Acta Mathematica Academine Scientiarmm Hungaricae
Tomus 36 (1—2), (1980}, pp. 7189

ON THE ALMOST EVERYWHERE DIVERGENCE
OF LAGRANGE INTERPOLATORY POLYNOMIALS
FOR ARBITRARY SYSTEM OF NODES

By
P. ERDOS, member of the Academy and P, VERTESI (Budapest)

Dedivated to the memory af John Curliss
1. Introduction

In a previous paper P. Ernds [1] stated without proof that if X={x,},

Bl e RO (= A
(1.1} I =mx, =X =S (el
is a triangular matrix then there is a continuous funection Fix), —1=x=1, so that

the sequence of Lagrange interpolation polynomials

LF.X, 9 =L(Fx= éi F ) i (%)

diverges almost everywhere in [—1, 1], and in fact

T (L,(F, X, )| ==
lfor almost all x. (Here, as uvsual,

1w, (X)

12 - W =Te e

[k = L ey N B = kf_ﬂ}:{x—x*,._]]

are the corresponding fundamental polynomials,
(1.3) i) = kZ; (), 4y = max i.(x) (n=12 )

are the Lebesgue functions and Lebeszue constants of the interpolation, respectively.

We now prove this statement in full detail. The detailed proof turned out to
be quite complicated and several unsuspected difficulties had to be overcome.

In the same paper P. Erdds also stated, that there is a pointgroup {x]} so
that for every continuous f(x) (—1=x=1) L,(f, x))—=f(x;) holds for at least

one¢ x, for which E]E_*E,l |l (x;)==. This is perhaps true, but at this moment

we ‘cannot prove it (the original “proof” wag probably incomplete). We hope to
settle it on another occasion,
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T P. ERDOS AND P. VERTESI

2. Preliminary results
In his classical paper [2] G. FaBer proved that for any matrix X
Jim 4, ==

from where we immediately obtain that for every point group there exists a contin-
uous function fi(x), —1=x=1 (shortly f;€C) so that

T [ Lu(fys 9] ==,

(Henceforward [lg(x)l=lgl=_max lg(x)| for g€C.) Almost twenty years later,

in 1931, S. BernstEmN [3] showed that for every X with (1.1) there is an f,£C and
an x;, —1=x,=1, such that
E [ LaUfay %) ===,

Another problem is to prove divergence theorem on a sct of positice measure.
In his paper [14] S. BemnstEIN proved, that for the “bad” matrix
E={—-1+2(k—1)/{n—1)} and the function |x|

B |L,(le], E, 9 == if xe(=1,1), x#0.

Then, using the “good” Chebyshev matrix

o o
@n T= {x... st k=12 =12, I
G. GriwwALD [4] got that there exists a function f;6C, for which
{12} H‘il_t ILJUSI' :}i =

holds for almost all x in [—1, 1]. Later he and (independently) J. MARCINEIEWICZ
proved that for a suitable f.ec (2.2) is true for every x from [—1, 1] (see [5] and [6]).
Very recently A. A, Privarov [7] settled the case of Jacobi matrices

Xl mxaf) k=12, conin=1, 20} af==]
(see e.g. [8], Part 2), showing that with a certain fi¢C
(2.3) Im |L(fy, X9, )] == ae.on [~1],1],

where “ae.” stands for almost everywhere. (He considered some further point

groups, t00.) His proof strongly depends on the properties of the Jacobi roots x{&#,
Finally, he proved (2.3) for the whole (—1, 1) (sec [13]).
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DIVERGENCE OF LAGRANGE INTERPOLATORY POLYNOMIALS 73

3. Result

As indicated above we are going to prove (2.2) for any fixed point group X,
i.e. we state

THEOREM. For any matrix X with (1.1) one can find a function F(x)eC such that

(3.1) T |L,(F, X, x)| == for almostall x in [~1,1)
On the other hand, considering the special matrix
x
Xy Xn
iy Xy Xy

nnnnnnnn

we can say that (3.1) generally is not true for all x¢[—1, 1] (see P. TuriN [9],
Problem I1I).

Finally, let us remark that the “Tim™ cannot be replaced by “Im™ or “lim".
Indeed, as P. Ernds showed, one can construct a point group so that for every
feC€ and every x,£[—1, 1] there exists a sequence n, (dcpending on f and x,)

go that
Jim Ly, (f, %) = (x0)
(see [1], p. 384).

4. Proof
4.1. In what follows, sometimes omitting the superfluous notations, let

'rh=lle+l.l=_1 and
{4” th = Xgn X+ Ln (k = B‘ 1. wepfly A= I, 2. -u_]»
Let us define the index-sets K, and K, and sets D, and Dy, by

1 g =
— i ilf kekK,,
Ax,, = s €&

:nrﬁ- lﬁ k’EE-.'I
D:.=“Lil asns Xl Do =[= 1L 1\Dy,.

