
1 . First, let me state an ill-fated conjecture of Straus and

myself . Is it true that for all n > n0 there is an i so that

(1)
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I kept notebooks since July 1933 . I only stated there problems

and results, proofs are practically never given . In rereading them,

many turn out to be trivial, false or well known, but some of them

still seem interesting to me . Not to make this paper too long, I will

usually restrict myself to those which have been more or less forgotten

sometimes even by myself . I will give proofs only rarely sometimes to

save space but (unfortunately) more often because I can not settle the

problems .

In the first chapter, I discuss problems on primes and related

topics .

2
pn pn+i pn-i

I

Selfridge always disbelieved (1) and had a heuristic argument that

(1) fails not only for primes but much more general sequences .

Independently Pomerance disproved (1) on the lines suggested by

Selfridge . Pomerance and I tried unsuccessfully to prove that the

density of integers n for which (1) does not hold is 0 . This con-

jecture certainly must be true .

Pomerance and I considered the following further problems : Put

M(n) = max pn+i Pn-i

Is it true that there is an c > 0 so that for infinitely many n

(2)

	

M(n) > pn + nl+e
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Is it true that the number of distinct integers of the form

pn+i + pn-í is > c n/log n? Denote by f(n) the maximum in A of

the number of solutions in i of pn+i + pn-i = A. Probably

f(n) -

	

lim sup f(n) = m is not difficult . As far as we know there

are no nontrivial upper bounds known for f(n) .

Put

	

h(n) = min (pn+i + pn-í - 2pn )

Is it true that lim sup h(n) = m?

C . Pomerance, The prime number graph, Math . Comp . 33 (1979),

339 - 408 .

2 . Let f(n) be the smallest integer so that for every choice

of the primes ql , . . ., qr for which for every i (1 s i <_ f(n))

there is a j, 1 <_ j <_ r satisfying n + i = 0 (mod q .) we have
J

r

	

1(1)

	

I

	

> 1 .
j=1 qj

I proved that for infinitely many n

(2)

	

f(n) > exp c(log n loglog n) 1/2

(2) follows from the fact that for infinitely many n (P(m) is

the greatest, p(n) the least, prime factor of n)

(3)

	

l<min P(n + i) > exp(c (log n loglog n) 1/2)

n
1/2

where Ln = exp c1 logllog nn

	

Denote by $(x,y) the number of

integers sx all prime factors of which are <_y . (3) follows easily

from the classical results of de Bruijn on *(x,y) .

f (n) = o (n) is easy to prove and can be slightly strengthened . I

have no non trivial upper bounds and no non trivial lower bounds valid

for all n .

Denote by f l (n) = to the smallest integer for which

	 1

(4)

	

i_í_tn P(n + 1)
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Clearly f l (n) ? f(n) . It would be of interest to decide whether

f l (n) > f(n) holds for all sufficiently large n . Let f2 (n) be the

smallest integer for which for every choice of d l < d 2 < . . .

n<p_n+f2 (n) p + di > 1

where every non prime n + j, 1 <_ j <_ f 2(n) has a proper divisor

among the d's. Clearly f 2 (n) z f l(n) . Is it true that for every

sufficiently large n f 2 (n) > f l (n)?

N . G . de Bruijn, On the number of positive integers sx and

free of prime factor >y . Indg . Math . 13 (1951), 50 - 60 .

3 . Selfridge and I proved the following curious result . There

are k 2 primes p l > . . . > p 2 and an interval (a,b) of length
k

(3 - e) pl so that the number of integers u, a < u < b which are

multiples of at least one of the p i , 1 <_ i <_ k 2 is 2k. It is easy

to see that it can not be less than 2k .

I just proved that for an interval of length (3 + e)p l the

number of multiples is at least [6 1/2 k], but I can not exclude the

possibility that in fact it is more than a k 2 .

P . �rdos, Problems and results in combinatorial analysis and

combinatorial number theory, Proc . Ninth Southeastern Conf . on

Combínatorics . . . Cong. Num . XXI Florida Atlantic University

1978, 29 - 40, see p . 35 - 38 .

4 . Denote by L(n) the smallest integer for which for every

(a,n) = 1 there is a prime p <- L(n), p = a(mod n) . Linnik proved

that there is an absolute constant c so that for all n L(n) < n c .

Probably for n > n0 (e) L(n) < nl+e, Schinzel proved (improving a

previous result of Prachar) that for infinitely many n
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It seems certain that

(1)

	

n- L(n)/n log n

Very likely there are constants 1 < a < B for which

(2)

	

cl n(log n) CL < L(n) < c 2 n(log n) 8

but (1) and (2) seem to be unattackable at present .

	

I expect that

(3)

L(n) > c log n loglog n loglogloglog n (logloglog n) -2

m
1

n=2 L(n)

(3) would of course follow from (2), but (3) also seems to be

unattackable at present .

