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The sequence 4 of nonnegative integers is an asymplotic basis of order i
if every sufficiently large integer can be written as the sum of & elements of A.
Let M,* denote the set of elements that have more than one representation as a
sum of & elements of A. It is proved that there exists an asymptotic basis A such
that Myi(x) = Qx4 for every e = 0. An asymptotic basis 4 of order f is
minimal if no proper subset of A 18 an asymptotic basis of order k. It is proved
that there does not exist & sequence 4 that s simultaneously 8 minimal basis
of orders 2, 3, and 4. Several open problems concerning minimal bases are also
discussed,

The s¢t A of nonnegative integers is an asymptotic basis of arder h il every
sufficiently large integer can be represented as the sum of /1 elements of A.
Many classical theorems of additive number theory are stalements that a
given sequence of integers is an asymptotic basis of some order. For example,
Lagrange’s theorem asserts that the squares {#®}5_, form an asymptotic basis
of order 4. Linnik [11] proved that the cubes {n*}5_, form an asymptotic
basis of order at most 7. Waring’s problem is the conjecture, proved by
Hilbert [10], that for every & 2= 2 there is 4@ number G(&) such that the
sequence of kth powers {#*}7_, is an asymptotic basis of order G(k),
Goldbach's conjecture that every large even number is the sum of two primes is
equivalent to the assertion that the sequence of prime numbers is an asymp-
totic basis of order 3. Asymptotic bases in additive number theory have been
widely mvestigated [7, 12, 16, 17].
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An asympiotic basis of order & is called minimal if no proper subset of A
is an asymptotic basis of order /i, that is, if each element of A is essential for
the: representation of infinitely many integers. Stdhr [17] introduced this
concept of minimality, Hirtter [8] pave a nonconstructive proofl of the
existence of minimal asymptotic bases, and Nathanson [13] constructed
the first explicit examples. MNathanson [13, 15] also introduced the dual
concept of maximal asymptotic nonbasis, and has considered multiplicative
and combinatorial analogs of these additive number theoretical ideas.
Minimal asymptotic bases and maximal asymptotic nonbases have been
studied by Erdds, Hartter, Hennefeld, Nathanson, and Turjdnyi [2-6, 8, 9,
13-15, 18]

But many open problems remain. For example, does there exist a sub-
sequence of the squares that is a minimal asymptotic basis of order 47
It is not even known if there exists a sequence A of squares that is an asymp-
totic basis of order 4 and satisfies 4{x) = {x'™), Does there exist an
asymptotic basis A of order & such that, for every element a & 4, the set of
numbers not reépresentable as the sum of b elements of A'\{al has positive
upper asymptotic density 7

It is possible to construct an asymptotic basis of order & such that no
subset of A is a minimal asymptotic basis of order f Indeed, Erdds and
Mathanson [6] have constructed an asymptotic basis 4 of order 2 consisting
of square-free numbers with the property that, if Fis any finite subset of A,
then A\ F is still an asymptotic basis of order 2, but, if 71is any infinite subset
of 4, then A'\Jis an asymptotic nonbasis of order 2. The following problem is
unsolved: IT A is an asymptotic basis of order 2, then must 4 contain a
subset that is a minimal asymptotic basis of order /i for some h = 27

Cassels [1] proved that, for every i == 2, there exists an asymptotic basis
A ={a,}7., of order % such that a, = an* + O(p*1) for some a = 0.
Does there exist a minimal asymptotic basis 4 = {a,};., of order A that
satisfies Cassels’s condition a, = an* + On™1)7

In this paper we consider two open problems eoncerning minimal asymp-
toti¢ bases. Tf the set 4 is an asymptotic basis of order f, then A is also an
asymptotic basis of order &k for every & == #. Similarly, if 4 is 2 minimal
asymptotic basis of order &, and an asymptotic basis of order h = k, then 4
is certainly a minimal asymptotic basis of order i But is it possible for a
set A4 to be simultanecusly a minimal asymptotic basis of two different orders?
In particular, does there exist a minimal asymptotic basis of order 3 that is
also an asymptotic basis of order 27 We prove below the weaker result
that if 4 is an asymptotic basis of order 2, then 4 cannot be a minimal
asymptotic basis of order 4.

Let ry4(#) denote the number of representations of # as a sum of # elements
of A, where representations differing only in the order of the summands are
not counted separately. If 4 is a minimal asymptotic basis of order /i, then
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ry{n) = 1 for all sufficiently large n, and r,*(n) = | for infinitely many n.
Let My = {n|#y*(n) = 1} If 4 is an asymptotic basis of order #, how
*small” can M,* be? Let M;*(x) denote the number of elements of M,* that
do not exceed x. We shall construct, for every h == 2, an asymptotic basis 4
of arder k such that My*(x) = O(x*-¥/"+) for every « = 0. In particular,
there exists an asymptotic basis 4 of order 2 such that MA(x) = O(x'*+)
for every € >0. We conjecture that lm,. . MAx)/x'® = oo for
every asymptotic basis 4 of order 2, but we cannot prove that
lim inf,.. MA(x)/x** = 0, or even that lim inf,.. M A(x)/x* = 0 for some
a =0

Notation. If Ay, Ay ooy An-y are sets of integers, let Ag + Ay + 200 - Ay
denote the set consisting of all sums of the form o, -+ ap -+ - @yqy
whereaqed;for i =0, l..h =L T4y =d, = - = Ay, = A, denote
Ay + Ay -+ - + Ay by hd. The set A is periodic if there exists an integer
m = | such that @ + me A for all sufficiently large a= 4. Let A(x) denote
the number of positive integers in 4 that do not exceed x. Let B\ A denote the
relative complement of A in B.

