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ABSTRACT

This paper investigates R(G,H) in the special case where

G is a t-matching and H is a 2-matching . Here R(G,H) is

the set fFIF + (G,H) and F' 4 (G,H) for each proper subgraph

F'

	

of Fl .

1 .

	

Introduction .

Let F , G , and H be (simple) graphs without isolated

vertices . Write F - (G,H) to mean that if each edge of F is

colored red or blue, then either the red subgraph of F con-

tains a copy of G or the blue subgraph contains a copy of H .

The class A(G,H) _ {FIF->(G,H)} is essential in Ramsey theory

and is non-empty by the classical theorem of F .P . Ramsey .

Furthermore, the generalized Ramsey number is

R(G,H) =

	

min

	

IV(F)I and the size Ramsey number is
FEA(G,H)

r(G,H) =

	

min

	

IE(F)I .
FEA(G,H)

In this paper we concern ourselves with the edge minimal

members of A(G,H), called (G,H) -minimal graphs . Thus we

formally define this family as R(G,H) _ {F e A(G,H) IF'* (G,H)
for each proper subgraph F' of F} .
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Ramsey-Minimal Graphs for Matchings

The problem of characterizing the family R(G,H) for a

fixed pair of graphs (G,H) is extremely difficult . It is the

purpose of this paper to consider such a characterization for

what should be the simplest case, when G is a t-matching and

H is a 2-matching .

Before we consider the difficulties involved in any general

characterization of R(G,H), we give some general information

of what is known . This information will motivate our looking

first at R(G,H) in the special case when G and tl are both

matchings .

The pair (G,H) is called Ra!nsej~-finite or Ramsey,-infinite

depending on the cardinality of R(G,H) . An early general

result was given by Nesetril and Rödl .

Theorem 1 [9,10] . The pair (G,H) is Ramsey-infinite if at

least one of the following holds :

(i) .

	

G and H are both 3-connected .

(ii) .

	

X (G) and x (H) > 3 .

(üí) . G and H are both forests, neither of

which is a union of stars .

This theorem leaves an obvious gap when G or H has con-

nectivity two or less and part (iii) is not satisfied . Special

cases for graphs which fit in this gap have been considered in

other papers [1-S] . In particular the case

ing has been completely settled .

when G is a match-

Theorem 2 [2] . If G is a matching and H is an arbitrary

graph, then the pair (G,H) is Ramsey-finite .

2 .

	

The Main Results .

This result and several others in [3, 4, 5] suggest the

following Conjectures .
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(1) . If the pair (G,H) is Ramsey-finite, then also

the pair (G U 2S11 H U mSl ) is Ramsey-finite,

where jS1 denotes a j-matching .

(2) . The pair (G,H) is Ramsey-infinite, unless both

G and H are stars with an odd number of edges

or at least one of G or H contains a single

edge component .

There are examples of graphs G (and or H) which have single

edge components, yet the pair (G,H) is Ramsey-infinite . Hence

the converse of (2) definitely fails . The complete classifica-

tion of those pairs (G,H) which are Ramsey-finite remains a

major unsolved problem .

From Theorem 2 we know R(G,H) is finite when either G

or H is a matching . Thus the most natural place to begin with

the difficult classification of R(G,H) ís when both G and H

are matchíngs . In the remainder of the paper we consider this

classification problem for G = tS1 and H = 25 1 .

It is clear that R(S 1 ,H) _ { H} .

	

However, the determina-

tion of even R(2S l,H) is non-trivial . Thus as a special case

we consider the finite family R(tS1 ,2S I) .

	

Clearly

(t+ 1)S1 e R(tS,,2S1 ) .

	

For convenience let

R'(tS,,2SI ) = R(tS1 ,2SI - {(t+ 1)s I ) .

Now we note that F E R'(tS,,2S 1) if and only if each of

the following holds .

(a) . F contains a t-matching which is maximal .

(b) . For each vertex v of F, F - v contains a

t-matching .

(c) . For each C3 < F, F - C3 contains a t-matching .

This characterization is easy to verify . it follows from the

following observation . When the edges of F are two-colored
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such that no 2S 1 appears as a subgraph of the blue graph, then

the blue -ash must be a triangle or must have all its edges

ínciden :

	

the same vertex .

We use this characterization to get some information about

R(tS1 ,2SI) .

	

First let F1 e R'(tI S 1 ,2S1 ) , F2 F_ R'(t2 S1 ,2S1 ) ,

and let F_ • F2 denote the graph formed from F 1 and F2 by

identifying a Líxed vertex of F1 with a fixed vertex of F2 .