(4.2)

If 4x,=4, (which means k€K, [xysq, i]CDy) we say that the interval
[%i41. %] is short; the other ones are fong.
The fact that for any given positive numbers A and & the measure of those x
(= o=x=1o) for which
Adx)=A
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holds if n=ny(e, A), is less than &, was shown by the first of us in [1]. But here we need
a stronger statement. Namely, if

2(i-1) i
m

rh=[_1+ s (=12, .,m),

then for the short intervals we prove

Lemma 4.1, Letr A=0 be an arbitrary fixed number. Then with arbitrary

m=max [exp (84), exp (exp 100)] 2 my(4), for any n=n,(m) there exists a set
Hy,© Dy, for which p(Hy)=1/Inlnm. Further, whenever x€ DN\ Hy,,

(43) 3 luGl=(am=24 if n=ny(m).
1=k=e
A Eily,
S € pay,

Here x€ly n (1=/=m), Ky, Is a certain index-set having Vnn elements at most,
ul...) stands for the Lebeseue measure,

4.1.1. The proof of this lemma, which is one of the most important parts of
our theorem, consisis of severals steps.

First we settle Lemma 4.2 regarding both short and long intervals,

Let us introduce the following notation.

Jilg) = Sulg) = [t @de, x—gdxl,  Jy = 4l0) = [ al
for O0=¢=1/2,0=k=n U z,=z.(g) i5 defined by
(44) @) = min j@,(, k=01, ....n
(obviously, z, is one of the endpoints of Ji(q)), we state

Lesua 4.2, If xqp=x..y (L =r=<k<=n) then for arbitrary O=g=1/2

g el dx
(4.5) ()i +lesa(x)l = ¢ T if xeJ.(q).

To prove (4.5), first we use

0@ | _ (06 5= :
m'(x.][x-x'] = lm{zr” L"--t.l ”l(zr.]l thlf.[.,}l

@9 L6l =|

il =k, k%1 and x£J.(gq)

J(q) J.(q)
| I | f I [ { | —
Xprr Xy Xepy & X X

dpfe BEEthamation Aocedenrioe Soleatlarum Hungarices 20, 140



DIVERGENCE OF LAGRANGE INTERPOLATORY POLYNMOMIALS 75

(because =,—x,=qdx, +(x 1 —X)=q(dx, +x, ., —x)=g(x—x)]. from where
(4.7) LG+ s 1 (0 = @iz + 141 (2] =
Joo(z)

lea(zy)]

L e e |
Hilzy) +hsa (2 —] =
[ 2 e 2

=4

— |m{zr]| A.Tt min{:k—xk.u,xk—:k} ¥
=% % —Fpes A%, (a1 s s (2] =

= qg FIT.U r.:r.” ld-tk
L lo(z)] x,—Xiq

(XE S, (q}}!

uS!ng tht th{H}+|&._+1(u}§'l i H'EJ# (SEE Illl. Lemma Iv}
Similar estimation holds when X, =x.,.

4.1.2. We construct the set Hy, for n=ny(m).

a) Any of Jy,, J,, contained in Dy, should belong to H,,. Further, if J, Dy,
intersecting two I, (1=/=m) or whenever either k or k+1£Ky,, it should also
belong to H,,. The measure of these intervals J,, is =26, +(m—1)d,+Innd,=
=(ln In m)— 2L | if, e.g. n=exp (M) =n,(m).

b) Let g=gq,=¢,/8. The intervals J,,(q) or J,, from Dy, not considered
at a) will be called exceptional if there exmsts an x=x(k, n)eJ,(q) for which the
estimation (4.3) does not hold. The exceptional J,,'s should also belong to H,y,.
If 3 u(d,(q))=2c (where the dash indicates that the summation is extended

k

only over the exceptional Ji,'s), we state that e=c(n, m)=sk il n=ny(m) (whence
the ageregate measure of the exceptional intervals J,, is =3a0).

Indeed, supposing c=z% we shall obtain a contradiction.

Let us order the i, exceptional J,(q), L(q), ..., J, (g) such that

wEl =@ (1=i=k=),

where =, stands for the corresponding minimum in Ji(g) (see (4.4)). Then for a
eertain g, 1=¢,=,
{Im{ft}l = ()] = (Ilnm)~2lo(E)] if 1=k=o,,

(45) oo (2] = (I m) oo (3 i g,k =

By a simple computation
Win
(4.9) I wliaN=c if n=ny(m)
=o,+1

(if, of course, @<=,
Indead, otherwise, using that

¥ ¥ Ve dik i} a
= i i
=502 baih =2"+Z
g o1 f=iz, +1 =g, +1
L =0 Al e

Addp Mathentsties Loodemine Setentfarum Hunparisae 35, 1953



76 F. ERDOS AND P. VERTESI

where E|Efj.={ﬁh‘_l.-r we obtain

ST () =2m =2 <¢)2,

from where 3™ #[J;{q}}.z-cﬂ. Then by (4.5) and (4.8) for any x€J,(q) the sum
{4.3) can be estimated as follows

y lo(E)] 4%,
['I":EI'J] IKiea—%]

3 W1 = 5 SO+ @ =4 30

2 2
= L mps 30 4%, = -2 ta mp* = 5 (n mp > ()
which is a contradiction, i.e. (4.9) is true. (Here T, , and &, are the “farthest” points
of the corresponding intervals.)

4.1.3. Consequently, using the fact that the tota]l measuore ye (1=y=2) of
the exceptional J;(g), ..., J,, () is bigger than £, we should obtain a contradiction.
Notice that for J, we have (4.8), each J, is in exactly one J,: if i=0,n, or when
i or i+1€K,,, then J; cannot be exceptional. Obviously @,=clhnn.

Dropping J; containing the middle point of [~1, 1] and bisecting the same
interval [—1, 1], we have (say) in [0, 1] & set of measure =[c—p(J)2=(c—45))/2,
consisting of certain Ji(g)'s (1 =1, r=e.).

