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AN INFINITE PRODUCT FOR #
MNicHOLAS PIFPENGER

Wallis’s infinite produoct [1, p. 180]
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was used by Stirling to determine the constant factor in his asymptotic formula [2, p. 137]
nl~(2mn) %~ ™m". A striking companion to Wallis’s product is
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which is proved as follows. For » >2, the rth factor is [2°~1--- 2 /(2 1+ 1)- - (2= D)V =
[~ =Drrn 2.2 'T‘z{i"—l}”ﬂ‘f2 where n!!=n(n—2)- “4 llfn!seveum{n ---3-1
if nis odd. Since 27!!1=2%'2"-'t and (2"— 1)} =2"1/2°11=2"1 /2¥7'2"~11, this expression be-
comes [2¥20-16/2.27-2#2113/¥ By induction on p, the product of the first » factors is
[2- 272113/ 213]/F, Applying Stirling's formula and letting »—» oo completes the proof.
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HOW MANY PAIRS OF PRODUCTS OF CONSECUTIVE INTEGERS HAYE THE SAME
PRIME FACTORS?

P. ErDOs

Denote by M(n, k) the least common multiple of the & consecutive integers n+ La+2,...,
n+ k. I conjectured that if 0<n<n+k <m, then
M(n,k)#M(m,Kk), (1)
and I thought that the following stronger result also holds.
If k=2, then M{n k) and M{m, k) have the same prime factors on at most finitely many
occasions.
For k=2, of course, 2a(n+ 1)=m(m-+ 1) has infinitely many solutions, so that n{n+ 1) and
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m{m+ 1) have the same prime factors. Severa] colleagues found examples with k& =3, but I know
of no example for k > 6.

Are there infinitely many m,m,k with l <n, n4+3<n+k<m so that M(n, k), M{m.k) have
the same prime factors?

Is there a kg, such that for k >k, this never happens?

Finally, estimate the number of pairs (n,m) with | <n<m<x for which a{n+1) and
m{m+ 1) have the same prime factors.

A well-known theorem of Stermer and Pélya states that if @, <a, <a;<--- are &all composed
of the primes py.p;,....p, then @, —a,—cc. Wintner conjectured more than 40 vears ago that
there is an infinite sequence of primes p, <p,<py<_--- such that, if by<by<by<::- are
the integers composed of the p;, then b,,,—b,—oo. 1 conjecture that, if the sequence
Pr<pa<py<-+- is sufficiently dense, then this can't happen, eg., if £1/p; diverges, then
by oy — by =1 infinitely often,

It is easy to see that for any function fik) tending to infinity as fast as we wish there is a
sequence { gz} with p; = f{k) so that by, — b, =1 has infinitely many solutions; [ need Brun's
method to prove this.

NeMETVOLGYD LT T2C, Bunarest (XII), HunGary,

HOW MANY i-j REDUCED LATIN RECTANGLES ARE THERE?
Jorw R, Havoiron anvp Gary L, MuLLEN

There is a large literature [2] on latin squares, n > n squares with each of the numbers
1,2,...,n in each row and column. A latin rectangle is an array of m rows and n columns with
m = n in which each row is a permutation of 1,2,...,n and each column has distinct elements. A
latin rectangle is reduced if the first row is in the standard order 1,2,...,n and we say that it is i~/
reduced if the first / rows are cyclic permutations of 1,2,...,n and the first j columns are in the
form k,k+1,....k+m—1 for k=1,.../. Thus a latin rectangle of order m X n is i-j reduced if it
has the following form.
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It is understood that if a number in the rectangle exceeds n then it is reduced modn. We can
allow i=0 or j=0 so that a 1-0 reduced rectangle is reduced and a general rectangle is 0-0
reduced. As an illustration, the following rectangle is a 2-1 reduced latin rectangle of order 4 % 5.
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In [5] the second author considered the case m= n and studied some elementary properties of
i-j reduced latin squares of order n. In particular, the number L{i j.n) of i-f reduced latin
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