Denote by Q(n) the smallest integer so that for every a, (a,n)

squarefree, there is a squarefree q satisfying q =- a(mod n), q <_ Q(n) .

Warlimont and I proved, (unpublished), that for every n

(4)

	

Q(n) > c n log n/ loglog n

Sharpening a previous result of Prachar, I proved Q(n) = o(n 3/2).

No doubt Q(n) < nl+e, I can not decide whether G Q(In) converges

or not .

lu . V . Linnik, on the least prime number in an arithmetic

progression: I The basic theorem, Mat . Sbornik 15 (1947), 139 -

178, II . The Deuring-Heíllbronn phenomenon, ibid 347 - 368 .

For an easily accessible exposition of the work of Linnik see Prachar's

book: Prímzahlverteilung Berlin 1959, Springer Verlag .

For a simpler proof of Linik's theorem see :

P . Turán, On a density theorem of Ju . V . Linnik, Publ . Math .

Inst . Hung . Acad . 6 (1961), 165 - 178, and S . Knapowski, On

Línnik's theorem concerning exceptional L-zeroes, Publ . Math .
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n

Deleven 9(1962), 168-178. See also P . Turán, Uber die Primzahlen

der arithmetischen Progression, Acts . , Szeged, 8(1937), 226-235 .

C . Pomerance, A note on the least prime in an arithmetic

progression, J. Number Theory 12 (1980), 218-223 .

A. Schinzel, Remark on the paper of K . Prachar, "Uber die

kleinste Trimzahl einer arithmetischen Reiche, J . rein u angew

Math 210 (1962), 121-122 .

P . �rdős, ijber die kleinste quadratireie zahl einer arithmetischen

Reiche, Monatshefte der Math . 64(1960), 314-315 .

5 . Let p l < p2 < . ., be the sequence of consecutive primes, put

do - pn+l - pn' An old (and at present hopeless) conjecture states that

d assumes all even values . Put

D = max dm
n

	

m<_n

and let nk be the smallest integer with D > D

	

. Perhaps
nk-1

(1)

	

D /D
nk-1

-> i, and nk > (1 + c)n
k-,

nk

The first conjecture of (1) is probably

the second and can not even exclude the possibility that nk - nk-l = 1

has infinitely many solutions . I am sure that the density of the

integers D is 0 and perhaps D

	

- D -~ m .
nk

	

nk.+l

	

nk

Put L
n
= log n loglog n loglogloglog n (logloglog n)? Rankin

proved that for infinitely many n

(2)

	

dn > c Ln

true . I am less sure about

(2) has not been improved since 1938 (except for the value of the

constant c) . The proof of

7



(3)

	

lim sup do/Ln = w

would probably involve new ideas and I offered (and offer) 10 4 dollars

for a proof (3) . I am so sure that (3) is true that I did not say

"proof or disproof" but will of course pay for a disproof too .

I conjectured that for every k 2 1 and infinitely many n

(4)

	

min(dn ,dn+l ,

	

do+k) ' ck Lnk

Probably

(7)

	

m<n min (d m , dm+l)/Dn = 0 .

lim Dn/(log n) 2 = 1

8

I proved (4) for k = 1 and very recently Meyer proved (4) in a

surprisingly ingenious way . I further conjectured that for every k>_ 0

(5)

	

max(dn,

	

do+k) < (1 - ck)log n
k

has infinitely many solutions . I proved (5) only for k = 0, and as far

as I know (5) is still open for all k z 1 .

Ricci and I proved that the set of limit point of do/log n form a

set of positive measure, but no finite limit point is known . No doubt

every a,0 <_ a 5 W is a limit point of dn/log n .

As I stated in the previous paragraph (2) is no doubt very far from

being best possible . In fact a classical conjecture of Cramer states

that

(6)

	

lim sup do/(log n) 2 = 1

(6) is completely unattackable by the methods at our disposal and

the decision must no doubt be left to the distant future . A slightly

stronger form of (6) states :



Turán and I conjectured that for every k,dm > . . > dn+k has

infinitely many solutions . We could not even prove that (-1)n(dn+ldn)

changes sign infinitely often . We have no non-trivial upper bound for

the longest sequence

(8)

	

do > . . > dn+k *

surely k = o(n C) and perhaps k = o(log n) .

Let q l < q2 < . . . be the sequence of consecutive squarefree

numbers . Put

qn+l - qn = tn ,

min(tm,tm+l )/Tn -; 0

holds . (It almost certainly does) .

How fast must f(n) tend to infinity (f(n) = o(n))

max

	

t = Tm

	

n15m5n

The behaviour of tn and Tn is simpler to study than that of

do and Dn but many unsolved problems remain, e .g . very little is

known about T and I cannot decide whethern

Tr(n + f(n)) - a(n) _ (1 + o(1)) log(nn

Perhaps f(n) > (log n) 2+e suffices for (7), but as far as I

know it never has been disproved that f(n) > (log n) 1+� does not

suffice. In fact I do not see a proof that f(n)/L(n) > W does not

suffice for (7) (see (2) and (3)) .

