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Synopsis
If z 1 , z2 . . . z" are complex numbers satisfying Iz,-zj 1? 1 for all i, j then the number of the 2" sums
Y_i e i z i, where e i = t1, which lie in any circle of radius r cannot exceed a,2"/n 3/2 where a, depends
only on r.

Offord told me the following conjecture (for earlier references see [1, 3, 4]) . Let
z 1 , . . . , z n be n complex numbers satisfying

Consider the 2n sums

min Iz i - zj I? 1 .
1-t<j=n

n
sizi ,

i=1

But before stating our results it is convenient to define the random sums
explicitly. The Radamacher functions are periodic functions of period 1 defined as
follows

O~t<z
r1(t)

	

-1 z-t<1

r,(t) = r1(2't) .

n

Z r, (t) zi

	

(2)
= 1

Let C, be any circle of radius r. Then the number of sums (2) which are in Cr is
less than

a,2 nIn
3
z

(1)

So if we set sn = rn(t) we obtain automatically a sequence of plus and minus
signs. These can equally be determined by expanding the number t in the binary
scale and if the ith place is 1 we put s, = 1, if zero e i = -1. The above sum can
now be written as

(3)

where a, is a constant which depends only on r . We are going to prove this
conjecture in a slightly sharper form . The proof will be very similar to a proof of
Sárközy and Szemerédi [5] .
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I have just learnt that some time ago, Halász independently proved similar and
in some sense more general results [2] . Put zi = i, 1 - i - n . It is easy to see (by the
central limit theorem) that there are c,2"/n'2 sums (2) which are equal, also it is

2( 2 1)"
easy to see that the interval of length r and centre -

	

contains c2 r2n/n

sums of the form (2) [2] . I conjecture that this example is essentially best possible,
i .e. 1 conjecture a, < c3 r . More precisely denote by f(C„ z	zn ) the number
of sums (2) which are in the interior of C, . Define

F(n ; r) =max f(C, ; z,, . . ., zn )

where the maximum is extended over all circles of radius r and all {zi } satisfying
(1). I first of all prove the following :

THEOREM 1 . If r - 2

F(n ; r) < 10'x 22"/n2.

As stated before, I conjecture that in Theorem 1 10 5 x 2 can be replaced by c3 r.

2( 2 1 )n
Perhaps the maximum R(n ; r) is obtained if zi = i and the centre of C, is -

[2] . The constant 10' in our Theorem could be greatly reduced but since I cannot
obtain the best possible result I do not try .

It is easy to see that every Cr can be covered by fewer than 100 r 2 circles of
radius 2 . Thus to prove our Theorem we only have to prove

F(n ; 2) < 103 2"/" 2 .

	

(4)

We clearly can assume without loss of generality that at least half the z's are in
the first quadrant. We can also assume, for convenience, and again without loss of
generality, that there are an even number of these z's satisfying

1 <=IZ,I<=IZZI<_ . . . < Iz2mI m?n/4 .

	

(5)

If (4) does not hold then there is a circle C? so that at least

1032 2m/nl > 2.10222'/(2 m)1

	

(6)

SUMS s(t)=y;-"1 ri (t)zi are in C,, (we of course obtain C2, by translating out Ci by
~`n 2m
Li=1 r2m+i Z2-+i) .
Now consider the sums

o•(t, k)=s(t)-rk(t)zk .

Each such sum is determined by a sequence {rl i } where

_ r, (t)

	

i<k

ri+,(t)

	

i - k.

We shall show that all these sums are distinct . Let o, (t,, k,) and or(t2i k 2 ) be any
two sums . First if k, = k2 = k and rk (t,) = rk (t2), then clearly s(t,) and s(t2 ) must be
distinct in the sense that they are derived from different sequences {rl i } (although
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they could have the same complex values) . Unless both these conditions are
satisfied we show that (7-(t,, k,) and Q(t2 , k2 ) have different complex values and
thus come from different sequences {-qi} . Since by hypothesis the sums s(t l ) and
s(t2 ) lie in the same C.,

IQ(ti, kJ - Q(t2, k2)I > Irk ,(t,)z -rk2(t2)Zk2l % l .

Now if k, = k2 the first term in the second member is 214k---2 since
rk (t,) rk (t2 ) and if k, k 2 then it exceeds l Zk , - Zk2 l or l z k , + Zk2l as the case may
be. The first is not less than 1 by (1) and the second because all the z's are in the
first quadrant. This completes the proof that the two sums Q(k,, t,) and Q(k2t2)

are distinct .
Consider the sums

2-
S(t) -rk (t)Z k = ~ ri (t)Zi k < m

i=1
i#k

IZII~-5 IZ21

	

. . . BIZ-I~ . . . ~1Z2mI .

The number of sums (7) is by (6) greater than 10 222m/m 2 . There are at least
1022-/m' of these sums which coincide in their first m summands. If we write

A = {ri (t) ; ri(t) = 1, m+l:i~2m}

(7)

then A is a subset of a set of size m, and as we have just shown there are
10 22- / m' distinct subsets A. Now a theorem of mine states that if we are given a
set S of t objects and a family of L subsets of S where L is greater than the sum

of the r greatest binomial coefficients (
t\

o ::5; i < t, then there are two of theseli
subsets such that one contains the other and their difference has at least r
elements . Now by a simple computation

u
1022- /m 2> 3 u

	

u = m
2

thus 10 22- /m= is certainly greater than the sum of the three largest binomial
m\
i

coefficients

	

I . Thus there are two sums (7) s,, - z, and Sit - Z2 which coincide in
/

their first m summands and one of them say s,, - z, has at least three extra
summands with si = + 1 . Now since I S;, - S;ZI - 1 - I zm I we have

I(Si,-zl)-(Si2 - Z2)` -3lzml .

On the other hand the extra summands with s i =+1 give (Izil IZmi2I for

m ? i >
2

and the z i are all in the same quadrant)

I( si, -Z 1) (Si2 -Z2) I?3,/2 1Z-I

an evident contradiction, which proves our Theorem .
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The same argument gives that if the z i are vectors in k dimensional space
satisfying (1) then the number of summands (2) in a sphere of radius C, is less
than c2 k r2k 2"/ m 2 .

It is not clear to me what happens if the vectors z i are in Hilbert space . At the
moment I cannot even prove that only o(2") sums (2) can be in the interior of C, .
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