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If S is an arbitrary sequence of positive integers, let P(S) be the set of all integers
which are representable as a sum of distinct terms of S . Call S complete if P(S)
contains all large integers, and subcomplete if P(S) contains an infinite arithmetic
progression . It is shown that any sequence can be perturbed in a rather moderate
way into a sequence which is not subcomplete . On the other hand, it is shown that
if S is any sequence satisfying a mild growth condition, then a surprisingly gentle
perturbation suffices to make S complete in a strong sense . Various related
questions are also considered .

1. INTRODUCTION

Let S be an arbitrary sequence of positive integers . Define P(S) to be the
set of all integers which are representable as a sum of dictinct terms of S .
(Having distinct terms means having distinct indices, so that the values need
not be distinct .) Call a sequence S complete if P(S) contains all sufficiently
large integers. Often writers have called S complete only if P(S) contains all
positive integers ; we will call such a sequence entirely complete .
Considerable study, spanning thirty years, has been devoted to completeness
and related properties . (See [1 ; 2, Chap. 6] for surveys of the subject .)

It is a commonplace observation that completeness is not a very "robust"
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property, in that removing a few terms of a complete sequence can often
destroy the property . Entire completeness is even less robust . Therefore, it is
often more interesting to consider the following property . Call a sequence S
strongly complete if it remains complete after removal of any finite number
of terms .

Although strong completeness is a very interesting property and will figure
considerably in what follows, we will be primarily concerned with another
notion of robust properties, namely that of properties that are preserved
under perturbation. If S = {s n } and X = {x,, } are sequences, say that a
sequence of integers T = { t o } is an X-perturbation of S if for every positive n,
t o lies between s„ and s„ + x„ . Note that this definition allows the x„ to be
negative or zero .

Completeness is too restrictive a poperty to be stable under X-
perturbation, unless X contains some zeros. Hence, following Folkman [3],
we say that S is subcomplete if P(S) contains any infinite arithmetic
progression. This property does lead to interesting results. In particular, Burr
[4] has shown that if xn = O(n'), where a < 1, then any X-perturbation of
the values of any polynomial of degree at least one is subcomplete . In fact,
this holds even for "polynomials" with non-integral exponents .

From this, the question naturally arises whether the above could hold for
a > 1 . We have not been able to deal with the case a = 1, but we will show
that if a > 1 and the early terms of X are sufficiently large, then any
sequence is X-perturbable into a sequence that is not subcomplete . To show
this will be the primary task of Section 2 of this paper ; actually somewhat
more will be shown .

From the above, subcompleteness is a somewhat "fragile" property . It is
perhaps remarkable that, on the other hand, incompleteness is far more
fragile . In Section 3, we will show that any sequence satisfying rather mild
growth conditions can be very slightly perturbed into a sequence which is
strongly complete . Section 3 will also explore the limits of this phenomenon .

In the following sections, lower-case letters will denote integers, upper-case
letters will denote sequences of integers, and Greek letters will denote real
numbers .

2 . PERTURBATIONS THAT DESTROY COMPLETENESS PROPERTIES

Clearly, any sequence is 1-perturbable into a sequence which is not
complete, since the perturbed sequence can be made to consist of even
numbers only . Because of this, the interesting questions of this type center on
subcompleteness . Our principal result in this section is the following .
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is sufficiently small, and if X = {x,}, then any sequence has an X-
perturbation which is not subcomplete .

We will prove this result in considerably stronger form, but first we prove
two lemmas . The following result, of interest in itself, is based on an idea of
Cassels (see 15, Lemma 9; 6, Lemma 2]). Write I all for the distance from a
to the nearest integer .

LEMMA 2.1 . Let S = {s 1 , s2 -4 be an infinite sequence of integers, and
suppose that for some irrational a it happens that

W

i=1

Then the density of P(S) in any infinite arithmetic progression is no more
than 2y.