9

so that

R. A. Rankin, The difference between consecutive prime numbers .

S . London Math . Soc . 13 (1938), 242-247 .

P . �rdds and P . Turán, On some new questions on the distribution

of prime numbers, Bull . Amer . Math . Soc . 54 (1948), 685-692 .



P . �rdős, The difference of consecutive primes, Duke Math . J .

6 (1940), 438-441, and Problems and results on the difference

of consecutive primes, Publ . Math . Debreceni 1 (1949), 33-37 .

G . Ricci, Recherches sur V allure de la nute (pn+l-pn)/log p
n

Coll . sur la theorie des nombres, Bruxelles 1955, 93-96, Sull .

andamento dells differenza di numera prima consecutive, Riv .

Math. Univ. Parma, 5(1954), 3-54 . My proof appeared in 1955 in

lecture notes held at Lake Como .

P . �rdős, Some problems and results in elementary number theory,

Publ . Math . Debreen 2(1951), 103-109 ; On the difference of

consecutive primes, Bull . Amer . Math . Soc . 54 (1948), 885-889 .

6 . To end this chapter, I state a few miscellaneous problems on

primes . Let f(x ;n) be the number of distinct integers x < m < x+n

for which there is a prime p,
3

< p <
2 satisfying plm is it true

that for every x z 0

(1)

	

f(x;n) > c
	 n 	

?log n

It is rather annoying that I got nowhere with this harmless looking

problem . It is easy to see that f(x ;n) > c n l/2 (log n) -1/2 , but I do

not see how to prove f(x;n) > n
l-e

for every e > 0 and n > n O (e) .

Observe that for suitable x there is only one integer m, x < x + m <

x + n which has a prime factor p,2 < p < n . Trivially for x = 0

< (3 + 0(1» log n

and Straus and I just observed that there is an x = x(n) which gives

(2)

	

f(0,n)

(3)

	

f(x,n) 5 6 + o(1)

	

long n

It is not impossible that the method of Selfridge and I (used in 3)

will improve (3) and perhaps can lead to a disproof of (1) .

1 0



It seems that pk = 7 is the largest prime for which the sequence

Pk'pk+1'"*'pk+p -1 forms a complete set of residues mod p k . This
k

question is almost certainly unattackable . It seems I was wrong here,

Promerance just proved this .

What can one say about the smallest r for which for at least one

R, k <_ 1 5 k + r the primes pk'pk+l"'*Pk+r contain a complete set

of residues mod p~? It will not be easy to get upper and lower bounds

for r .

	

I expect that infinitely often, but not always, £ = k .

What is the largest s = s(k) so that

P j = PR (mod pi), k 5 i< j<£ 5 s

never holds?

	

For almost all k no doubt s <_ (2 + c)k, but excep-

tionally s can perhaps be much larger .

These problems become easy if the primes are replaced by square-

free numbers, e .g ., it is easy to prove that if q l < q 2 . ., is the

sequence of squarefree numbers then for k > k0' gk' gk+l' .. .qk+gk 1

does not form a complete set of residues mod q k .

On the other hand it is not hard to prove that for every k there

are qk consecutive squarefree numbers which form a complete set of

residues mod qk. I am sure that for every prime p there are

infinitely many (p-1)-tuples of consecutive primes which form a

complete set of reduced residues mod p .

This conjecture is almost certainly unattackable at present .

Many years ago, 5 . Golomb and I conjecture that

(2)

	

p

	

g1(2P-1 )

1
q

< m ;

	

P,q primes .

1 1



(2) does not seem hopeless and is perhaps not difficult . When I

found (2) a few days ago in my old notes I tried it again and failed .

Schnizel observed that the number of primes q < x which occur in the

sum (1) is o (lox
g x

Is there any prime p for which

(3)

Find the smallest prime (if any) which satisfies (3) . I doubt very much

if there is such a prime . (Pomerance just convinced me [1980 XII 18]

that such primes indeed exist and can be found [in principle] in a

finite number of steps), but there probably are integers n for which

where in I' the summation is extended over the primes ql2 n-1, gJ2m-1

for m < n .

Is it true that o(22n+1) and v(2	n2n 1)

	

are both everywhere

dense in (1,m)?

Let p l < p2 < . ., be an infinite sequence of primes satisfying

Pk - l(mod pk-1) . It is true that pk/k > ?

I can not even prove lim sup pk/pk-1 m

The same questions can be asked if we insist that pk is the

smallest prime - 1(mod Pk-1 ) . It is not impossible (but I am doubtful)

that Pk/pk-1 i

L

q 1(2p-1) q p

for this sequence .

