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I was asked to write a paper about the major unsolved problems in com-

binatorial mathematics. After some thought it seemed better to mod-

ify the title to a less pretentious one. Combinatorial mathematics has

grown enormously and a genuine survey would have to include not only top-

ics where I have no real competence but also topics about which I never seri-

ously thought, e.g. algorithmic combinatorics, coding theory and matroid the-

ory. There is no doubt that the proof of the conjecture that several sim-

ply stated problems have no good algorithm is fundamental and may have im-

portant consequences for many other branches of mathematics, but unfortu-

nately I have no real feeling for these questions and I feel I should leave the sub-

ject to those who are more competent.

I just heard that Khachiyan [59], has a polynomial algorithm for lin-

ear programming. (See also [50].) This is considered a sensational re-

sult and during my last stay in the U.S. many of my friends were greatly im-

pressed by it.

I. Problems on Set Systems

First of all I will discuss some problems on set systems. I state only my three

favourite problems, but before starting I refer to the survey paper [31].

AMS subject classi�cation (1980): 05�02; 05 C 65, 05 C 35, 05 C 15, 05 B 05, 05 C 55,
05 B 25, 05 B 15, 04 A 20, 10 A 99.
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1. First our old problem with Rado on �-systems. Denote by fk(n) the

smallest integer so that if |Ai| = n, 1 � i � fk(n) then there are k Ai's which
have pairwise the same intersection. Conjecture

(1) fk(n) < cnk ,

where ck depends only on k. I o�er 1000 dollars for a proof or disproof of (1) for
the case k = 3, which, I expect, contains the whole di�culty. The best upper

bound f3(n) < (1 + ε)nn! is due to J. Spencer [77]. Lower bounds have been

found by Abbott, Hansen and others. Abbott proved that f3(3) = 21. (1) has
fascinated me greatly � I really do not see why this question is so di�cult. (See

Erd®s�Rado [34], Erd®s�Milner�Rado [33], and for further problems and results

Erd®s�Szemerédi [41].)

2. Let |Ak| = n, 1 � k � n, and |Ai ∩ Aj | � 1 for every 1 � i < j � n.

Prove that one can color the elements of
n
∪
k=1

Ak by n colors so that each Ak,

1 � k � n should contain elements of all the colors. Faber, Lovász and I made

this harmless looking conjecture at a party in Boulder Colorado in September

1972. Its di�culty was realised only slowly. I now o�er 500 dollars for a proof

or disproof. (Not long ago I only o�ered 50; the increase is not due to in�ation

but to the fact that I now think the problem is very di�cult. Perhaps I am

wrong.)

Perhaps the following graph theoretic formulation is even more interesting

Let Ki(n), i = 1, . . . , n, be n complete graphs of n vertices. Assume that every

two of the Ki(n)'s have at most one vertex in common. Prove that the graph

n
∪
i=1

Ki(n)

has also chromatic number n.
There are many ways one can state more general problems e.g. let

G1, . . . ,Gm, be m graphs each of chromatic number n. Assume that no

two G's have an edge in common. What is the smallest m for which
m
∪
i=1
Gi has chromatic number greater than n? Perhaps one can further de-

mand that any two G's have at most one vertex in common. I am vague be-

cause I am not sure which of these questions (if any) will lead to fruitful devel-

opments.

3. Problem of Lovász and myself, [32]. Let f(n) be the smallest integer with

the following property: There is a family Ak, 1 � k � f(n) satisfying |Ak| = n,
k = 1, . . . , f(n), |Ak1 ∩ Ak2 | � 1 for every 1 � k1 < k2 � f(n), and for every

|S| = n − 1 there is an Ak with Ak ∩ S = ∅. In other words our family can

not be represented by fewer than n elements. We proved f(n) < n3/2+ε An
improvement of our method very likely will give f(n) < cn logn. I o�er 500

dollars for a proof or disproof of f(n) � Cn. In fact we can not even prove or

disprove f(n) < 3n.
4. Chvátal [17] has the following nice conjecture. Let F be a family of sets

such that if A ∈ F and A′ ⊆ A then A′ ∈ F . Then there is a maximal inter-
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secting subfamily F1 of F (i.e. every two sets of F1 have nonempty intersec-

tion and F1 is maximal under this condition) such that all sets of F1 have an el-

ement in common. It is surprising that this attractive conjecture is proba-

bly very di�cult.

5. Let |S| = n, A + i ⊂ S, |Ai| = 3, 1 � i � n + l . V. T. Sós and I

observed that then there are always two A's which have precisely one element

in common and that the result fails to hold for n triples if n ≡ 0 (mod 4). We

then conjectured that if Ai ⊂ S, |Ai| = k, l � i �
(
n−2
k−2

)
+ 1 then there are

again two A's which have precisely one element in common. This conjecture

was proved by Katona [57] for k = 4, and by P. Frankl [45] for all k. Then I

asked the following question. Determine the smallest integer T (n, r) with the

following property: If |S| = n, Ai ⊂ S, 1 � i � T (n, r), then there are two

indices i1 and i2 for which |Ai1 ∩Ai2 | = r.
Trivially T (n, 0) = 2n−1 + 1 and P. Frankl [46] proved

T (n, 1) = 2 +




n∑
i=[n+22 ]

(
n
i

)
n even

n∑
i=[n+12 ]

2n
(
n−1
i

)
n odd

For r > 1, T (n, r) is not known. I conjectured that for every ε there is an η so

that for εn < r <
(
1
2
− ε
)
n,

(2) T (n, r) < (2− η)n.