Proof. We first note that if n is any integer satisfying I an

	

y, then
n P(S) ; for suppose, on the contrary, that

n=

1

iEI

n=1

as i

aa i

1
x n

1=y< Z .

1<y< an ~1,

a contradiction .
Therefore, the lemma will be proved if for every infinite progression

A = {a + b, 2a + b, 3a + b, . . . }, the density of n in A for which Il an 11 < y is
equal to 2y. But this is an immediate consequence of the fact that the frac-
tional parts of the sequence {aa, 2aa, 3aa, . . .} are uniformly distributed in the
unit interval, completing the proof .

Our next lemma is surely well known, although we know of no explicit
reference . It follows from basic results in Diophantine approximation, so we
will not include a proof.

LEMMA 2.2 . There exist real numbers a and 6 with the property that any
m consecutive integers contain an n for which an < 61m .



In the above, a can be taken to be any quadratic irrationality, or any real
number whose continued fraction has bounded partial quotients . If we make
the choice a = (1 + \/5)/2, 6 can be taken to be 2, and even somewhat
smaller.

The next theorem clearly includes Theorem 2.1 .

THEOREM 2 .2 . Let a and 6 be as in Lemma 2 .2, and let X = {x n } satisfy

641/13/4-3
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n=1

Then any sequence is X perturbable into a sequence S for which the density
of P(S) in any infinite arithmetic progression is less than 1 .

Proof. By Lemma 2 .2, the perturbed sequence 1s n } can be made to
satisfy II as n II < 6/ xn , and hence

W

" n II < 2*
n=1

1

	

1
xn I < 2ó

-

The result now follows from Lemma 2 .1 .
We close this section with an immediate corollary to Theorem 2 .1 . Call a

sequence S strongly subcomplete if it remains subcomplete after removal of
any finite number of terms .

THEOREM 2.3 . If the sum

converges, and if X = Ix n }, then any sequence has an X-perturbation which is
not strongly subcomplete.

The results of this section, together with those of [4], still leave open
many questions, some of which will be discussed in Section 4 .

3 . PERTURBATIONS THAT PRODUCE COMPLETENESS PROPERTIES

We will see that, generally speaking, very slight perturbations suffice to
render sequences strongly complete, in contrast to the results in Section 2 .
We begin by stating two of the primary results in this section .

THEOREM 3 .1 . Let S = 1s n } satisfy sn+z < 2s n for large n. Then S is 1-
perturbable into a strongly complete sequence .
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THEOREM . 3.2 . Let S = {s„} satisfy sn}3 < 2s„ for large n, and let X
have infinitely many nonzero terms . Then S is X-perturbable into a strongly
complete sequence .

We will defer the proofs of these results . Note that the import of
Theorem 3.2 is that the perturbations can take place at arbitrarily sparse
points, given the stronger condition on S . Another difference between
Theorems 3 .1 and 3 .2 is that in the latter, the perturbations can be required
to be of either sign . It is not clear whether this distinction is actually
relevant, but various facts, expecially Lemma 3.4 and Theorem 3 .7, suggest
that it is . We will now work toward proving Theorem 3.1, beginning with
some definitions .

Call S precomplete if P(S) contains arbitrarily long sequences of
consecutive integers, and strongly precomplete if it remains precomplete upon
removal of any finite number of terms . If s„ + , - Y„" , s i < b for some b, say
that S is a -y-sequence. Also say that P(S) has gaps bounded by k if any
k + 1 consecutive positive integers contains a member of P(S) . By
Lemma 3.2, these two properties are essentially the same . Finally, if c is a
constant, and C = {c, c, c, . . . }, call a C-perturbation a c-perturbation .

If -1 "/' is any property of sequences we say that is strong if any sequence
having the property continues to have the property after removing any finite
number of terms . Examples of strong properties are those of being strongly
(pre-) complete, being a E-sequence, and being infinite . An important prin-
ciple that we will use is that any set of strong properties that implies
completeness also implies strong completeness .