Again the same question can be asked if q l < q2 < , ., is a

sequence of squarefree numbers satisfying qk =- 1(mod qk-1 ) . I would

1 2



expect that qkl/k < c is possible, but probably lím sup qk/qk-1 -

remains true .

Let pl = 3, P2 = 5, . . ., pk+l is the least prime for which

(pk+l - 2)1p í , . . ., Pk* Is this sequence infinite?

Is it true that for every c and n > n 0 (c) there is a composite

m > n + c for which m - p(m) < n? (p(m) is the least prime factor of

m .)

	

I have no proof even if we assume c = 0 . It might be of some

interest to study the sequence of composite integers m l < m2 < . .-

where ml is the least integer greater than mi-1 so that n > mi ,

n - p(n) > mi - p(mi )m

	

p2 clearly is an mi and probably all the mi

have two prime factors .

Put

Is it true

(5)

	

Dp-1 (x)/D(x) ->0, but D p-1 (x) > D(x) 1-� for x > x0 (�) ?

n - f(n,c) = mm>n+c (m - p(m)), m composite .

A stronger form of my conjecture states that f(n ;c) -> - as n - - . I

can not prove this even for c = 0 . If the conjecture is correct one

could try to estimate f(n,c) from above and below .

Denote by d P-1 (n) the number of divisors of n of the form
-

p - 1 . Prachar proved that for infinitely many n

(4)

	

dp-1 (n) >
nc/(loglog n) 2

Very recently Odlyzko replaced in (4) nc/(loglog n) 2 by

nc/loglog n which apart from the value of c is best possible . Put

DP-1W= max d p_1 (x), D(x) = max d(n)

13



The first conjecture in (5) is perhaps easy, but I expect that the

second is very difficult .

Prachar and I studied the variation o£ pk/k . We obtained various

inequalities but did not prove the following very plausible conjecture :

Is it true that there are only a finite number of indices k so that

for every j < k < R

pj/j < Pkik < p£/K
?

K . Prachar, Über die Anzahl der Teíler einer Natürlichen Zahl,

welche die Form p-1 haben, Monatshefte Math . 59 (1955), 91-97 . The

proof of Odlyzko will appear in a forthcoming paper of L . M. Adleman,

C . Pomerance and R . C . Rumely, On distinguishing prime numbers from

composite numbers .

P . �rdős and K. Prachar, Sátze und Probleme über P k/k Math . Sem .

Univ . Hamburg 25 (1962), 51-56 .

II

In this chapter I discuss problems on consecutive integers .

1 . Two old problems on consecutive integers were settled in the

last decade . Catalan conjectured about 100 years ago that 8 and 9

are the only consecutive powers . Tijdeman proved that there is a com-

putable constant c so that two consecutive integers greater than c

can not both be powers . c is too large to prove that 8 and 9 are

the only exceptional cases, but I am sure that this soon will be done .

Selfridge and I proved that the product of consecutive integers is

never a power . This was conjectured more than 100 years ago .

Both results can probaly be strengthened . Denote by xl < x2 < '

the sequence of consecutive powers . Is it true that xk+l - xk ; -? or

sharper xk+l - xk > xk ? Choodnovsky may have a proof of the first

14



conjecture, the second is quite unattackable at present .

Put II(n,k) _ (n+1) . . . (n+ Q . Is it true that for k>2 there

always is a p ?A for which pJJII(n,k)? We can not even prove that for

k > 2 there is always a pJ'II(n ;k) .

P . �rdős and J . Selfridge, The product of consecutive integers is

never a power, Illinois J . Math 19 (1975), 292-301 . In this paper a

short outline of the history of the problem and some references are

given .

R. Tijdeman, On the equation of Catalan, Acta Aríth . 29 (1976),

197 - 209 .

2 . Put (P(n) is the greatest, p(n) the least prime factor of

n),

n+ i = a (n) . b (n) , 1 5 i <_ k, P(a(n) ) < k, p(b (n) ) >_ k .i

	

i

	

i

	

i

Define

and conjectured

f(n ;k) = lm
in
k

a(n)
, F(n;k) = lmixk ain)

By a simple averaging process I proved that

f (n ; k) < c k

(1)

	

f (n ;k) = o (k) .

(1) seems to me to be a very attractive conjecture unfortunately

I got nowhere with it . A stronger conjecture than (1) states that

1

	

-* - or perhaps even

	

1 ? (1 +0(1)) log k
i=1 ain)

	

i=1 ain)

It would be very interesting if one could determine the true order

of magnitude of f(n ;k) . I expect that much more than (1) is true,

perhaps f(n;k) = o(kC) .