(2) seems to be an interesting and di�cult conjecture. It also has some geo-

metric application. Let G(n) be a graph whose vertices are the points of the

n-dimensional space, and two vertices are joined if their distance is 1. De-

note by Ln the chromatic number of G(n). As far as I know the problem of in-

vestigating Ln is due to Hadwiger [53] and Nelson. Larman and Rogers [62]

proved (3 + o(1))n > Ln > cn2 and P. Frankl [47] proved that Ln > nk for ev-
ery k if n > n0(k). (2) would imply that Ln tends to in�nity exponen-

tially. Presumably L
1/n
n tends to a c > 1. P. Frankl and R. M. Wil-

son just proved Ln > (1 + α)n, but they did not prove (2).

By a well known theorem of de Bruijn and myself [14] there is always a �nite

subgraph of G(n) with chromatic number Ln. G(2) received some attention and

it was conjectured that L2 = 4, but it is now generally believed L2 � 5. L2 � 7
is well known.

I asked the following question. Let S be a subset of the plane. Join two

points of S if their distance is 1 and assume that the resulting graph G(2) has

girth k. Denote by L
(k)
2 the maximum value of the chromatic number of G(2).

Is there a k for which L
(k)
2 = 3? Wormald [84] recently proved that if such a k

exists it must be at least 5. Wormald's graph is constructed with the help of a

computer.

More generally, let L2(r) be de�ned as follows. For given 0 < α1 < . . . < αr
join two points of the plane by an edge if their distance is one of α1, . . . , αr. Take
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the maximum of the chromatic number of this graph for all 0 < α1 < . . . < αr
and denote it by L2(r). Does L2(r) increase polynomially or exponentially? I

expect that L2(r) < rc for some absolute constant c.
I o�er 250 dollars for a proof or disproof of (2).

II. Problems in Combinatorial Number Theory

As I stated in a previous paper this subject is perhaps closest to my heart or

rather to my brain. Here I state some of my favourite conjectures.

1. Let rk(n) = l be the smallest integer for which if 1 � a1 < . . . < al � n
is a sequence of integers then the a's contain an arithmetic progression of k
terms. Turán and I [42] conjectured nearly 50 years ago that for every k �
3rk(n) = o(n). I o�ered 1000 dollars for a proof or disproof of this conjecture.

In 1972 Szemerédi [79] proved it. Later Fürstenberg [48] gave a new proof using

ergodic theory and in a recent paper Fürstenberg and Katznelson [49] proved

the n-dimensional version of Szemerédi's theorem.

Very little is known about the order of magnitude of rk(n). We have

(1) n exp
(
−
(
c1(log n)

1/2
))

< r3(n) <
c2n

log logn
.

The upper bound is due to K. F. Roth [73] and the lower bound to F.

Behrend [3]. It would be very desirable to improve (1) and if possible to obtain

an asymptotic formula for r3(n) and more generally for rk(n). This problem is

probably enormously di�cult and I o�er 10 000 dollars for such an asymptotic

formula. In particular is it true that

(2) rk(n) = o

(
n

(logn)c

)

for every k and c? It is an old problem in number theory whether for every k
there are k primes in an arithmetic progression? At the moment the longest

known arithmetic progression whose terms are all primes has 17 terms and is

due to Weintraub. In this connection I conjecture that if
∞∑
r=1

1
ar

= ∞ then for

every k there are k ar's in an arithmetic progression. Since Euler proved that

the sum of the reciprocals of the primes diverges, our conjecture would settle

the conjecture on primes. (2) of course also would settle it. I o�er 3000 dollars

for the proof or disproof of the conjecture.

2. One of my oldest conjectures going back to the early 1930's and clearly

in�uenced by van der Waerden's theorem [82] states as follows:

Let f(n) = ±1 (i.e. we divide the integers into two classes: if n is in the

�rst class then f(n) = +1, and f(n) = −1 if n is in the second class). Is it true

that to every c there is a d and an m so that

(3)

∣∣∣∣∣
m∑
k=1

f(kd)

∣∣∣∣∣ > c?
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Another question: Is it true that

(4) max
md<x

∣∣∣∣∣
m∑
k=1

f(kd)

∣∣∣∣∣ > c logx

where the maximum in (4) is to be taken for every m and d satisfying md < x.
It is easy to see that (4) if true is best possible.

3. Let 1 � a1 . . . < ak � n and the sums
k∑
j=1

εjaj , εj = 0 or 1 be all distinct.

Then

maxk =
logx

log 2
+O(1)?

4. Here are two old conjectures of Turán and myself [43] (a) Let 1 � a1 < . . . <
ak � n, the sums ai + aj be all distinct. Prove that max k = n1/2 +O(1).