The first two lemmas that follow are taken from [7] ; their proofs are very
simple .

LEMMA 3.1 . Suppose S has two disjoint subsequences A and B, where A
is precomplete and B is a -y-sequence . Then S is complete .

LEMMA 3.2 . If S is a E-sequence, then P(S) has gaps bounded by some
k.

LEMMA 3.3 . If a sequence A of integers has infinitely many disjoint
subsequences A„ A Z , . . ., where for each i, P(A l ) contains two consecutive
integers, then A is strongly precomplete.

Proof. Obvious . (Note that there is no need for the A ; to be infinite
sequences .)

LEMMA 3 .4 . If A is a E-sequence, then A is 1 perturbable into a strongly
precomplete sequence .
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Proof. By Lemma 3.3, it clearly suffices to show that A can be 1-
perturbed into a sequence A' for which P(A') contains two consecutive
integers . We first note that if any two different subsets of A have the same
sum, this is trivial, so we assume that all the subset sums of A are distinct .
By Lemma 3 .2, there is some k such that P(A) has gaps bounded by k.

Suppose that for some n, it happens that

(1)

451

Let m be the largest m E P(A) satisfying m < a n . By assumption, in satisfies
an - k - 1 < m < a n . But by (1), m is the sum of at least k elements of A .
Increasing an - m - 1 of these by 1, we create a sequence A' for which
an - 1 and a n are both in P(A') .

Consequently, we may assume that

k

a,< Y n - í
í=1

for all n . But this implies that an = O(an) for some a < 2, and a simple
counting argument shows that the subset sums of A cannot be all distinct.
This contradiction completes the proof .

Our next result is interesting enough to be stated as a theorem .

THEOREM 3.3 . Suppose that A = {a í } and B = {b i } are both E-
sequences. Then A can be I -perturbed into a sequence {a„} such that
{a ;, b„ a', b z , . . . } is strongly complete .

Proof. This is immediate from Lemmas 3 .1 and 3 .4 .

LEMMA 3 .5 . If a sequence S= iSnl satisfies sn+1 < 2Sn for large n, then
S is a E-sequence .

Proof. Obvious .

Proof of Theorem 3 .1 . Obvious from Theorem 3.3 and Lemma 3 .5 .

We now work toward proving Theorem 3 .2 .

LEMMA 3.6 . Let A = {an } be any infinite sequence and let B = {b n } be a
E-sequence. Then A can be 1-perturbed (or (-I)-perturbed) into a sequence
{s„} such that S = {a„ b„ az, bz ,. . .) is strongly precomplete .

Proof. We will show that we can construct S so that P(S) contains two
consecutive integers ; the desired result then follows by induction, using
Lemma 3.3 . Since B is a E-sequence, P(B) has gaps bounded by some k . Let
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m = a, + . . . + ak . Then there is an n E P(B) for which n - k - 1 < m < n .
Increasing n - m - 1 of the terms a,, . . ., ak by 1, we have our desired
construction . The argument for (-1)-perturbations is exactly analogous .

As before, we state the following result as a theorem .

THEOREM 3 .4 . Let A = {an } be any infinite sequence, and let B = {b,}
and C = {cn } be E-sequences. Then A can be 1 perturbed (or (-1)perturbed)
into a sequence {a ;,} so that {a~, b„ c, , az, b z , c z , . . .} is strongly complete .

Proof. Immediate from Lemmas 3.1 . and 3 .6 .