I can prove that f(n ;k) -* - as k tends to infinity, but I do

not think that I can get a good lower bound for f(n ;k) .

is



For most values of n and k f(n;k) = 1 i .e . usually k consecutive

integers contain an integer all prime factors of which are not less

than k. More precisely : denote by s k the density of integers n for

which (n+i,(k-1) ;) > 1 for every 1<_k . It is easy to see that ek -" 0 .

�stimate how fast . I expect that ek tends to 0 exponentially or at

least not much slower. Denote by r(n ;k) the number of integers

i, 1 :-i 5 k for which (n+i,k!) = 1 . It easily follows from Turin's

method that for almost n(k -> -) .

r(n;k) _ (1 + o(l))k
p1I

	

(l - P)

The smallest possible value for F(n ;k) is clearly k, but usually

F(n ;k) is very much larger . I expect that the density for integers n

for which
(l-e)log k (loglog k)-lF(n;k) < k

goes to 0 as k tends to infinity . It follows from the results of de

Bruijn (on *(x,y) quoted in the first chapter) that for almost all n

f(n ;k) < klog k/loglog k

Denote by G(k) the largest integer for which there are G(k) con-

secutive integers 1!5i5 G(k) so that for some of the integers a in)

i <_i <_ G(k) are all different . Basil Gordon and I proved that G(k) 5
(2 + o(l))k . I am convinced that

(2)

	

G(k) _ (1 + o(1))k .

It is rather annoying that we got nowhere with (2), which seems a

simple and natural conjecture, perhaps we overlooked a simple agrument .

Let 2 = pl <P2 < . . . < p s _< k < ps+l <p s+2
be the sequence of consecutive

primes . It seemed to me that G(k) = ps+2-2, but I seem to remember

that a counterexample was found . Perhaps G(k) =ps+s-2 holds for all

sufficiently large k .

Denote by h(n ;k) the number of distinct

1 < i <k. max h(n ;k) = k is obvious . Put min

jecture that H(k) > ck and perhaps

(3)

	

lkm H(k)/k = C .

1 6

values of the ain) '

h(n;k) = H(k) . I con-



At present I can not attack these conjectures . It is easy to prove that

	 k 	1/2
(4)

	

H(k)

	

c (log k )

To prove (4) let 2 < 3 . . . < pr be the primes not exceeding k/2 .

�ach pi has at least two multiples in (n+ 1, n+k) . If every n <u<_

n + k is divisible by at most r 1/2 of the p, then clearly at leasti
r1/2 of the a(n) , 1 Sj <_k are distinct . If there is a u, n<u<_n+k

J
which is divisible by more than r l/2 primes Pil l P i ' . . . , P i

2

	

s
s > rl/2 , then if u < n + 2 all the u+p,j1 1 sj 5 s are sn+k and

the ate) are all distinct (ate) is a multiple of p i and of no
P j

	

pi,

	

3

other pi ) .

	

If u > n + 2 then we consider the numbers u- p i > n
7

and the proof goes as before .

If (1) of I, 6 holds (f(x,n)> log

	

then this proof easily
g

give H(k) > c log S	k . At the moment I have no idea how to approach (4).

By a combinatorial argument I can show that for k > k0 (r) the

number of integers n < m 5 n + k which have a prime divisor p, k 1/r <
_ 1

+
1

p < 2k 1/r is greater than c rkl r r2 . Perhaps this can be improved

to crk/log k. The difficulty of getting an estimation of H(k) is that

for m1 and m2 , m1 # m2 the ai 's may be the same .

Put
P(n ;k) = max pa , pallain) ,

	

1 5 i <_ k

In view of the difficulty of estimating the order of magnitude of
F(n ;k) for almost all n, it might be worth while to observe that for
almost all n P(n;k) is of the order of magnitude

	

k2 2 . In fact
(log k)

17



a simple sieve argument gives that the density of the integers n for

which P(n;k)

	

c k2 2 tends to a distribution function f(c) as
(log k)

k - - .

Let G1 (k) be the largest integer £ for which there is an n so

that

I am sure that G1 (k) _ (1 + o(1))k . This should be much easier to

prove than G(k) _ (1 + o(1))k . In fact perhaps G 1 (k) =ps+l-1 where

ps+1 is the least prime greater than k .

To finish this chapter I state a few more questions . It seems to

me that I can prove (I did not carry out all the details) that there is

a distribution function f(a) so that the density of integers n for

which the number of indices i(15 i<_ k) for which ain) > na , tends

tends to f(a) as k tends

Denote by P(ai n) ) the product of all the distinct prime

of aW and by Q(a (n) ) the squarefree part of a (n) i .e. pjQ(a (n) )i

	

i

	

i

power of p dividing a in) is odd . One can ask

P(ain) ) and Q(ain) ) which we asked about

if an only if the exact

the same questions about

a(n) e . g .i

be distinct

for

and

ain) < a2

	

< a,~ , t _ G 1 (k) •

how

how

must be different .

that the product of

consecutive integers n + 1, n + 2, . . . can they

many of the integers P (a in' ) (or Q (a in' ), (1 5 i <_ k)

many

to infiníty .

factor

I needed some results of this type in my old proof

consecutive integers is never square .

k
Let q(n ;k) be the smallest prime which does not divide 11 (n +i) .

i=1

f(n) = max g(n ;k)/k . What can be said about f(n) for all or almost all
k

n? In particular if k = [log n] is f(n) > 2 +c possible? Pomerance

1 8



observed that if true this is best possible, since if n +1 is the

product of primes in (log n, 2 log n) f(n) = 2 +0(1) .