(b) Let 1 � a1 < . . . < ak < . . . be a sequence of integers. Denote by f(n)
the number of solutions of n = ai + aj . Assume that for n > n0, f(n) > 0.
Then

(5) lim sup
n→∞

f(n) =∞.

A slightly stronger conjecture states that ak < ck2 k = 1, 2, . . . also implies

(5).

Sidon asked: Let 1 � a1 < . . . be an in�nite sequence of integers. Assume

that the sums ai+aj are all distinct (i.e. f(n) � 1): How slowly can ak increase?
One can easily show the existence of such a sequence for which ak < ck3.
Recently Ajtai, Komlós and Szemerédi [1] proved that there is such a sequence

for which ak = o(k3). Rényi and I proved that to every ε > 0 there is a Kε
and a sequence 1 � a1 < . . . for which ak < k2+ε for every k and f(n) � Kε
for all n. Presumably there is a sequence for which ak < ck2+ε and f(n) � 1
for all but �nitely many integers n. Perhaps ak < ck2+ε can be strengthened to

ak < ck2(log k)α (for su�ciently large α > 0).
Is it true that if ak < ck3 holds for all k then the sums ai + aj + ai can not

all be di�erent?

Let 1 � a1 < . . . < ak be a sequence of integers for which the sums ai + aj
are all distinct. Is there a perfect di�erence set mod (p2 + p+ l) for some prime

p which contains all the a's?

I o�er 500 dollars for the proof or disproof of each of these conjectures.

5. Finally a word about van der Waerden's theorem. Van der Waerden [82]

proved that there is a smallest integer f(n) so that if we divide the integers

not exceeding f(n) into two classes at least one of them contains an arithmetic

progression of n terms. Van der Waerden's proof gives no usable upper bound

for f(n)-it increases as fast as Ackermann's well known function, which increases

faster than every primitive recursive function.

What is the true order of magnitude of f(n)? I o�er 100 dollars for a proof

(or disproof) of f(n)1/n → ∞. Until recently nearly everybody was sure that
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f(n) increases much slower than Ackermann's function. I �rst heard doubt

expressed by Solovay which I more or less dismissed as a regrettable aberration

of an otherwise great mind. After the surprising results of Paris and Harrington

[68] Solovay's opinion seems much more reasonable, and certainly should be

investigated as much and as soon as possible.

Is it true that f(n+ 1)/f(n)→∞? Can one at least prove that f(n+ 1)−
f(n)→∞?

III. Problems on Extremal Graph Theory

Let G(r)(k; l) be an r-uniform hypergraph of k vertices and l hyper-

edges. f(n;G(r)(k; l)) is the smallest integer such that every r-uniform hy-

pergraph of n vertices and f(n;G(r)(k; l)) edges contains a G(r)(k; l) as a sub-

graph.

1. The study of extremal graph theory was started by Turán [81] who deter-

mined f(n;K(2)(k)) for every k (K(2)(k) is the complete graph of k vertices).

He asked for the determination of f(n;K(r)(k)) for all r and k > r (K(r)(k) is
the complete r-graph of k vertices and

(
k
r

)
hyperedges). Turán made some plau-

sible conjectures for r = 3, k = 4 and r = 3, k = 5. I o�er 500 dollars for the de-
termination of

lim
n→∞

f(n;Kr(k))/

(
n

k

)
= Cr;k,

for even a single k > r > 2. c2,k = 1
2

(
1− 1

k−1

)
was proved by Turán. I o�er

1000 dollars for clearing up the whole set of problems.

Very recently a comprehensive book of Bollobás [5] appeared on extremal

graph theory.

2. Both Simonovits and I published many papers and problems (some

jointly) on this subject. Here I state �rst of all some of our favourite joint prob-

lems. (See [37], [38], [39], [40], [75], [76].)

Let G be bipartite. Is it true that for some α = α(G), (0 � α < 1)

(1) lim f(n;G)/n1+α = cG, 0 < cG <∞.

I o�er 500 dollars for a proof or disproof of this conjecture. We know that it

does not hold for hypergraphs. (See Ruzsa�Szemerédi [74].)

Is the α = α(G) in (1) always rational? Is it true that for every rational α,
1 � α < 2 there is a G satisfying (1)?

Is it true that

(2) f(n;G) > cn8/5,

where in (2) G is the graph determined by the edges of a cube? Is it true that

(3) f(n;K(r, r)) > cn2−1/r?



combinatorial problems 7

f(n;G) < c1n
8/5 is a theorem of Simonovits and myself f(n;K(r, r)) <

c2n
2−1/r is an old theorem of K®vári, T. Sós, Turán [61] and myself. (See also

[10], [36].)

3. Now I state a few miscellaneous extremal problems. Sauer and I in-

vestigated the following problem: Denote by F (n; r) the smallest inte-

ger for which every G(n;F (n; r)) contains a regular subgraph of valency r. Triv-
ially F (n; 1) = 1, F (n; 2) = n. The trouble is that we really know noth-

ing about F (n; 3). We could not disprove F (n; 3) < cn and our only up-

per bound for F (n; 3) is cn8/5. We conjectured that

F (n, r) = O(n1+ε)

for every r and ε > 0.
Berge conjectured that every regular graph of valency 4 contains a subgraph

of valency 3. As far as I know it is not known whether there is an r for which
every regular graph of valency r contains a regular graph of valency 3.