Proof of Theorem 3.2. By Lemma 3.5, S contains three disjoint E-
sequences A, B, and C. Without loss of generality, {x3n } has infinitely many
positive terms, and A = { S3n } . Theorem 3 .4 can now be applied using the
appropriate subsequence of A . This completes the proof.
Theorems 3 .1 and 3 .2 point the way to studying sequences S= {s,'},

where s,,, ,Is,, --> A as n oo . These theorems then apply when A < 2"' and
~ < 2 1 3 respectively . On the other hand, if .i > 2, a trivial counting
argument shows that S cannot even be subcomplete . Thus there is a
considerable amount of interesting unexplored territory in the exponential-
growth case. Our next results will probe this territory to some extent . One
important point is A = (1 + V~5)/2, and our next theorem relates to this . This
result refines part of Theorem 5 of [6] ; we will state it rather carefully, since
all the conditions are best possible in some sense .

THEOREM 3.5 . Let 2 < s, < S2, and S n > S n _ 1 + S n_ z for n > 3 . Then
S = {S, , s z ,. . . } is not complete .

Proof. Form the sequence {t n } by setting to = Sn + S n_ Z + where the
last term in the sum is either s, or S2 . Write this final term as s, . We will
prove by induction that t en , - 1 P(S) for any n > 1 . This certainly holds
for n = 1 . Observe that

Sn+1 - tn -Sn+1 -Sn -Sn_z -Sn_4 -

>Sn_1-Sn_2-Sn_4 - . . .

(1)

> SE+ 1 - S E

2

	

if n is even

0

	

if n is odd .

Suppose that í2n _ 3 - 1 P(S) ; we will prove that t zn , - 1 P(S). Let s„,
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be the largest term in the (assumed) representation of t zn _, - 1. By (1), we
have S2n - (t 2n -, - 1) > 1, so that m < 2n . On the other hand,

(t2n-I

	

I)

	

(SDi-2 + S2n-3 + S2n-4 + . . . + sl)

- (S2n-1 - Stn-2 Stn-4

	

) - I

- S2n-1

	

t2n-2

	

I
> 1,

where we have again used (1) . Therefore, m > 2n - 2, so m = 2n - 1 . But
then (t2n-1 - 1) -Sm = t2n_3 - 1 (S), so that in fact t2n - 1 - 1 P(S)-
This completes the proof .
From this we have immediately that if limn oo (sn+I/Sn) _
> (1 + vf5-)/2, then S cannot be strongly complete . When _ (1 + ,F5)12,

the situation is delicate . Let fn be the nth Fibonacci number. Then {fn - c} is
not strongly complete for any c > 0, by Theorem 2 .5 . On the other hand, it
is not difficult to see that { fn + c} is strongly complete for any c > 0 . Even
more remarkable is the fact, due to Graham [8], that {fn - (-1)" } is
strongly complete, but becomes incomplete upon removal of any infinite
subsequence . We state one consequence of Theorem 3 .5 in a formal manner ;
note the strong contrast with Theorems 3 .1 and 3 .2 .

THEOREM 3 .6 . For any /3 < (1 + V"5-)/2, set X = { [/7" ] } . Then there is a
sequence S = {s„ } satisfying lim n-oo s n+ 1 /s n = (1 + -,/'5-)/2 such that no X-
perturbation of it is complete .

Proof. Set S = Jfn - 2 [/l" ] }, and omit enough terms so that the
conditions of Theorem 3 .5 are satisfied .

Another property of some interest is that of being precomplete . In our next
theorem we will show that in Lemma 3 .4, the fact that the perturbations are
positive is essential by exhibiting for each c > 0 a f-sequence which is not
(-c)-perturbable into a precomplete sequence .

THEOREM 3 .7 . The sequence S = {k, 2k, 4k, 8k, . . . } is not (2 - k)-
perturbable into a precomplete sequence if k > 3 .

Proof. We will prove more, that no (2 - k)-perturbation S' of S can
have the property that P(S) contains two consecutive terms . Let m and n be
any two different numbers in P(S), and let m' and n' be the values of the
corresponding subset sums in S' . Without loss of generality, m - n > k. We
will show that m' - n' > 2 .