Szemeredí and I proved that for k >k0 and n >ek(w(n) is the

number of distinct prime factors of n)

(5)

	

w((k
l ) t

k ,

but probably (5) holds already for much

Put II
Mn (k) = psk p a .

pa ll~k)

It is well known that p a <- n, thus Mn (k) < n" (k) Perhaps

(6)

	

Mn (k) < ek n(log n) c

smaller values of n .

holds for all n and k . The conjecture (6) is perhaps a bit too

optimistic .

P . �rdős, On consecutive integers, Nieuw Arch . Wisk 3(1955), 124-

128 .

P . �rdős and J . Selfridge, Some problems on the prime factors of

consecutive integers, Illinois J . Math . 11(1967), 428-430 ;

Complete prime subsets of consecutive integers, Proc . Manitoba

Conf . on Num. Math ., Univ. of Manitoba, Winnipeg 1971, 1-14,

Some problems on the prime factors of consecutive integers II

Proc . Wash . State Conf . on Number Theory 1971, 13-21 .

P . �rdős and R . L . Graham, On the prime factor of
(k),

Fibonacci

Quart . 14 (1976), 348-352 .

III

In this final chapter I discuss some miscellaneous problems .

1 . Let Sr be a measurable set in a circly of radius r(r -} m) .

Assume that Sr does not contain the vertices of an equilateral

1 9



triangle of side >1 . Is it true that the measure of Sr is o(r2)?

If we would insist that S contains no equilateral triangle at allr

then it follows from the density theorem of Lebesgue that the measure

of S

	

is 0 .r

Straus suggested that perhaps the measure of Sr is less than cr .

2 . Problem of Szemeredi and myself . Let xl , . . ., xn be n points

in the unit circle . Denote by D(x l , . . . x n ) the smallest distance

between two of the x i 's and by a(x l ,

	

xn) the size of the

smallest angle determined by our points . It is well known and easy to

see that

It is true that

Perhaps

D(xl ,

	

xn) < c n- 1/2, a(xl , . , xn) < c n-1

a(xl , . . ., xn )

a(xl ,

	

• D(xl , . . ., xn) < c n 2 .

The regular n-gon shows that if (1) is true it is best possible .

3 . Harzheim and I considered the following problem : Let

1 <_ a l <- a 2 . .- be an infinite sequence of integers, assume that no a

is the sum of consecutive a's (i .e . aj # a r + . . .+ a ) . Is it then trues

that the upper density of the a's is :9 2? Is the lower density 0? Is

the logarithmic density 0? An older question of Andrews asked :

	

Let

xl <_ x2

	

. .- be a sequence of integers where xn is the smallest

integer which can not be written in the from x i + xi+l+ . . .+
x j

. . What

can be said about the asymptotic properties of x n? It is quite

possible that the density of this sequence is 0 . Nevertheless it is

easy to see that in our modification of Andrews' problem the upper

density can 12

20

. . . , xn ) = o (n 3/2) ?



To see this suppose that 1 <- a1 < . . . < ak is already defined .

Then ak+l ak
4

	

4

	

2

	

4
' a.++- ak +ak' ak+2+i -ak+ak+ í, 1 < i < ak - ak. Clearly

the upper density of this sequence is

consecutive a's .

that

(1)

Put

Perhaps k a1 < -, but this I can not prove . All I can show is
k

The proof of (1) is easy . Let x <ak < ak+l < . , , < a.,< x2 be the

a's in (x,x 2 ) . Observe that all the sums C ai , v - u 5 x are all
L
u

all distinct and are all less than x 3 . Thus

(2)

	

1
k<u<v<£ v

	

<
v-u<-x

	

Y ai
U

v
Now clearly

C
L ai < (v -u) a v .

	

Thus
u

(3)

	

v 1C

	

> 1+1+ . . . 1

	

1 +

	

1

	

+ . . . + 1
k<u<v<£ L ai

	

2

	

x ak+x ak+x+i

	

a£
u

(2) and (3) gives

1

	

+ . . . +
ak+x

1
a£

1
ak

< c

�

t<x3

< 3 + oW or

1
2 and no a is the sum of

t < 3 log x + c

1
-< 4+o(1)ak

which proves (1) . The best value of c in (1) could perhaps be

determined .