Since Fl ,

	

rospectívely F2 ,

	

satisfies (a), (b), (c) above

for t = t,

	

respectively t 2

	

it is easy to check that

both 1'_ .j IF2 any F1 ' F2 satisfy (a), (b), (c) fort

t = t1

	

Essentially the converse of this result also

holds . It is straightforward to show that if F is connected

and F e R`(tS1 ,2S1 ) ,

	

then F contains no bridges . Thus let

F c R'(tS 1 ,2S1 ) and in addition have connectivity one, i .e .,

F has a cut vertex and no bridges . Let w be a cut vertex of

F belonging to an end block . Define F, as any end block of

F - (F1 - w) . Note F2F containing w and define F2 as

is a union of the remaining blocks

Neither F1 nor F2 are edges so

edges not incident to w . Since

has a t-matching so that Fi - w

t, > 1, (i=1,2) such that

t i -matching in Fi - w is a

otherwise F would contain a

trary to (a) . Also since F

of F , other than F1 *

that both F1 and F2 have

F satisfies (b), F - w

contains a t i - matching,

t = t1 + t 2 .

	

But this

maximal matching in Fi (í= 1,2),

matching greater than t , con-

satisfies (b) and (c), it follows

that Fi (i= 1,2) satisfies (b) and (c) when t = t i . It is

interesting to note that each t i > 2, since neither F í can

be a C3 . We summarize the consequences of this discussion in

the following two theorems .

Theorem 3 . Let Fl C R'(t1S1 ,2s1) and F2 E R'(t 2 S1 ,2S1 )

Then F1 U F2 , F 1

	

F 2 E R'((t 1 +t2 )S 1 ,2S1 ) .



I.,t

	

F ha"', connoctivity onc,

	

F

	

R(ts,,2S1 )

lh,.n thcr, , Xi6t5 a partition (tilt 2) of t such that

F = F 1

	

F q with F1 E R' (t 1 S 1 ,2S 1 ) and F2 E R' (t 2 S1 ,2S1 ) .

CoY ZZuz ~ . Let tC be a fixed positive integer and let

H = {FjF is 2-connected and F c R(t 0S1 ,2SI)I .

	

Then

L = {LIL=F1 • F2 or

e R'(t 2 S1 ,2S1 ) ,

	

and

R(t0Sil ls1 ) = H U L U{(t0 +1)S1 ) where

L = F1 U F2 with Fl c R'(tI S1 ,2S1 ) , F2

(tilt2 ) a partition of t0 1 .

Since it is clear that for each k > 2 , C2R+l E
R(kS 1 ,2S1 ) ,

the following corollary is a specialization of Theorem 3 .

CoroZZary 6. Let G be a graph with its blocks B, , B2 , . . . ,

Bk being the odd cycles C i , Ci , .
1

	

2
i -1

Ej-1~2 = t .i
J

• > 5,

	

such that
-

.i 1',

	

11,t . t . : ,( l ., . .

	

i,t Ll-h

	

tL ;,ry

	

l;,uifcr

	

tice

This last corollary does produce

. . , C í ,

	

with each
k

Then G E: R(tS1 ,2S1 ) .

a fairly large subset of

graphs in R(tS1 ,2S1 ) .

	

For example the graphs of R(8S 1 ,2S1 )

which have four different C5 's as their only blocks are

listed in Figure 1 . From Corollary 5 it is apparent that

R(tS1 ,2S1 ) is completely determined by its 2-connected members .

Even these could prove very difficult to find ; for example,

H1 E R(6S,2S 1) and H2 e R(10S1 ,2S1 ) with H1 and H2 shown

in Figure 5 .

We give a few additional lists of R(C,H) for very special

small graphs G and H . The case analysis involved in obtain-

ing the lists is additional evidence of the complexity of the

problem under discussion .

1 63

Theorem 7 . Let G,i
figures 3 -7 . Then

denote the collection of graphs listed in

(i) . R(2S1,2S1) _ {C5 ,3S1 1 ;
(ii) . R(3S 1 ,2S1 ) _ {4S1 ,C7 1 U G1 ;
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vis

Figure 1 .
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Figure 2 .

H1

G3

Figure 4 .

Figure 5 .

G4

Figure 6 .

G 2

Figure 3 .

H2
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There are some obvious questions concerning R(tS1 ,2S1 ) .

For instance, what is the maximum order and size of members of

R(tS 1 ,2SI)? A rather large upper bound is given for the size

in [2] .

The results on R(tS1 ,2S1 ) given above demonstrate the

difficulty in finding an explicit characterization for R(G,H)

for arbitrary G and H . It would be extremely valuable to

complete such a characterization for the special pair (tS l ,2s1 ) .

Another direction of interest would be to find properties

common to a fixed family R(G,H) . This might prove fruitful

for the more special class R(tS 1 ,2S 1 ) .
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