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Remarks on the differences between consecutive primes

In problem 654, Journal of Recreational Mathematics, Harry Nelson asks: “What
is the most likely difference between consecutive primes?” Here a difference is
‘most likely’ for primes <n if it occurs at least as often as any other difference.
For a discussion see J. Rec. Math. /1, 231.

We first show that a well-known conjecture of Hardy and Littlewood implies
that the most likely difference tends to infinity with n, so that there is no most
probable difference independent of n.
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In Hardy and Littlewood: On the expression of a number as a sum of primes.
Collected Papers of G.H. Hardy, VI, p. 682; they conjecture that the number of
solutions of

pi—pi=2k, pisn, ()
equals
n p—1
+o(l =
{(.‘ 0( }) loggn H p_z (2)
podd

where ¢ is an absolute constant.
Let p; denote the ith prime; then (2) implies that the number of solutions of

pPis1—Pi=2k,  pi1=n (3)

also is of the form (2). Since every solution of (3) is a solution of (1) it is clear
that the number cannot be greater than (2). On the other hand if we have a
solution p;—p;=2k of (1) which is not a solution of (3), that is i>;+1, then
we get a triple of primes

pi- pit2u,  pi+2k;  lsu<k. “4)

From Brun’s method it follows that the number of such triples with p;<n is less
than

3
een 1] (l— —)<
¥ k<p<nt 14

for each fixed u. and hence <cf n/logn for all triples in (4). Inequality (5) follows
from the fact that the primes satisfying (4) exclude three residue classes (mod p) for
p>k. Since the bound (5) is small compared to the estimate (2) it follows that
(2) is also an estimate for the number of solutions in (3).

Now (2) implies that the most likely difference between consecutive primes goes
to infinity with n. Denote the number of solutions of (3) by f(n,k) and let &k, be
the minimum value of k for which f(n. k) is maximal.

Brun’s method gives the well-known relation

n
iogn >0 ®)

f(n.ky<cyn/log’n (6)

In view of the divergence of [ [ (p— 1)/(p— 2) estimates (2) and (6) imply that

o B
f(”-l\n)f logzn o« (?)

and (6). (7) imply k,— = with n.
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Of course the prime number theorem implies
i 8
f(ﬂ,kn)/l‘(;g;g—n>f>0 ®)

for some fixed constant ¢, but this is not sufficient to prove that k,—oc.
Next we ask: How fast does k, go to infinity? We conjecture that

k,/(logn)'~¢—>ox  forevery &>0, 9)
but

k,/logn—0. (10)
Conjecture (2) is not strong enough to deduce (9) or (10). Perhaps they can be

deduced from stronger plausible conjectures.
Let /, be the largest integer for which

fln.ky)=f(n.1) (11)
then we still expect that

1,/logn—0. (12)
Finally we conjecture that

f(n.k,)log?n/(nloglogn)—c>0. (13)
Without unproven conjectures we cannot even improve (8) to

f(n,k)log2n/n—o0 . (14

Let F(n,k) denote the number of solutions of

pi—pj=2k, pi=n. (15)
Let K, be the least integer & for which F(n, k) is maximal.
Then
logl
F(n,K,)>c 881, (16)
log*n

In order to prove (16) choose A=p,---p,,<V n. The primes p with p,<p<n
are divided into ¢ (4) residue classes (modA) with J,n/logn in each class
s=1,..., ¢ (A). Here 4+ -+ + 4, 4y= 1 +0(1). Thus the differences p,— p; where p;, p;
belong to the same residue class (mod 4) number



118 Kleine Mitteilungen

(A4 + Bt ) g2 (s +o ) g 7
il 2log?n (A) 2log?n

Since the number of integers <n which are divisible by 4 is <n/A it follows from
(17) that one of these integers has at least

n
(1+o() Ty " Tiogn (18)
representations (15). Now
A 1
= ]I (1+ ):-clo logn. 19
@A) i<(1/2)logn p,-—l glog (19)

By a more careful application of this method we can prove that for any
monotonically increasing f(n), with f(n)—cc as slowly as we please, there is a
sequence [, < f(n)logn for which

F(n.l)log*n/n—x . (20)

We cannot prove (20) if we only assume /, < clogn for some fixed c.
P. Erdés and E. G. Straus, University of California, Los Angeles
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