At the k-th bisection we obtain that interval of length 2'~* which contains
certain Ji(g)'s (1=/=¢,) of aggregate measure =2-%c¢—§ =2-%~1p if eg,

¥
| =k=(l6g m)+22 p=p,.
Consider these intervals L2, L3, ... L}

o I3 L L.
Fig. 1
Obviously p(Ly)=2*~?, each L contains at least k exceptional Jy(g)'s, further
2 w)=2trte (I's kS pn, 1=1=9,)
Toer)
Let L,=Ly, further L,=LN\Ly_ , (2=k=p,) (see Fig. 1). It is casy to see that
(2m)~*=p(L)=m™'. Let us choose any fixed point x from any exceptional

Acla Moihemuatice Acatlemiae Scientl crom hvngoricos M, 1950



DIVERGENCE OF LAGRANGE INTERPOLATDRY POLYMOMIALS 77

i, «(q) contained in L, (1=/,=¢,). Then, by (4.5) and (4.8) the sum (4.3) can
be estimated as follows

(10) 316 = 3 S U@+ hoaCol = 3 ; “'fl‘i'fé‘,ai'wf;;f% -

Tigc Ly,

= q'ﬂ.ﬂn m}—l."! ‘i ;‘ Zﬂn m] ll"JB

IL{E]C ™
where %oy and %, arc the “farthest” points of the corresponding intérvals, 1=/,
Li=¢,, the dash means that we exclude k whenever [y, .1L;=&. To estimate
B, let
(4.11) .| -8

34‘#;':‘-1:
Using the construction, it is easy to see that

|x:+1—xvu|

i
(4.12) e =% A=i=p)
K=t
(4.13) [By—%) =27 f Xel, and TeL, (l=k=p).
By induction
(4.14) wp=2"%y (2=k=p)

(Indeed, by construction s,=0,;, 3= +o3=2%, ..., from where we get (4.14).)
Now, by (4.13), (4.11), {4.12), the Abel transformation and (4.14) we can write

p g, %
B=c2 /1 m=e2" | 51270, —4 max o) =

k=1 E=1 skzp 2%

ik | i
=[5 (Zu) o +( 2 ) 5] =

k::l i=1

i sl 47_ S clam

ke P e B TR T

i.e., in virtue of (4.10),

}_ij (%)) = ﬂ"ﬂ_ = (Inms (1= ny(m)),
i.e. for any x£J, (g) we have (4.3). But then J, (g) is not exceptional which is a con-
tradiction. So e¢=g!, as it was stated,

4.1.4. ¢) Clearly, for any point xE€J (@) J,=Dy) considered neither ut a)
nor at B), the estimation (4.3) will be true. For these J,, the sets J, J..(q)

Anie Mathematica Acidemise Scientiorum Hungaricae 38, 1950



78 P, ERDAIS AND P. VERTESI

of aggregate measure ¢, should belong (o H;,, too. Obviously, ¢, can be estimated
as follows

£y = EE;'“ I#{l‘rku}_#{'fjn(g}}] = quﬁ%‘hdxk A ETM.

S0 by a), b) and ¢)
“{Hm] = 5§,+3E:1 +'E|rr.|'-2 = L
which proves Lemma 4.1,

4.2, Here we introduce an important definition. The interval £, and its index
k will be called good for a certain n=u,(m) if

B
(L NI === [(nEn,dm)
2 1) =52 (= )
where the dash means that we take only such J,’s which were considered in a)
or b) (1=k=m). (Observe that I, is good whenever [, ND,,=&.) Using that

2 w() =46,

B =3 :
Sor any n=wyn) at most 8me, intervals I, ave nmot good (m is fixed),

If we can choose a subsequence {n )72, such that I, is good whenever a¢ {n;)
we take it. Otherwise, let us define {n;} so that [, is nor good if ne{n}. Starting
from {n;} let us make the analogous process for . So after the m-th step we essenti-
ally derive the following statement.

Lemma 4.3, For every fixed m=my(A) and sequence {LY=, (L=n,(m) are
integers) ome can select a subsequence {m}z,c{lY, such that for any
ned{ning the intervals Iy, Lo, .., Iy are good, apart from Ly dy s ooos Biiim-
Here 1=k, <ky=..<k;/=m, j=f(m)=8mz, and, whkich is very importani, the
indices k, (1=s5=j) depend only on m. (If j=0, every I, is good.)

4.3. Now we shall treat the long intervals, i.e. the case when Ax,=4§, or what
is the same, &€Ku; (320, %) D,
The following estimation plays a similar role as Lemma 4.1.

Lemma 4.4, Let dx, =8, (k is fixed, Q=k=n). Then for any fixed 0=g=<1/2
we can define the index t=t(k,n) and the set h,CJty, so that plh,)=d4gdx,,,
moreagner

(4.15) G =32y if xed NI, and n=n(q).

In the proof we refine some ideas of the papers by Erpés and TurAN [11] and
Erpds and Szasapos [12]. Take those roots y,=cos 9, (1=i=n) of the n-th
Chebychev polynomials T, (x)=cosnd=2""'a"+... (x=cos#) which are in
Jy,(q). Their number is not less than (1—2¢)nd /n because of 9, ,—8=u/n
(1=i=n—1; see (2.1)) and dx,=4,. If

=A@V U [eos(8:00. ). cos (34 2.