W. Brown, Vera T. Sós and I [12] conjectured that

(4) f(n;G(3)(6, 3)) = o(n2).

Ruzsa and Szemerédi [72] proved (4). In fact, they showed

(5) n2−ε < cnr3(n) < f(n;G(3)(6, 3)) = o(n2)

where r3(n) is the function de�ned in (2) of II. The discovery of this connec-

tion was a great and unexpected surprise. (5) shows that (1) is not true for hy-

pergraphs.

Probably

f(n;G(3)(k, k − 3)) = o(n2)

holds for every k. (See [11].)

IV. Some Problems in Graph Theory

1. First I mention two classical problems. Berge calls a graph perfect if for all

its induced subgraphs H the chromatic number of H equals its clique number,

i.e. is as small as possible. Berge [4] formulated two conjectures:

1. A graph is perfect if and only if its complement is perfect.

2. A graph is perfect if and only if it does not contain an induced subgraph

which is either a cycle C2k+1, 2k + 1 � 5 or the complement of a such a

cycle.

Conjecture (a) has been proved a few years ago by Lovász [63], conjecture

(b) is one of the principal open problems of graph theory.

Perfect graphs have a large literature. I do not deal with this problem any

more since I have nothing original to contribute. I just refer to a very recent
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paper of V. Chvátal, R. L. Graham, A. F. Perold and Susan H. Whitesides [18]

which has many relevant references.

The second conjecture is the reconstruction conjecture of Ulam and P. Kelly,

which has an immense literature. The conjecture states that two graphs G1(n)
and G2(n) are isomorphic if the set of their induced subgraphs of size n− 1 are

isomorphic. I never worked on this fascinating problem and thus I just refer

to a recent survey paper of J. A. Bondy�R. L. Hemminger [8]. For a related

problem see J. A. Bondy [6].

2. The most famous conjecture of graph theory or perhaps of the whole

Mathematics, the four colour conjecture, became recently the theorem of Appel

and Haken [2]. There were two conjectures which generalized the four color

conjecture. Hadwiger [54] conjectured that every r-chromatic graph can be

contracted to a K(r). This conjecture is still open for r � 5, it has been proved

for r � 4. The conjecture of Hajós [55] stated that if G has chromatic number r
then G contains a subdivision ofK(r) which I calledKtop(r) (i.e. a topologically
complete graph or r vertices). This conjecture was also proved for r � 4, but
was recently disproved for r � 7 by Catlin [16]. In this journal Fajtlowicz and I

[22] disprove it in a very strong form. Let G(n) be a labelled graph of n vertices

χ(G(n)) its chromatic number and t(G(n)) be the size of its largest topologically
complete subgraph. The conjecture of Hajós states that χ(G(n)) � t(G(n)). Put

S(n) = max
G(n)

χ(G(n))lt(G(n)).

Fajtlowicz and I prove that

(1) S(n) > c1n
1/2/ logn.

In fact we prove that (1) holds for almost all of the graphs G(n).
Very likely (1) is best possible i.e. S(n) < c2n

1/2/ logn, but this conjecture
remains open for the time being.

G. Dirac [20] proved that every G(n; 2n−2) contains a Ktop(4) and observed

that 2n− 2 is best possible. He conjectured that every G(n; 3n− 5) contains a
Ktop(5) � if true this is clearly best possible. (Pelikán [69] has shown that every

5-chromatic graph contains a topological [K5− {anedge}].)
Hajnal, Mader and I conjectured that every G(n; cr2n) contains a Ktop(r).

Mader [65] proved the weaker Ktop(r) ⊂ G(n; 2(
r
2)n). (See Erd®s�Hajnal [26].)

3. Goodman, Pósa and I [23] proved that every G(n) is the union of at

most
[
n2

4

]
edge disjoint cliques. These cliques can be chosen to be edges and

triangles.

Sauer and I conjectured that every r-graph G(r)(n) is the union of at most

f(n;K(r)(r + 1)) − 1 cliques where no two of the cliques have a K(r)(r) in

common and the cliques are either K(r)(r)'s or K(r)(r + 1)'s. We hoped that

this conjecture can be proven without knowing the value of f(n;K(r)(r + 1)).
Gallai and I conjectured that the edges of every G(n) can be covered by

� Cn edge disjoint circuits or edges of our G(n). We easily showed that the

result holds with cn logn replacing Cn.
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Gallai further conjectured that the edges of every G(n) can be covered by at

most
[
n+1
2

]
paths and Hajós conjectured that every Eulerian graph of n vertices

is the union of
[
n
2

]
circuits.

Lovász conjectured that every vertex transitive connected graph has a Hamil-

ton line.