4 . Mahler's problem. Mahler wrote me many years (decades) ago :

f(n) = min J(xi + y i), where n =

	

xi yii
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�stimate f(n) as well as you can . I observed that

f(n) = 2 nl/2 + 0(n1/8) .

The exponent 8 in the error term is probably not best possible,

but I could show that is is not o(nc) . If 0(n) is the number of

summands which give the minimum, then 1ím sup 0(n) _ - .

5 . Denote by a(n) the sum of divisors of n . It is easy to

prove that

xC
L

	

min n (a(n+l), a(n+2), . . ., a(n+k)) = ckx + o(x)
n=1

It is easy to prove that c k tends to 1 as k tends to infinity . I

could not get a good estimate how fast ck- 1 tends to 0 . I expect

that it tends to 0 exponentially or at least not much slower .

6 . An old conjecture of mine states that almost all n have two

divisors d l <d2 < 2d 1 . During one of my unsuccessful attempts to prove

this I was lead to the following question : Denote by f(n ;k) the

density of the integers which have a divisor in (n,n+k) and by

f1 (n ;k) which have exactly one such divisor . Is it true that f 1 (n ;k)

is unimodular? (i .e . it first increases, reaches its maximum and then

decreases) . For which k does f l (n ;k) reach its maximum? I would of

course be satisfied if this k could be determined asymptotically .

Clearly for small k

(4)

	

f1 (n ;k) _ (1 + 0(1)) f(n ;k) .

How far does (4) remain true? One would expect k n/(log n) C�

for some 0 < a < 1 .

	

Probably

f 1 (n,n) = o(f(n,n))

7 . Let 1 <- a1 < , . . < ak <_ n .

	

Assume that ai + aj never
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divides ai aj . I conjectured max k = 2n + o(n) . The odd numbers show

that if true it is best possible . Odlyzko showed that for n = 1000,

max k >_ 717 and now I am quite doubtful if my conjecture is true .

Assume that no sum ai + . . . + ai divides a i

	

ai . Is it then
1

	

r

	

1

	

r

true that k < en for n > n 0 (e) ?

8 . Let f(n) be the smallest integer so that one can divide the

integers 1, 2, . . ., n-1 into f(n) classes so that n is not the

distinct sum of integers of the same class . f(n) tends to infinity -

but how fast?

Let h(n ;k) _ £ be the smallest integer so that if 1 <_a l <, . . <

a~ < k then n is the distinct sum of a's . �stimate f(n ;k) as well

as possible .

Let al <a2 < . .* be an infinite sequence of integers . Denote by

f1 (n) the number of solutions of 0 <_ a i-a j :5n and f 2 (n) is the

number of solutions of n < ai-aj <2n . Is it true that

1ím sup fi n) /f2 (n) ? 3 .

It is easy to see that (5) if true is best possible . Is it true

that

that A(n) =

	

L

	

1 >
ai<n

lim inf 0<aiLa <n (ai-aj)/n A(n) ', A(n) = ai~n 1 .

9 . Let 1 <a 1 . .-
be an infinite sequence of integers assume

c nl/3 for every n . Denote by H3(n) the

number of solutions of 0 < a i+aj-a. < n . Is it true that

(6)

	

lim sup H3(n)/n = m ?

More generally assume that A(n) > n 1/r and denote by Hr (n)

the number of solutions of

23



Is it true that

(7)

r
0 < £

	

ei
ai < n , c í = + 1 .

i=1

lim sup Hr (n)/n = W .

I can prove (7) only for r = 2 . If (6) and (7) are true they would

have several applications in additive number theory .

10 . Let 1 :5a,< . . . <an :5x . Is it true that there are at least

c n/(log n) C& distinct integers m satisfying m =- 0(mod ai) for some

i, 1 <_i <_n and x <m<_ x + an? If true then apart from the value of a

this is best possible . I found this in one of my old notebooks and

completely forgot about it . I ask the indulgence of the reader if it

turns out to be trivial or false .

11 . Let akk2 > m, b l < b 2 < . .* is the sequence of integers

which are not multiples of any of the ai . Is it true that

(8)

	

bk<x (bk+l - bk ) 2 < cx ?

It is not hard to see that ak > ck 2 is not enough for (8) .

12 . Let al < . . .< ak be a sequence of integers . Is it true that

if the number of solutions of a i +aj =az is >c k 2 and k>k0 (£), then

the a's contain an arithmetic progression of I terms? If this

result is false then perhaps the assumption that the number of solutions

o f a i +aj = ar +as is > c k3 will imply that our sequence contains an

arithmetic progression of I terms for k > k 0 (R.) .