¥, € T

Acte Matfermatios Academiae Svientinram Hungomcde 36, 1430



DIVERGENCE OF LAGRANGE INTERPOLATORY POLYMNOMIALS i

then p(i)=4g4x, and for arbitrary yeJouMm=J~lgl M we can write |T,(0)|=
= lsin nd; sin ga]=2g. Consider now the interval M=M(y)= [y— %5,,.._1‘4—-3— c'i,,] c

=J, which contains at least q ,=ndy roots of T,(x) (n=m(g)). Then the
polynomial ply, n; x}:p[x}: H (x—1y) of degree less than m, can be es-

timated at any x g (x, .1, %) 85 fgflam

= |7 ()| s Tulx) =l

PGl = 7= .l:};"tx—_'l‘ﬂ = ‘PU’] T.(y) r;gcl % — il i
_ el H oGy 1 e
=72 ,im3 - 24 m pn

Mow, using the Lagrange interpolatory formula,

PO = ,2 G 16| = [p(3)] 3-8 2 L)l

i
from where 3 [L(1)|=3" if n=n.g), because |p(»)|=0.
=1
So for any fixed yeJ ()~ there exists an index f=i(y, k, n) such that

wiy)
o (x)(y—x)

Let us choose the point y=u, such that

=3 (n=n(q))

(4.16) Il = ‘

|l = Jun jeo(x)].
Then, for arbitrary y£J, (g )=/

() = )]~ 1‘*”{!’}[ luy— x|

=

If =k, k-+1 we obtain as in (4.6) that [w,—x| = ¢|y—x]. (This inequality is
trivial if i=k or t=k+1.)
Le., in both cases for n=m,(g)
L0 = gl ()] = 3% 3f yeS(@ NI
which means that in (4.15) the index ¢ does not depend on x.
4.4. In the following part we shall consiruct the function F(x).

4.4.1. Let us consider the short intervals, the sequences {4}z, {m ), sat-
isfying A, 7o, m,=[my(A4,)]+1 and the intervals [, , (f;, for short) of length
2imy (l=j=m,).

Apin Mathemdtica Acodemice Sclentisrum Hungaorieae 36, 1080
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Let r=1. Let us choose the subsequence O fulfilling the requirements of
Lemmas 4.1 and 4.3, If ny€Q, let us define g,(x) only on the nodes as follows.

(1M G0 Xy €Dy NI

(4‘1 ?} gl{xl',u“] = {n otherwise.

Then, in virtue of Lemma 4.1

(4.18) Ly (g, ¥l = 3 |h(x)]=(nm)=24,
R

if XE(LN Dy INH, o 22 T,. (Generally, if f(x) is defined only for certain x,=

= =y, Ky, s Ky, then let L(f; 0% 3 fu)h(0). If Ti=@, (418) is
=1

meaningless.)

4.4.2. Let ng=ny (g, m.c0) satisfy Vlnmg=ny;. Let us define the set
Ty by

(A19)  2iLy (g %) = (am) i XE5,C (RN Dy ) \Hymy 22 T

Moreover, if xcTo\Fy, (4.19) should not hold.
a) If 2u(F)=p(Ty) or Ni=3 let gilxgn,)=0 af xz ., not considered in
(4.17) (i.c. those for which does not exist / (1=/=n,) such that x, .. =x.,).
b) If 2u(F)=u(Ty) then for x;.,, not considered in (4.17) let, with
la;, a;) =1},
(=1 i %€ DyaeJa and X, = as,
(4.20) (X ae) = {1 0T X W E D NG but x =ay,
0 otherwise.

By (4.19) and (4.3) if x& ;)\, then

|L_ﬂjl {g] s x}] = ]izu} ”i:,n"(x}l + |Z[H b4 (xk. '.!u} Ik.. i [I]l | =
= (Inm J}un_,i_ (In my)t® = % (Inm W= A, (xeT,\F).

Here ¥ is extended over the x;’s considered in (4.20); for them Lemma 4.1 can

be applied (because VIn my=ny); in Z* we take those &'s for which x5 ., =% .,

at certain 1=I/=my. So, by (4.19) 2|3®)|=(lnm,)"%, becanse xeTyNT,.
Consequently, in both cases we can define the set R,=T, and the function

2:(x) such that 2u(R.)=u(Ty). Morsover

(4.21) |Lnpa(g1y )| = A4, whenever xER, < Th.

(At a) Ry=5; at b) Ry=T,\\J,; if T,=&, the statement (4.21) is meaningless.)

Apto Mathemratica Academioe Scientigrum hungar-cae 30, 1959



DIVERGENCE OF LAGRANGE INTERPOLATORY POLYNOMIALS 81

4.4.3. By the above method we can obtain the sets T,=T,=
=(l m ) Dy S5\ Hyp,» the subsets Ri=R,cTy (i=12,..,m; B=T) and
the function g,(x) such that 2u(R,)=u(Ty) and

(4.22) L (g X =4, if xeRycTy, l=i=m,.
Let
(423) G2 | Ry.

=1

4.4.4. Now consider the polynomial ¢,(x)=¢,(g,, x) satisfying @, (xg )=
=g1(% ) (1=k=ny; 1=i=m;) and |@|=2. Here deg@,=N,, where N,
depends only on the distribution of the nodes defining g,(x) (see [8], Part 3, 11/§3).