V. Problems of Ramsey Theory

There is a very nice survey paper on the so called generalized Ramsey numbers

by S. Burr [15] and a forthcoming book by Graham, Rothschild and Spencer

[52]. Not to make this paper too long I only state somewhat arbitrarily 3 or 4

problems with which I spent lots of time. r(G1, . . . ,Gr) is the smallest integer

n so that if one colors the edges of K(n) by r colors then for some i, 1 � i � r
the ith color contains Gi as a subgraph. As far as I know, the problem in this

generality was �rst formulated by Harary.

Prove that

(1) lim
n→∞

r(K(n),K(n))1/n

exists and determine the value of the limit. I o�er 100 dollars for the �rst

problem and 500 for the second. The proof of the existence of the limit in (1)

will perhaps be easy, the determination of its value will probably be di�cult (it

is between 21/2 and 4).
Let C(n) denote a circuit of n vertices. Prove that

(2) r(K(n), C(4)) < n2−ε,

Bondy and I [7] conjectured

(3) r(Cn, Cn, Cn) � 4n− 3.

It is easy to see that if (3) is true then for odd n it is best possible. Vera

Rosta [72] and independently R. Faudree and Schelp [44] determined r(Cn, Cm)
for every n and m.

A problem of Faudree, Rousseau, Schelp and myself: Let r̂(Pn) be the small-

est integer for which there is a graph G of r̂(Pn) edges so that if we color the

edges of G with two colors, there is always a monochromatic path Pn of length

n. Is it true that

(4) r̂(Pn)/n→∞, r̂(Pn)/n
2 → 0?

Both of these questions seemed very interesting to us but we had no success

at all with (4). It would be useful to have an asymptotic formula or at least a

good inequality for r̂(Pn), but the �rst step is clearly to settle (4). I o�er 100
dollars for a proof or disproof of (4).

Just one more problem of Hajnal, Rado and myself:
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Is it true that

(5) log log r(K(3)(n),K(3)(n)) > cn?

In other words, does r(K(3)(n),K(3)(n)) tend to in�nity like a double expo-

nential. This question is fundamental and I o�er 500 dollars for a proof or dis-

proof of (5).

For further problems I have to refer to the very extensive literature. Before

closing I just want to point out that perhaps it might be worthwhile to study in

analogy of the Ramsey numbers the van der Waerden numbers. f(u, v) is the
smallest integer for which if we divide the integers not exceeding f(u, v) into
two classes either Class 1 contains an arithmetic progression of u terms or Class

II contains an arithmetic progression of length v. As far as I know nothing is

known about the growth of f(u, v) for u �= v. It immediately follows from (1)

of II., that

(6) f(3, v) < exp exp v,

but probably (6) is very far from being best possible. I have no non-trivial lower

bound for f(3, v), and would not be surprised if f(3, v) < exp vα would hold for

some α < 1.

VI. Some problems on designs and elementary ge-

ometry

I hope the reader will forgive me some personal reminiscences on these problems-

due to my advanced age I can not be sure if I will have many opportunities to

tell these stories. I heard from the book of Netto, Kombinatorik from my father

� reading it in 1930. I read about Steiner triples � immediately the question

occurred to me: Let |S| = n, n > n0(k, r), k > r. Is it true that one can always

�nd a family of
(
n
k

)(
k
r

)−1
subsets of size k of S so that all r-tuples of S are

contained in precisely one of our k-tuples, unless there is a trivial congruential

reason that such a system can not exist. I realised that this is a fundamental

problem but did not know that it was already formulated by Kirkman nearly

a century earlier, more than 10 years before Steiner � and in fact Kirkman

settled the case r = 2, k = 3 � thus Steiner triples should really be called

Kirkman triples.

I was in Israel in 1955 when Hanani told me that he settled the case r = 3,
k = 4 � thus settling a problem which was open for more than a century �

I urged him to publish this as fast as possible � his paper [56] was a starting

point of many further investigations. Later Hanani settled the cases r = 2,
k = 4 and r = 2, k = 5. R. M. Wilson [83] a few years ago proved that for

r = 2 and any k there is an n0(k) so that if n > n0(k) there is always a system

of
(
n
2

)(
k
2

)−1
k-tuples so that every pair is contained in one and only one k-tuple

unless a trivial congruential reason prevents the existence of such a system.
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Unfortunately (or perhaps fortunately � a subject needs challenging un-

solved and not quite hopeless problems to keep alive) very little is known of the

cases r > 2 (except Hanani's case r = 3, k = 4). In fact, as far as I know no

such design is known for r � 6. Perhaps Wilson's theorem remains true for ev-

ery k and r if n > n0(k, r). This is certainly one of the fundamental un-

solved problems of our subject. Many problems would remain even if Wil-

son's theorem can be extended for every k and r. One of the most fa-

mous ones states as follows: Let n = k2+k+1, |S| = k2+k+1. Is there a sys-
tem of k2 + k + 1 (k + 1)-tuples of S so that every pair is contained in ex-

actly one of them. This is the famous problem on the existence of �-

nite geometries. Such a geometry always exists if k = pα and per-

haps for no other k2 + k + 1.

The classical theorem of Bruck�Ryser [13] excluded in�nitely many values

of k2 + k + 1; k = 10 is the �rst unknown case � I expect that no such system

exists and hope to see a solution before I leave. This question is an outstanding

challenge for the ingenuity of mathematicians and computer scientists.

