the blue graph, then
the biuve ¢rash must be a triangle or must have all its edges
incider. - o the same vertex.

We use this characterization to get some information about

R(tSl,ZSl). First let Fl € R'(tlsl,zslj ,F e R’ (t2 1,251),
and let FE e F2 denote the graph formed from Fl and F2 by
identifying a fixed vertex of Fl with a fixed vertex of F2.
Since Fl, respectively F2 , satisfies (a), (b), (c) above
for t = tl’ respectively ty s it is easy to check that
both FltJ Fz and Fl . F2 satisfy (a), (b), (e¢) for

t=1 e £y Essentially the converse of this result also

holds. It is straightforward to show that if F 1is connected
and F e R‘(tSl,ZSl) , then F contains no bridges. Thus let
Fe R'(tSl,ZSl) and in addition have connectivity one, i.e.,

F has a cut vertex and no bridges. Let w be a cut vertex of

F belonging to an end block. Define Fl as any end block of

F contairing w and define F2 as F - (Fl-‘w). Note F2

is a union of the remaining blocks of F, other than Fl.

Neither F1 nor F2 are edges so that both Fl and F2 have

edges not incident to w. Since F satisfies (b), F - w

has a t-matching so that Fi - w contains a ti-matching,

ti >1, (i=1,2) such that t = £y + £y« But this

ti-matching in Fi - w is a maximal matching in F1 (1=1,2),

otherwise F would contain a matching greater than t, con-
trary to (a). Also since F satisfies (b) and (c), it follows

that Fi (i=1,2) satisfies (b) and (c) when ¢t = ty - It is

interesting to note that each ty > 2, since neither Fi can

be a C We summarize the consequences of this discussion in

3
the following two theorems.

]
Theorem 3. Let e R' (tl 1,28 ) and F e R (tz l,251).

Then F, UF e R' ((t +t }5

1 2'1' 1’
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i bet  Foohave vomnectivity one, F oo R(l‘.‘il,zsl) 5
Then there vxists a partition (L],tz) of t such that
v - : - " o 2 -~ ; = ) .
F ty F, with F, ¢ R'(t 1512 sl) and Fy € R' (¢ 51,231)

Coroilary 6. let tg be a fixed positive integer and let
= {F|F is 2-conmnected and F e R(t;S,,25,)}. Then
R(t,S;,28)) = H UL U{(ty+1)8,} where L = {L|lL=F, + F, or
L= F1 U F2 with Fl € R'(t1 1,251) R F2 3 R‘(t2 1,25 ), and
(tl,tz) a partition of to}.
Since it is clear that for each & > 2 ,ng+1 £ R(isl,zsl),

the following corollary is a specialization of Theorem 3.

Corollary 6. Let G be a graph with its blocks Bl‘ Bys oo

Bk being the odd cycles Ci 4 Ci QWY E Ci , Wwith each
1 2 k
% -1
1, > 5, such that Zj I_lg__ t. Then G e R(tSl,ZSI).

This last corollary does produce a fairly large subset of
graphs in R(tSl,ZSl). For example the graphs of R(SSl,ZSl)
which have four different Cg 's as their only blocks are
listed in Figure 1. From Corollary 5 it is apparent that
R(tSl,Zsl) is completely determined by its 2-connected members.
Even these could prove very difficult to find; for example,

Hl € R(65,2SI) and H2 [ R(lﬂSl,ZSI) with Hl and H2 shown
in Figure 5.

We give a few additional lists of R(G,H) for very special

gmall graphs G and H. The case analysis involved in obtain-

ing the lists is additional evidence of the complexity of the

problem under discussion.

Thecrem 7. Let Gi denote the collection of graphs listed in
figures 3-7. Then

(1). R(28,,28)) = {C4,38,1;

(ii). R(le,zsl) = {asl,c?} U Gl
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(iii). R(asl,zsl) = {5:31,05 U c_s,c5 g cs,cg} U G3;
(iv). R(zsl,sz) = {252,c4,c5} :

(v). R(3s,,8,) = {38,,C, US,,CUS
(vi). R(251,53) {283} UG5 ;  and

(vii). R(zsl,K3) = {K5,2K3} U 62 :

2,c?,ca} U 64 ;

There are some obvious questions concerning R(tSl,Zsl).
For instance, what is the maximum order and size of members of
R(tSl,ZSl)? A rather large upper bound is given for the size
in [2].

The results on R(tsl,ZSl) given above demonstrate the
difficulty in finding an explicit characterization for R(G,H)
for arbitrary G and H. It would be extremely valuable to
complete such a characterization for the special pair (tSl,ZSl).

Another direction of interest would be to find properties
common to a fixed family R(G,H) . This might prove fruitful
for the more special class R(tsl,ZSl).
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