4.4.5. Generally, starting from the subsequence obtained in the (r—1)-th step,
let us make the above construction for (4,,m,) (1=2,3,...). We can suppose

(4.24) Byt gy <N =mg (1=2,3,..)

We successively get the sets T, their parts R, with 2u(R)=p(T) (i=1,2, ..., m),
the functions g,(x) for which

(4.25) Lyl x)| =4, if xeR,cTy, 1=i=m,
further the sets

I,
(4.26) Ge= L Ry.

i=1
We can also construct the cerresponding polynomials ¢,(x), taking the values
£(xe,) (1=k=ny; i=i=m,) for which [¢]=2 and dego,=N, (1=23,..).
Supposing

(4"27} Al = IE'J"E'}—]_ U‘Nn = ]’ t= I'! 2’-“ "'}l
let us define the set
(4.28) = .ﬁ [[} G,
=1 Y=k
and the function
@29) =32
imk AN,y
We state that
(4.30) Pf_'i | (f, x)] == whenever xEG.

(Clearly fcC, moreover || f]=4 can be attained.) If G=1&, we have nothing
to prove. Otherwise, if x¢G there exists an index-set {r.)i~, depending on x for
which x£G,, (k=1,2, ...). Then, by (4.26), for any fixed r, we can find an & such
that xR, ,. By (4.29)

= Ly, (. %)
r = S Twt T y -
L‘"r,,.i[lfl x} 2 FAN“,‘ 2 + 2: o 2

i=1 i=r, i=r, i=r,

Acta Mathematica Academice Scientiorum Hungaricae 38, 1930



82 P. ERDOS AND P. VERTEST
Here by (4.24) L, (@, ¥)=gi(x) if i<n, so

|.ZI-E2'2'If i"!'ﬁ 1-—-‘:1-

I=cpy

further, by (4.25) and (4.27)

‘ Loy, . o(@rys X)
?'E "{Nrn— b !

A,

= r§ ':'-'*'rk == rgi.ﬁ'

fe=1"

Finally, suppesing A4=4, if I=j, [ je{ng} (N}, we can write

],Z]‘L!J’.““il Z‘ [—ijw ﬁZjiﬂlécu1

i=ry i=1
because A“*ﬂa'ﬁ“'”rg (see (4.24)). Consequently,
Ly, i =n (k=23 .. xe0)

which actually is more than (4.30).

4.4.6. Let us now take the sets T/M=TPN R (i=1,2, ....om,; 1=1,2, ...}
Ti=T,, RU=R,) given by the previous steps. If, e.;. r=1, let us begin the
construction of g{“’(gv} exactly as we did for glf'c}—g l{x} in 4.4.1 (ie., we use
the same A, m,, T, and nodes; compare (4.17)), but the distinctions a) and b)
in 4.4.2 should be defined by th:: measure. of FI3 instead of F= mj where

FIH collects those points of the set THI=THENRE for which 2|L, (g5, x)|=
:=-[1|1m ) (see (4.19)). Consequently, by the method analogous tu 4.4.1—4.4.5

(using the same {n,}) we can construct the corresponding sets R, GI*), the poly-
nomials @ (x) of deeree =N, and the continuous function
(4.31) o= 3200
with || f*)=4 such that on the set
(4.32) au=A {0 Gm]
k=1 M=k
we have
(.33 B L,(f, 5] === (4€G),

By the same considerations starting from the sets Tii=TH"1N Ri}-1
(I=3,4 p where p will be defined later), we can suceessively define the fanctions:
meG I _ﬁ“Lﬂl and the sets G' such that
(4.34) I‘_’T_"'_if-:{ﬂuu x) == (xeG)

U= llzj m-P:fm =f, Gl = G}

Acta Mathematicn Acodeming Sclentie um Hungaricde 36, 1957
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Later we shall apply the fact that for any t and §

1
(4.35) #(RH?]'E'W (I=1,2..,7)
and for any fixed ¢ and {
(4.36) RUONEM =0 (L=1)

(see the definition of the sets R,

Now let =0 be arbitrarily small and p=p, the smallest positive integer
50 that

(437) }L{Rﬁ’nj}'ﬁ'mi (i=1,2, .., £=1,2,..).
]

It is easy to see that 1=p,=3+|log ol.

4.4.7. To define the proper (linear) combination of the functions /T, f14 ¢t
on GMUIGEIL . UG we prove the following statement, which generalizes an
idea of G. Grimywarn [4].

Lemsa 4.5, If ry(x), ra(x)eC, moreover

{4.38) E ILo(ryy 3} === if xEBy. p(8;) <=,
{4'39} ’?_.1_'1'1” |Lﬂ'[rﬂ1 'l-_}l = !;r xEBE: #{B.} ==

then any fixed interval (), B (Fi=PF) containg an a such that
(4.40) }iﬁ Ly (ory + 1y, X)| === a.e. on BB,
Remark. An interesting special case can be obtained by By=@. To prove
the lemma let B, be the part of 8, B, fulfilling (4.38). Clearly B,c B . If
Ey={x: xeB;, T (L, (Arybrg, )] ==} (fr<id=f)

then E;ME, =@ (A=u). Indeed, otherwise we can write for x£E, (1 E,
eo= i |(A—p) L, (ry, 3)| = Bm |L, (Ary+re, ¥)— Lo(purydora, )| =

= T (IL, (s + s X+ 1L (s g, X)) <=,

a contradiction. Using p(B)=- and that only countable E,s have posi-
live measure (f,<i<f,), there exists wc(fi,, fi) such that p(E)=0 from
where (4.40) is true ae. on B If xe(8,UB)~\B, (when x€B,, too) both
\L (oery, x)|=K(x) (0=K(x)==), and ,.'I.._m L, (Fay X)|= 2= hold which mean (4.40)
for x. These prove the lemima.