In about 1931 I asked myself: Determine or estimate the maximum of all n×n
determinants all whose entries are 0 or 1. I soon realised that this connects up

with the problem of orthogonal matrices all whose entries are ±1. I mistakenly

thought that they exist only if n = 2k. Kalmár soon pointed out to me that I am

wrong and the problem in fact is due to Sylvester and Hadamard. It is generally

believed that such matrices always exist if n ≡ 0 (mod 4). Much work has been

done on this fascinating conjecture which has a very large literature.

Another challenging and interesting problem is the maximum number of pair-

wise orthogonal Latin squares of order n. Chowla, Straus and I were present

at the Boulder meeting on number theory in 1959 when Bose, Parker and

Shrikhande [9] disproved the old conjecture of Euler: Denote by f(n) the maxi-

mum number of pairwise orthogonal Latin squares of order n. Euler conjectured
that f(4n+2) = 1. This was proved for n = 1 but Bose, Parker and Shrikhande

disproved it for every n > 1. Using their ideas we proved that f(n)→∞ and us-

ing Brun's method we proved that, for n > n0, f(n) > nl/91. Our re-

sult has been improved a great deal. The current record is due to R. M. Wil-

son who proved f(n) > n1/17. The "�nal Truth" is perhaps f(n) > cn1/2.

Kaplansky and I proved: Let k = o((logn)3/2−ε). Then the number of k×n
Latin rectangles equals

(1 + o(1)) e−(
k
2)n!k,

(see Erd®s�Kaplansky [30]). Our result has been extended �rst for k <
n1/3−ε and then until n1/2−ε. (If k > n1/3−ε, the asymptotic formula be-

comes much more complicated). An asymptotic formula for the n × n Latin

squares is nowhere in sight. For literature about Latin squares and other re-

lated subjects see the comprehensive book of Dénes and Keedwell [19] �

this book contains an immense material and a very extensive list of refer-

ences.

Let me now state a few problems on block designs. Since I am not an expert,

I can not be entirely sure that the problems are new and fruitful.
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1. Is there an absolute constant C so that every �nite plane has a blocking

set which meets every line but each in at most C points? Or more generally:

Is it true that to every c1 there is a c2 so that if |S| = n and A1, . . . , Am is a

pairwise balanced block design satisfying |Ai| > c1n
1/2 then there is a Q ⊂ S

for which

1 � |Q ∩Ai| � c2, (i = 1, . . . ,m).

2. Let {Ai}, 1 � i � m be a pairwise balanced block design. Put |Ai| = Xi,
X1 � . . . � Xm. One could ask: Give necessary and su�cient conditions for

the {Xi}, that there should be a pairwise balanced block design {Ai} satisfying

|Ai| = Xi? Trivially we must have
m∑
i=1

(
Xi
2

)
=
(
n
2

)
. Perhaps there will not be a

reasonable necessary and su�cient condition.

On the other hand the following problem should not be hopeless: consider

the families {X1, . . . , Xm} of sequences for which there is a pairwise balanced

block design with |Ai| = Xi, 1 � i � m. Denote by F (n) the number of such
sequences. Is it true that

(1) exp(c1n
1/2 logn) < F (n) < exp(c2n

1/2 logn)?

The upper bound of (1) is easy to prove, but I had no success with the lower

bound.

I expect that the following problem is much more di�cult: Let there be

given n points in the plane, join any two of them by a line. This gives a

pairwise balanced block design. Let X1 � X2 � . . . � Xm be the number of

points on the lines and denote by f(n) the number of possible choices for the

{Xi}. I am convinced that here

(2) exp(c3n
1/2) < f(n) < exp(c4n

1/2).

The lower bound in (2) is easy, but the upper will probably be di�cult. If (2)

is correct one should try to prove that

lim
n→∞

log f(n)/n1/2 = c,

and try to determine the value of c.

Prove that there is a pairwise balanced block design, for which, for every

t the number of indices i for which |Ai| = t is less than cn1/2 where c is an

absolute constant. This will probably not be very di�cult to prove but so far

I was not succesful. A theorem of de Bruijn and myself states that for every

pairwise balanced block design A1, . . . , Am : m � n. This easily implies that

there is always a t such that the number of indices i with |Ai| = t is greater than
cn1/2. Thus our conjecture if true is best except for the value of the constant

c. Now I state a few problems in combinatorial geometry. Since I published a

survey paper ([21]) on this subject, here I mention only a few of my favourite

problems, but �rst I ask the indulgence of the reader for giving a few historical

reminiscences.
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In 1933 I was reading the beautiful book of Hilbert and Cohn�Vossen An-

schauliche Geometrie (the English title was "Geometry and the Imagina-

tion"). One of the chapters is on con�gurations and while looking at it sud-

denly the following question occurred to me: Let there be given n points

in the plane not all on a line. Is it true that there is always a line

which goes through precisely two of our points? This seemed to me

to be true but I could not prove it. I told my conjecture to T. Gal-

lai who soon found his well known proof. I observed that Gallai's re-

sult implies that if we join any two of these points we get at least n dis-

tinct lines.

