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LAGRANGE'S THEOREM WITH N ' SQUARES
5. L. G. CHOI, PAUL ERDOS AND MELVYN B, NATHANSON!

AnstracT, For every N > | we construct & set 4 of squares such that [4| <
{4/log )N 'Y log N and every nonnegative integer n < N is & sum of four squares
belonging to A.

Let 4 be an increasing sequence of nonnegative integers and let A{x) denote the
number of elements of 4 not exceeding x. If every nonnegative integer up to x is a
sum of four elements of 4, then A(x)* > x and s0 A(x) > x'/*, In 1770, Lagrange
proved that every integer is a sum of four squares. If 4 is a subsequence of the
squares such that every nonnegative integer is a sum of four squares belonging to
A, then we say that Lagrange's theorem holds for A. Since there are | + [x'/]
nonnegative squares not exceeding x, it is natural to look for subsequences A of the
squares such that Lagrange’s theorem holds for 4 and A is “thin™ in the sense that
A(x) € cx® forsome a < 1/2.

Hiirtter and Zollner [2] proved that there exist infinite sets § of density zero such
that Lagrange’s theorem holds for 4 = {#®|n & S§}. It is still true in this case that
A(x) ~ x'2. Using probabilistic methods, Erdds and Nathanson [1] proved that,
for every e > 0, Lagrange's theorem holds for a sequence A of squares satislying
A(x) < cxB/B*e

In this paper we study a finite version of Lagrange’s theorem. For every N > 1,
we construct a set A4 of squares such that |4| < (4/log 2)N'/* log N and every
n < N is the sum of four squares belonging to A. This improves the result of Erdos
and Nathanson in the case of finite intervals of inlegers. We conjeciure that for
every ¢ > 0 and N > N(e) there exists a set 4 of squares such that [4] € NU/4+=
and every n < N is the sum of four squares in 4.

Let |4| denote the cardinality of the finite set A4 and let [ x] denote the greatest
integer not exceeding x,

LemMa. Let a> 1. Let n > a® and n =0 (mod 4). Then either n — a® or
n = (@ — 1Y is a sum of three squares.

Proor. If the positive integer m is not a sum of three squares, then m is of the
formm=#Bi+T).Hs=0thenm =3 (mod 4). If 5 > |, then m = 0 (mod 4).
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Since @ — 1, a are two consecutive numbers, there exist i,/ € {0, 1} such that
a— i is even and @ — j is odd, hence (@ — i¥ =0 (mod 4) and (a — )’ =1
{mod 4). If n = | or 2 (mod 4), then

n—fa—if=n=1 or 2 (mod4),
and so n — (a — i) is a sum of three squares. If n = 3 (mod 4), then
n—(a—jf=n-1=2 (mod4),
and so n — (@ — j)* is a sum of three squares, This proves the lemma.

THEOREM. For every N 2 2 there is a set A of squares such that
4 1/3
S log
i (lug 2 )N i

and every nonnegative integer n < N is a sum of four squares belonging to A.

Proor. Let N > 6. Let A, = {a’|0 < a < 2N'” and a® < N} and let 4, consist
of the squares of all numbers of the form [k'/2N /%] — i, where 4 < k < N'/* and
i€ {0,1}. Then |4, € 2N"2 + 1 and |4, < 2N'? — 6, Let A3 = A, U A,.
Then |A4,| < 4N/3,

The set 4, contains all squares not exceeding min(¥, 4N 2/*). Thus, if 0 < n <
min({ N, 4N?*/?), then n is a sum of four squares in A; C A;. We shall show that if
4N*?* < p < N and n 2 0 (mod 4), then there is an integer 5 € A, such that
0<n—b*<4N? and n — b* is a sum of three squares. Since each of these
squares does not exceed 4N/, it follows that n — 5 is a sum of three squares in
Ay, hence n is a sum of four squares in 4, U 4, = A5,

Suppose 4N*? < n < Nand n = 0 (mod 4). Let k = [n/N**]. Then 4 <k <
N3 Let a = [k'/*N'/?]. Then a* < n. Moreover, a* € A, and (a — 1)* € A,. By
the lemma, n — #” is a sum of three squares for either b=agorb=a— 1. We
must now show that 0 < n — b? < 4N, Since kN*? < n < (k + )N and
a < k'N'V? < g+ 1, it follows that

n—b2n—a > kNY? - (KVANV3)R = .
Since k < N'2and 4 < 3INYSfor N = 6, it follows that
n— 8 < (k+ )N~ (a— 1)

< (k + YN — (KMIN15 - 9y

< (k + DINY? — (kN — 4k\2N V)

= N3 4V

< N¥? 4 4N'2

< 4N,
Therefore, if 0 €« n « N and n = 0 (mod 4), then n is a sum of four squares

belonging to A,
Construct the finite set A4 of squares as follows:

A= (4a%a’ € Ay r > 0,4a < N}.
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Then 4, C 4 and

log ¥ 2log N 1/3
4] = ( A + ])|A3|{ ( Tond )4N

4
= NV lgg N,
[*052) o

Let 0 <n < N. Then n = 4m, where r > 0 and m = 0 (mod 4). Consequently,

m=al + ai + a} + a}, where @} € A,. Then

n=4m=4a’ + &al + da, + 4'a}
= (2a)) + (2a)’ + (2a) + (2a,)
is a sum of four squares in 4. This proves the theorem for N > 6.

For N < 6, it suffices to consider the set 4 = {0, 1} for N = 2,3 and the set
A= {0, 1,4) for N = 4, 5. This completes the proof.
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