. 4.4.8. Choosing f,=0 and f,=0.5, consider that «£(0,0.5) for which,
with ga'-_-;glfni .[..flﬂ,

lim |L (e, x)} =2 ae on OGN,
=y

4 Acte Mothematioo Acadamilae Sclentiorum Hungorioss M, 2940
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Obviously [esl=24+4=8. By this construction we succesively get the values
o1 €(0, 0.5) and the continuous functions e;=2_.e;_+7 satisfying

.HE |L,(e;, ¥)| === ae. on GG . UGN
and |l =0.5e_,| +1/U <=8 (i=3,4, ..., p).

Le, if i=p,, we can say that for every fixed o=0 there exists a function
LEC, | £l =8 so that

(4.41) Ji_ﬁ“ |Li(fyy X)) == ae onG,
P,
where G,= Lj G,
i=1
4.4.9. We go on with the construction of F(x) for the long intervals (dx, =4,

i.e. keKy) employing the same A, m,ny and [, (i=1,2,..,m; 1=1,2,..)
as for the short intervals, Firsi a simple note, If

(4.42) 7 Pl 1 gl 2 e NS )
k€K,

and

= i NG
(4.43) 4=g= g
then by Lemma 4.4 for any ¢ and /
(4.44) p(Hyp) S 28, = -2, i ny= m(m);
the latter should be supposed. '

For simplicity's sake let (Dy, My, )06 =@, say, for the indices
Jua Jas vovs Jo€ Kaijuyy

{4‘4'5j (Ji.:q;\\hl,,n“}r‘lfl.m = E {i zj]_!jil "-rja: SE 1]!

We take the indices (i, ) (F=j. jas +os ) guaranteed by Lemma 4.4 and
define the function 1(x) as follows.

[I when k=t{i, ny),

“iGkm) = 1o otterwise,

lu;(x)|=1, 44eC. Then clearly

{4+46]' ann{uh I}[ s n'n-u iF .'I’.'E ‘Il.n“\\hl'.nu “ =j1=j2' "'vj.l'}'

4.4.10. To combine the at most Zm7* In ny; functions 1 (x) we need the following
Lemma 4.6, Let ry, rae C, moreover

(4.47) [La(ry, 2)] = My if x€By, p(B) <=,
(4.48) [Ly(re, %) = My if x€B,, p(By) =-=.
Consider the fixed real numbers py<f, and the positive integer k. Further take

(4.49) =Pt (=0,1,.., 1)

Acta Mothsmabies Acodemioe Sclentio, wn Hunpericoe 36, 10x9
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Then, if My=M, and 0=f,=[,=0.5, there exists an o; (0=j=k) and E of measure

at least [1 _,IH_L]] p(8,UR), EcBUB;, so that
P

(450) Lritre =2ty xer

To prove this, we verify at first a statement which is slightly more than the special
case corresponding to B,=0.

Nansely, i we have only (3.4T), then there exist Py of measure E(l —ﬁ]n(ﬁ,},
PicBy and oy (0=j=k) such that (4.50) iy true for x€Py.

Indeed, let

¢i={x: xeB, and L @rtr = PP M) G=01,.,0.

It is easy to see that any x¢€ B, can be contained in at most one BNC; (see (4.47),
(4.50) and the similar part of 4.4.7), from where (B NCON(BNC=@ (i=l).
By BNC,cB,, for certain O=j=k p(BC)=p(B;)(k+1)"", which gives the
special case with P,=Cj.

Now let B, be that part of B, |8, where (4.47) is satisfied. Take that «;, for
which (4.50) is true on certain Py B,. If xe(B,UB)N B, then by (4.48),

L (ayry 41y X)f = [My—0.5M,| = 0.5M, = (f:— ) M,
from where we obtain the lemma by E=PF,U((B,UB)\B,).
4.4.11. Using this lemma with the cast
r(x) = uy (3 Bi= Yy Mmd) Mmys Mi=1,, (=1,2),
Bi=0, B,=05 and k= /[In*ny,l
(sec 4.4.9 and 4.4.10), we obtain a v.(x)EC for which

L (02 )] = 00 i xEE,
where (with the above cast)
0= u(B UB)—plE)=

u(B,UB) _ 28

1y

k+1 s D

logl =fallrall + ]l <2. At the next step, by ri=vs, Bi=E:, n=u;, and B,=
=(Jf;,\Ay, ), we get the function vy(x)EC and the set E,. Finally, the (s—1)-th
step gives the function v,(x)2Lw, (x)eC, the set EZLW,cl) so that

= |/ ! L del .
&51} |Lm[w'.l"x}| - {4{\_):—] B {4]n=flj_:}l""l1 = Yoy if xeW;
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where
2588 2d
{4 52:' v 2 f'{(ﬂrh\ﬁ_f, ﬁfﬂ—ﬂ(wl = —;J—i:'l— = ‘Al-.

because s=Inm,. Further notice thit ||wyj]=2. By dr:{‘mlmu Yo o (.8 p,5231M)
and

(4.53) AP, ms N Hi o) OV ] =) = 'EI

if my=n(m). (It is easy to see that the left hand sides of (4.52) and (4.53) are
the same.