Lemma 1. Let A ={a), and ler B, = (& + @} i—rsa - If A s not
periodic, then lim,.(B(x) — A(x)) = oo,

Proof. Letr <s <t Letd, ={a,<+ a)ii,pand A, ={a 4+ ali,a-
Ifx = a, 4 a,,then

B(x) = A(x) + (AMANX) = Alx — a,) — 5+ (A4 Nx)
.:?-'- A(I] — iy = + {Afllli{lle

If A/)\A, s finite, then n € A, implies n & A, for all sufficiently large n. Thus,
if @ e A is sufficiently large, then @ + aye A, and 50 a + a,€ 4, , that is,
a-+ a, =a + a, for some a' e 4, and so a +{a, — a,)e A for all suffi-
ciently large ae 4. But a, — a, = |, hence A is periodic. But this is false.
Consequently, A,\4, is infinite. and so lime_.(4,\4.Mx) = oo, This proves
the lemma.

Lemma 2. Let A be an asympiotic basis of order h. If A is periodic, then A
¥ not minimal.

Proof. Let A be a periodic asymptotic basis of order &, Then there exist
positive integers m, p, and N, and finite sets RC [0, m — 1] and FC [0, p]
such that

A=Fula=r(modm)|reR,a>p}
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and such that ne fid forall w = N. Leta = r | gme A, wherea =m -+ p
and r £ R. We shall show that A'{a} is an asymptotic basis of order f. Choose
# = fha+ N Then neshd, and so

no= ka+d; + iy

where k = Oand g; € A\fa) for i = 1,....h — k. If & = 0, then n = Al A\ {a]).
Suppose k = 0. Clearly, & < h since n = ha. Since n = ha + N, it follows
that @; =>a = p for some a;, say, a; = &, . Then a, + km = o, r
{mod m) for some r e R, and so a, + km & 4. Then

n = kla'— m) + {a; -+ ko) + @y -+ == 4 ay. 5 hld\[a])
and so A\{a} is an asymptotic basis of order & Thus, A is not minimal.

Taeorem |, Let 4 be an ayymprotic basis of order 2. Then A is not a
minimal asymptetic basis of order 4,

Proof. Let ne2Ad for n = N. Suppose that 4 15 a minimal asymptotic
basis of order 4. Fix &* = 4, Then there is an infinite sequence of integers
my < fy < = such that s ¢4(4\{a*}) for all i = 1,2,.... Fix n;. Choose
be B = XA\[a*}). Then b = ay + a4, , wherea, , a; € A\ Ja*} I b == 1, — N,
then n; — b =N and so m,— b =a, + u, for some @,,a,54. Then
n,=b+a,+a, =o+a,+a; +a,44. But m ¢4 A\ [a*}), and so
ay — a* or a; = a*, say, a; = @*. Then n; — b = a, |+ a*. The number of
integers of the form m, — b with & = n, — N is B(n, — N}, and

B(n;) — N = B(n; — N) = A(n; — a*) < Alny)

and so B(n)) — A{n;) = N for all n;. Lemma 1 implies that the set 4 is
periodic. But then Lemma 2 implies that 4 is not a minimal asymptotic
hasis of order 4. This proves the theorem.

The following lemma is well known.

Lemma 3. Let & << 8, << == be a sequence of integers such that 5, = |
ane sy divides s for & = 1, 2.... . Then every positive integer n has o unigue
representation in the form n = Y, dis,, where 0 < dy < 5.lv. and
d, = O for all but finitely many k.

THEGREM 2. Forevery h = 2, there exists an asymptatic basis A of order h
such that, iff M denotes the set of integers that have more than one represen-
ration as a sum of h elements af A, then M,(x) = Q-1 for every
e =
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Proof. Let A — {Jioy A, where A, consists of all integers of the form

L

Y ek - 1) (D,

fena

where 0 = ¢, = & and ¢ — 0 for all but finitely many k. Since (!)" divides
((k 4+ 1)U, Lemma 3 jmplies that every integer can be written uniquely
in the form

S dyk ),
2

where 0 == ) - ((k + DYDY = (k 4 1), and d, = 0 for all sufficiently
large k. But ;. can be written uniguely in the form

-1

dy = ¥ ealk + 1),
L]
where 0 = g;, = k. Thus,
- m D1
n= 3 dfkl* = ¥ ¥ ealk + 1) DN
Rma =1 f=dl
Ai—1 oy
= YUY el + D (kP e dy + Ay + 0+ Ay, C hA.

i=0 k=]

Thus, 4 is an asymptotic basis of order &, and every positive integer has a
unique representation in the form n = @, + & - - + a,., , where a, £ 4,
fori=01..°0—1.

Let ne M,*. Then ry#(in) = 1, and s0 n can be written in the form
m=2>5 + b+ -+ by, where b;ed for i=1,... h and there exists
te{ 1., h — 1} such that b, by A, for some i = j. Consequently, if
)y =1, then neld, 4+ AH - A,-t = ke T where: #o. fea €
10, Lo b — 1}, We now estimate the number of integers of this form, If
(K" = x <= ((k + 1Y, then

k
A < [T+ D =k + D! < [k + 1) 220 = O(x1he)

L]

and so (4; + -+ A, x) = O(x'*), The sumset 24, consists of all
numbers of the form

e

Y, (e + ek + 1 (I = § efth -+ D (&Y,

fom=1 Bl
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where 0 < eop =< 26 TE(RYP < x < ((k + DD, then

*
(24)(x) < ]__I {2! 4 1) = Ox4/" €
d=1

and s0 (24, + g riv v - A;__“}[x} = O{x-Lh+ey It follows that M, 4(x) =
O(x1-14=) This proves the theorem.
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