13. Let 1 <_a l < . . . be an infinite sequence of integers for which

every n is of the form a i aj . Clearly our sequence must contain I

and all the primes . Is it true that is lim inf A(x) x-l log x < m

then 1ím sup A(x) x1 > 0?
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� . Wirsing, Uber die Dichte multiplikativer Basen, Arch . Math .

8 (1957), 11-15 .

14 . Is it true that there is an absolute constant C so that if

al < . . .<ak <n is a sequence of integers which are pairwise relatively

prime then

(9)

(10)

kC

	

1

	

< C

iLl n-ai p<n

(9) if true would imply

�1 + c >P p <n

1 + C?
P

1
n-p

Problems like (9) and (10) are contained in a paper of �ggleton,

Selfridge, and myself which I am afraid will only appear posthumously .

I am doubtful if (9) is true but have, of course, no counter-

example. I am sure (10) is true .

Denote by ~(k) the largest integer for which there is an n and

integers

(11)

	

n <
al

<

	

. <
aiP(k) < n+k, (ai ,aj )= 1, 1 5 i <_ j <_ *(k).

Is it true that

(12) «k) < (1 + o(1))

	

n(k)?

m.

f(n) = � 1 has been investigated by de Bruijn, Turán andp <n n-p

myself, but we have not even been able to prove that lim sup f(n)=

If the distribution of the primes is reasonably regular, then

lim inf f(n) = 1 . It is not hard to prove that

(13)

	

L

	

f(n) _ (1+o(1))x,

	

�

	

f2 (n) _ (1 + o(1))x
n<_1

	

n=1

25

Thus f(n) = 1 + 0(1) for almost all n . If I remember right this was

known to us (de Bruijn, Turán and myself, at the beginning of time) . A

few days ago Pomerance and I observed that 1+ k, k = 1, 2, . . . must be



limit points of f(n), n = 1,2, . . ., but it is difficult to prove that

there are other limit points . In fact if the primes satisfy

(14)

	

lira inf pn+l-pn > 0log n

and for y <x, y > x� .

(15)

	

n(x + y) - 7r(x) _ (1 + 0(1))

	

,log x

then 1 + 1-lc , k = 1,2, . . . are the only limit points of f(n) . Observe

that (15) certainly holds and (14) is certainly false but both are

byond our reach for the moment .

15 . Let 1<_ al < a2 < . . . < a~ (n) = n-1 be the integers relatively

prime to n. An old conjecture of mine states

0(n~-1

	

2
(l)

	

i=1 (ai+1 - ai)2 < c ~(n) '

It is very annoying that (1) is so intractable - it

not look difficult at first sight . Put

i(n) = max(ai+, - ai)

J(n) after Jacobstahl . Jacobstahl conjectured that J(n) < clog n) 2 .

This conjecture was proved by Iwaníec . Put nr = 2,3, . . .,pr and let

m 5 nr+l . Jacobstahl further conjectured that J(m) 5 J(nr+l ) . We are

very far from being able to prove this conjecture . I wonder whether it

is possible to characterize the integers n for which J(n)> P(n) .

It is easy to see that J(n r ) >p l-1 . �stimate the size of the

smallest air) (air) < . . . are the integers relatively prime to n r)

for which

certainly does

power of

a(r+l) _ a (r) zi

	

i

	

pr+l

I am sure that air) increases "fast" i .e .

26

faster than any fixed

r . Unfortunately there is no hope of proving this, since it



would imply

		

/2
Pk+l - Pk < C pk

C . Hooley, On the differences of consecutive numbers relatively

prime to n, I, II, and III, Acta Arith. 8 (1962/63), 343-344 ;

Publ . Math. Delseven 12 (1965), 39-49 ; Math. Zeítschríft 90 (1965)

335-364 .

16 . Finally I mention a few problems on the functions ¢(n) and

a(n) . I spend (wasted?) lots of time on some of these questions . One

annoying problem which I could never settle is whether 0(n) = a(m) has

infinitely many solutions . I am sure that the answer is affirmative .

Nearly 50 years ago I stated that if 1 <a, < . . . < ak _< n is a

sequence of integers for which á(a 1 ) < . . . < ~(ak) and we make the

plausible but hopeless conjecture that there always is a prime between

x and

	

+ x for x >x0 , then k <_11(n) . Unfortunately I was not

able to reconstruct my "proof", which was probably wrong .

Let al <a2 < . . . <at <x, $(a1) > . . . > 0(a t ) . How large can t =tx

be? Trivially tx - w .

Is there a, 1 < a < m and a a, 0 < S < 1 so that

ja(n) - anl } and

	

1~(n) - Bn) - m ?

(i .e .) vnn) is never too close to a)/ . Then max k = 7r(n) .

For a very large list of solved and unsolved problems see :

P . �rdos and R . L . Graham, Old and new problems and results in

combinatorial number theory, Monographic N ° 28 de L'�nseignement

Mathematique 1980 . This book contains very extensive references .
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