Now consider the polynomial Y, (x) for which ||l =4 and () =wilx)
(k=1,2, ...;n; n=ny). Clearly we can suppose mg=>degiy,, too (compare
with 4.4.4).

By this construction one successively obtains the polynomials r{x)=1,(x)
and the sets W,=Wy (i=1,2,...,m), then generally the polynomials ,(x)
and the sets Wy (i=1,2, .., m, t=1,2,...) such that [y, =4, degu<n, 14a
(where 7,y +1=4q,1) and

{#.54) Woe Ay D=7 I XEW < B
(4.33) (D NHy, o )N L ]— (W) = “;—:;- .

(1r {D,,r,,i,\{jf,_m}ﬁ!;_,,l=@ then the corresponding W=, further wy(x)=
=1y (x)=0.

4.4.12. We can definethesequence [n;) (satisfying all the requirements mentionsd
above} such that
. . Tmey = m“ul":.:—:'
Consider the function

(4.56) b= 3y 34l

I'=1 f ml |.—1 Me, t=1

(where JA,,=1 and 4, =4 | . } on the set
@57 =0 0(0w)-
k]t

By the method applied in 4.4.5 we get
(4.58) ﬁr_n |Ly(hs x)| === if xEW.

Moreaver it is easy to fulfil the condition |4 =8. Now, using Lemma 4.5 for f,€C
and the set G, (sce 4.4.8), furtiicr for #6C and W, we obtain as lellows.

For arbitrary fixed p=0 there cxists q contimious function Fy(x), | F,| =16
(if, eg. (B Bd=10, 1] such that

(4.59) im |L(F,.x)| == a.e onP,. p(P)=2—,
whers Py=G,UWc[—1, 1],

‘o Mathemeticn Acadenmise Selemiiz um Hungoricas M, T4
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Here the only thing we have to prove is that u(P)=2—p, For this aim let us
see the definitions made in 4.4.6 and 4.4.8. We can write

Guw-[}:ilrw]uw [;=-:1il-|-~u Im,f:]u

U 00w =00 0[O0 mum]=a(0r)=ne.

T r=K i=1 K=l f=l =1 k=1 Misik

(Ipdee&, by W=G" and Ljn}p:A.;.

Gy Rt o u Gl = { \ ﬁ U A”} [a-n-h ,r-n“‘i'_'11

J=h J=0k=11=k

because x<{...), if and only if for a certain j there exist infinitely many ¢ such
that xc4, (s=1,2). Of course, {.. }'={"|Qt]

Let us see the measure of [...] for a good interval [, il n=n,.

The sets Ry (j=1,2, .. 'Pl overlap (D, .~ H; }f‘l.ﬂﬁ apart from a part
of measure not (see (4.35)—: rj'?}}. oreover, the sets of type
a) and b) from H, ., N/ . huw the measure not exceeding £, (2m,) !

(since 1 is good): the same s true for the parts of type c) (see 4.1.4 and 4.2).

Fm, bﬂ' (4.55} !.l'll.' set Wn m ﬂ]ﬂ sot (Dhl'-\ﬂh“]n;i“ Gmlﬁdj.ﬂg
a part of measure not exceeding &, (m,)~*

Using that D,N\D,=@, Hy=D,, FhcDy and D,UD,=[-1,1], by the
above considerations and (4.44) we can estimate as follows (f=1 ).

#e- D = B(DNH) O 1) =+ (DNHD (1) =32 =
= WO U DINKNHINBNHD) -~ = 2L ey +0).
(] (] i
By the construction and Lemma 4.3, the good intervals I, ,, are uniquely determined
by m,, ie. by t whenever n=ng, (k=1,2,...,myg; T=t), ity number is =m,—
~8m,e,, . So we can write
| " o L B o =
#¥)= 2 pl.D = 20l D = On—8mytp) (2= 3t = 0) =

= (1-88,)(2 =380 — 0) = 21980, —2 (t=1,2,...),
where 3’ means that we consider only the good indices / (¢ is fixed).
By this we obtain
1) = (0 %) = w00 = 2- 190 -0

On the other hand, 0,2Q,>... from where, as it is well-known, 4(Q)~u(P),
which gives u(P)=2—¢.
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4.4.13. Now we state the following

Lemma 4.7. If g, 80, ... €C and Eg,[x]:w on B, then for arbitrary fixed A,

g and M there exist the set HE B and the index N such that p(H)=g; moreover if
xE B~ H then for a certain u(x) we have

(4.60) Lum(X) = A where M =u(x) = N.
Indeed, let
H, = {x:368, guu(x) <4, i=0L.,1} (=01 )% |

If for a certain t =g, u(H,)=e, then we can choose N= M+ 5, because if x¢ BN H,
then with suitable u(x), M=u(x)=N, we obtain (4.60). On the other hand, if

W(H)=¢ (t=0,1,...) then using H.2H,,, we get UH.]?-__-a wich means that

for x& ﬂ H,C B, E@g,{x]éd holds, a contradiction.

4.4.14. Now we construct the function F(x). For this aim let my=ady,=1,
A;=2 and g,=2""'. By (4.59) and the previous lemma we can find an f,£C,
[Ifil =16, the index #, and the set S, c[-1,1], u(S;)=2—2g, so that |

iy (fis 0 = 4, = 1245, whenever x€8; (see 4.4.4).