Three years later at the international congress in Oslo Karamata asked me

about this theorem. He read it without proof in an old book on mechanics

and could not prove it. I of course told him Gallai's proof. Sometime in the

early 1940's L. M. Kelly found that Sylvester posed the same problem in 1893

in the Educational Times. No solution was received. As far as one can tell the

�rst proof is due to T. Gallai and the conjecture was �rst stated by Sylvester

(the �rst published proof is due to Melchior in 1940). For further results and

historical remarks see the papers of Motzkin [88] and Grünbaum [87].

Let there be given n points in the plane, at most n − k of them on a line.

Is it true that these points determine at least ckn distinct lines where c is

independent of k and n? For k < cn1/2 a stronger result is proved by L. M.

Kelly and W. Moser [58]:

Let there be given n points in the plane. Is it true that they determine at

least cn/(logn)1/2 distinct distances? If true this is best possible. Is it true that

the same distance can occur at most n1+c/ log log n times? If true this is also best

possible.

Conjecture of G. Szekeres [78]: Let there be given 2k−2 + 1 points in the

plane, no three on a line. Is it true that there are always k of them which are

the vertices of a convex k-gon? If true this is best possible.

Is there an nk so that for any set of nk points in the plane no three on a line

there are always k of them which determine a convex k-gon which contains no

other of the points in its interior? n4 = 5 is easy and Harborth recently proved

n5 = 10. It is not at all certain if n6 exists.

The following interesting and probably di�cult problem is due to U. S. R.

Murty [66]: Let there be given n points in the plane, when can one give positive

weights to the points so that the sum of the weights of the points on every line

is the same? Murty conjectures that there are only four possibilities, three of

them trivial; all points on a line; no three on a line; n− 1 of them on a line and

�nally a triangle the angle bisectors and the incentre, or a projective equivalent.

VII. Miscellaneous Problems

I restricted myself so far entirely to �nite problems. Now I state a few problems

on in�nitary combinatorics, for many further such problems see my papers with

Hajnal (e.g. [24]) on solved and unsolved problems in set theory.



14 P. Erd®s

Let α be an ordinal number which has no predecessor. Let G be a graph

whose vertices form a well ordered set of type α. Hajnal, Milner and I [27]

conjectured that if G has no in�nite path then it contains an independent set of

type α. We proved this for all α < ωω+2
1 . Our proof breaks down at α = ωω+2

1 ,

but we expect that the result remains true for α = ωω+2
1 and for all other α

which have no immediate predecessor.

The following very attractive conjecture is due to Walter Taylor. Let be an

arbitrary graph of chromatic number ℵ1. Then for every cardinal number m
there is a graph Gm of chromatic number m so that every �nite subgraph of Gm
is contained in G. More generally, characterise families Fα of �nite graphs such

that there is a graph Gα of chromatic number ℵα all whose �nite subgraphs are

contained in Fα. In our triple paper [28] with Hajnal and Shelah several further

problems are stated and some are proved, e.g. we prove that if G has chromatic

number ℵ1 then there is an integer n so that G contains a circuit Cm for every

m � n. The simplest of the many questions which we cannot answer, states:

Is it true that if G has chromatic number ℵ1 then it has an edge e for which G
contains a Cm containing e for every m > m0.

Hajnal and I proved [25] that if G has chromatic number ℵ1 then it must

contain every �nite bipartite graph, but it does not have to contain any C2k+1

for k � n. In fact for any non-bipartite graph G1 and any cardinal number m
there is a graph of chromatic number m which does not contain G1.

If we only know that G has chromatic number ℵ0 then G can have arbitrarily

large girth, thus it does not have to contain any �xed graph which is not a tree.

On the other hand Hajnal and I conjectured that if the lengths of all cycles are

n1 < n2 < . . . in the graph G of in�nite chromatic number then
∑

1
ni

= ∞
and perhaps the n's have positive upper density. This conjecture was recently
proved by Gyárfás, Komlós and Szemerédi.

A �nite form of our conjecture states: let G be a graph of v vertices and kv
edges. Let u1 < u2 < . . . be the lengths of all cycles of G. Then

(1)
∑

1/ui > c log k.

Perhaps (1) can be strengthened as follows: Let n � 2k then for every

G(n; k(n− k))

(2)
∑ 1

ui
� 1

2

(
1

2
+

1

3
+ . . .+

1

k

)
.

In other words:
∑

1
ui

is minimum for the complete bipartite graph of k white

and n − k black vertices. I just formulated this conjecture and I hope the

reader will forgive me if there is an easy counterexample. Gyárfás conjectured

that if G has in�nite chromatic number and no triangle (or more generally no

K(n)) then G contains every tree as an induced subgraph. I �nd this conjecture

very attractive and only regret that I did not think of it myself. Gyárfás also

formulated his conjecture in a �nite form. For some partial results see the

forthcoming paper of Gyárfás, Szemerédi and Tuza [80].
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Let m > n be in�nite cardinals. Galvin asked the following very pretty

question: Let G have chromatic number m. Is it true that G always has a

subgraph G′ of chromatic number n? Galvin. proved that if 2ℵ0 > ℵ1 the

answer is negative if we insist that the subgraph G′ should be induced. Hajnal

and I asked: Let G be a graph of chromatic number m. Does G have a subgraph

G′ of chromatic number m the smallest odd circuit of which has length � 2k+1?
Rödl [71] proved this if m = ℵ0 and k = 2. We also asked: Let m = ℵ0, does G
have a subgraph G′ of chromatic number ℵ0 and girth � k? Clearly this can be

formulated in a �nite form, Rödl settled it for k = 4 but probably his bounds

are far from being best possible.