Consider the binary representations of m/k and n/k. If m/k - n/k = 1, it is
easily seen that the representaton of m/k has exactly one 1-bit that the
representation of n/k lacks . In other words, the representation' of m as a sum
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of terms of S has only one term missing from the corresponding represen-
tation of n . But even if this term is perturbed and all others left alone, we still
have m' - n' >, 2. By induction, m' - n' > 2(m - n)/k in general, and the
theorem is proved .

We close this section with one final result not directly related to pertur-
bations .

	

By Theorem 3.5,

	

if S = {s„}

	

satisfies

	

lim„- ,,, sn+ ,/s„ _*
~ > (1 +V/-5)/2, S is not strongly complete. On the other hand, the following
theorem exhibits a strongly complete S with satisfies lim„_,,, s, I" = 2 . Thus,
somewhat surprisingly, the relatively smooth behavior of S is crucial to
Theorem 3.5, and undoubtedly to some of the other results of this section as
well .

THEOREM 3 .8. Let S be a sequence containing all sufficiently large
powers of 2, and any infinite sequence of odd integers . Then S is strongly
complete .

Proof. Since the assumptions about S are strong, it suffices to prove that
S is complete . Let A be the sequence of powers of 2 in S and let B be the
sequence of odd numbers . Suppose that 2 k and all higher powers of 2 are in
S. Then all numbers of the form n • 2 k are in P(A) . On the other hand, P(B)
certainly contains a complete sequence of residues (mod 2 k ). From these two
facts, it is clear that S is complete .

4 . OPEN PROBLEMS

The results presented here suggest many interesting questions . An obvious
such question is whether the condition on X can be weakened in
Theorems 2.1 and 2.2, or at least in Theorem 2.3 . It seems possible that the
a in the proof might be made to depend on S, yielding such a weakening,
perhaps to mere convergence of Y 1/jx„ . However, a weakening to
xn = O(n), for instance, would probably require a completely new approach,
if such a result were true at all . Of course the results of [4 ] or even [3 ] show
that Theorems 2.1-2 .3 are false for x„ = 0(n' - '), e > 0 . In the other
direction, perhaps those results could be improved, but already the proof of
the main theorem in [3], on which [4] is based, is very difficult .

Another question along the lines of [4] is the following : Does there exist a
sequence S which grows faster than any polynomial and has the property
that if x„=O(x'-E), then any {x„}-perturbation of S is subcomplete? Using
the results of [41 and Lemma 2.2 of [3], it is easy to show the following :
Given such a sequence X = {x„ }, there is a sequence S which grows like
eX/I° g X (say), such that any X-perturbation of S is subcomplete . If S has to be
chosen first, however, we do not know what to do . One can also ask similar
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questions with the property of subcompleteness replaced by that of P(S)
having density 1 in some arithmetic progression . In view of Theorem 2.2,
this distinction is only relevant when the order of growth of x„ is close to n .

Section 3 is also a rich source of open problems, and we will mention a
few in general terms . Problems involving sequences S = {s„} for which
Sn+ 1/S n , A have already been discussed. In particular, are A = 2 1/2 and
A = 2" actually critical in Theorems 3.1 and 3.2, respectively? It seems
likely that the critical ~ for Theorem 3.1 is either or (1 + vF5)/2, not in
between .

Another question that has been mentioned is that of the extent to which
smooth growth is important in the results . It almost certainly has some
importance, in view of Theorems 3.5 and 3 .8 . Also, the significance of the
sign of the perturbations is uncertain, since Lemma 3.4 and Theorem 3.7 do
not clarify the situation much .

Finally, what can one say in Section 3 if completeness is replaced by
subcompleteness? For example, does Theorem 3 .6 hold for subcompleteness?
Taking a more general point of view, does there exist a subcomplete
sequence which grows more slowly than {2"} and which is not 1-perturbable
into a complete sequence? It seems likely that such a sequence does exist ; of
course, if the growth condition is removed, {2, 4, 8, . . .} is such a sequence .
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