Generally, let 8,=2"% A,=k 4% , and choose m=N,_,+1. As above, we
obtain the polynomial @(x) of degree =N, [pll=32, the set S,c[-1L1],
B(8)=2—28,, and the index n, so that

i (Pre X)| = A = K205, if xS,

with mp=wu(x)=n. (k=2,3,...). Choosing N, large enough compared to n,,
we obtain, using the arpuments of 4.4.4-4.4.5, that for the continuous function

P——

S )
F(x} o lél' ks‘lﬂk-; I

and for the set S= [:l F‘I 5, of measare 2

k=li=k

Iim |L,(F, x)| == on§,

which is the statement of the theorem.

References

[1] P. Ernds, Problems and results on the theory of interpolation, 1, Acta Mark. Acad, Sci. Hungar.,
9 (1958), 381—388.
[2] G. Fapen, r die interpolatorische Darstellung stetiger Funktionen, Jakresbher, der Dentyohen
Math, Ver., 23 (1914), 190—210, !
[3] 5. BemssTrm, Sur la Hru!t&l::m des valeurs d'un polynome, Bull. Acad. Sci. de 'URSS8 (1931), {
1025—1050. s

.

Apta Mathomatics Academise Sclenticrum Hungarieoe 18, 1980



DIVERGENCE OF LAGRANGE TNTERPOLATORY POLYNOMIALS 89

[4] G. Griwwarn, Uber die Divergenzerscheinungen der Lagrangeschen Interpolationspolynome,
Acta Sei, Mash, Szeged, T (1935), 207—221.
[5] G. Grilmwarn, Uber die Divergenzerscheinungen der Lagrangeschen Interpolationspolynome
stetiger Funktionen, Annals of Mark., 37 (1936), S08—518,
[6] 3. MarciskiEwice, Sur la divergence des polynomes d'interpolation, Aeta Sci, Math. Szeped,
8 (1937), 131—135.
[71 A. A, Privavov, Divergence of Lagrange interpolation based on the Jacobi abscissas on sets
of positive measure, Sibirsk, Mar, Z., 18 (1976), 837—859 (in Russian).
[8] 1. P. Naranson, Consfructive Theory of Functions, GITTL (Moscow—Leningrad, 1949)
in Russian),
9 P. Tmtjnf Some open problems of approximation theory, Mgt Lapok, 25 (1974), 21—75 (in
! Hungarian).
[10] P. Exnds A.\:}D 'Is'.l‘-lé'jRENWALn. On polynomizls with only real roots, Amale of Marh., 40 (1939),
537548,
[11] P, Ernés and P. Turdn, On interpolation. 111, Annals of Marh., 41 (1940), 510—553.,
[12] P. Erpds and J. Szarapos, On the integral of the Lebesgue fonction of interpolaton, deta
Math, Acad, Sci. Hungar., 32 (1978), 191—195,
[13] A. A, PrivaLov, Approximation of functions by interpolation polynomials, In “Fourfer Analysis
and Approxination Theory' 1—I1, North-Holland Publ. Co. (Amsterdam—Oxford—
New York, 1978), 659—671.
[14] 8. M. BernsTEmN, Quelques remarqgues sur I'interpolation, Mark. Arn., 79 (1918}, 1—12.

{ Received Februwary 22, 1979; revised Qctober 17, 1679)

MATHEMATICAL INSTITUTE
OF THE HUNGARIAN ACADEMY OF SCIENCES
1053 BUDAPEST, REALTANODA 10, 13—15.

Acta Mathamotica Academioe Sclentlarum Hungaricos 3, 1080



CORRECTION OF SOME MISPRINTS IN OUR PAPER*

Page Line F Read | Instend of
74 7 1/ln In e Tarther 1/1nln m. Further
75 11 | 2Y s, ¥in n &,

75 21 = |m{S) = i)
76 13 | Dropping J; Dropping J,

i 3| (= mia) (n = nala))

HO 7 ,E:ﬂ'ri.ﬂhu} {E.‘I Sl )y (x)

81 |@ao| T ... 3.

=1 Bl
83 24 | thatis and that
6 |@sn|lw=101 U . = 0.0..

3 { 5?} tl::l. tl;rk W k:l'l. tI:I'
a7 5 | by W, = R, W=g™ by B = Gt
&7 6 | GUW G, W
28 3 g and MM = 1, integer) g and M
g8 | 10 g[ﬁﬁ'} =5, which g[':l H.]r“ wich

g (281
it 15
Read:
YL U ®)| = Ay = 1835, whenever x£85;.

Here ny =w(x)=n;. Now we take the polynomial ¢,(fi. x) of degree =N,
flgny || =32, for which

Ly oy X)| = Ay = 1205, whenever x¢5,
(see 4.4.4)"
instead of:
YLy (s X)| = A; = 1345, whenever xc§,
(see 4.4.4)."
—k i
8 | 16 | g =27% A =#45 Ge=27% Ay=kiy |
88 | 18 | =220 = 2—2d,
8 | B3 |s5=Ff Us S= 0 18
=l i=RK kml fmiy

* P. Ennds and P. VErRTEsI, On the almost everywhere divergence of Lagrange interpolitory
polynomials for arbitrary system of nodes, Acte Marh, Acad. Sci. Hungar., 36 (1980), T1—8%,
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