Let G be a graph whose vertices are the integers. Consider sup
∑

1
log ni

where

the set of vertices n1 < n2 < . . . either are independent or form a complete

graph. I conjecture sup
∑

1
logni

= ∞. Ramsey's theorem is just too weak to

give this and I could not settle the conjecture. Clearly it also has a �nite form,

one would have to estimate how fast max
∑
ni<X

1
logni

tends to in�nity.

Murty and Plesnik [67] conjectured that if G(n) has diameter two and if

the omission of any edge increases the diameter of G(n) then G(n) has at most[
n2

4

]
edges. I several times tried to prove this surprising conjecture but without

success. The complete bipartite graph of
[
n
2

]
, white and

[
n+1
2

]
black vertices

shows that the conjecture if true is best possible.

A famous conjecture of van der Waerden states: The permanent of an n×n
doubly stochastic determinant is � n!

nn
, equality holds only if all the entries

are 1
n . If I remember right this conjecture was �rst published in the problem

section of the Jahresbericht der Deutschen Math. Vereinigung in about 1924.

The question was unnoticed for a long time but now has a very large literature.

Very recently T. Bang [85] and Shmuel Friedland [86] proved that the permanent

is greater than e−n, which is the best inequality so far.

Another attractive conjecture of Gyárfás states that if Tk, k = 2, 3, . . . , n
is any set of n− 1 trees, and v(Tk) = k, then K(n) is the edge disjoint union of

the Tk's.

An old problem of mine states as follows: Let G be a graph and x, y be two

vertices of G. Is it true that there are always a separating set S and a family

P of vertex disjoint paths joining x and y so that for every zα ∈ S there is a

path Pα of P passing through zα and no other point of S? If S can be chosen

as �nite (i.e. if x and y can be separated by a �nite set) then this is the well

known theorem of Menger. Nothing is known even if |S| = ℵ0 .

In a forthcoming paper [29] of Hajnal, Szemerédi and myself we state the

following conjecture: Is it true that for k > k0 there is a function f(n; k) tending
to in�nity as n tends to in�nity so that if G is a critical k-chromatic graph of

n vertices then the graph can not be made two-chromatic by the omission of

f(n; k) edges? This result no doubt holds already for k = 4 (odd circuits show

that it is false for k = 3) but we made no progress at all with it.

A result of Gallai [51] shows that f(n; 4) < cn1/2 and an extension of Gallai's
construction by Lovász [64] gives f(n; k) < cn1−1/(k−2). We would certainly
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expect f(n; 4) > c logn but perhaps the Gallai�Lovász examples are essentially

best possible.

Another problem of Hajnal, Szemerédi and myself states: Let G have chro-

matic number � ℵ1. Prove that for every c there is a �nitem so that G has a sub-
graph ofm vertices which can not be made bipartite by the omission of cm edges.

On the other hand we believe that for every ε > 0 there is a G of chromatic num-

ber ℵ1 every subgraph of m vertices of which can be made bipartite by the omis-

sion of fewer than ml+ε edges.

VIII. Two Problems on Random Graphs and Hy-

pergraphs

Let G(n; k) be a random graph of n vertices and k edges. (By random graph we

mean: consider all possible labelled � or unlabelled � graphs of n vertices and

k edges. We try to �nd theorems which hold for almost all of these graphs.)

Rényi and I investigated the dependence of the size of the largest component

of G(n; k) on k and we found an unexpected singularity at k = n
2
. The discovery

of this singularity is perhaps our most interesting result. We always planned

(but Rényi's untimely death intervened) to investigate what happens to the

second largest component? I expect that it almost surely will never be large,

perhaps not much larger than log n and certainly o(nε), but nothing de�nite is

known. (Added in proof:

These questions were cleared up by Komlós and Szemerédi.)

Rényi and I [35] proved that almost all graphs G(2n; [(1 + ε)n logn]) have
a perfect matching and that this result is best possible. We conjectured the

same for the graph being Hamiltonian, our conjecture was settled by Pósa [70],

Komlós and Szemerédi [60].

During my visit to Jerusalem in March 1979 A. Shamir surprised me with the

following beautiful question. Consider G(3)(3n; ln) the random 3-uniform hy-

pergraph of 3n vertices and ln hyperedges. How large must ln be that al-

most all of these hypergraphs should contain n vertex-disjoint hyperedges?

Many of the problems on random hypergraphs can be settled by the same meth-

ods as used for ordinary graphs and usually one can guess the answer almost im-

mediately. Here we have no idea of the answer. I rather felt foolish for not hav-

ing thought of this interesting and natural question.
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