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and so

('-t-4-E)n2/1092 n X(G)/tcl(G) .

In view of this it is imperative to attack Hadwiger's conjecture by random graphs, that is
to examine whether or not Hadwiger's conjecture holds for almost every graph . This is

* This work was supported by the National Science Foundation under Grant No . MCS-7903215 .

Hadwiger's Conjecture is True for Almost
Every Graph

B. BOLLOBÁS, P . A . CATLIN* AND P . ERDOS

The contraction clique number ecl(G) of a graph G is the maximal r for which G has a
subcontraction to the complete graph K'. We prove that for d > 2, almost every graph of order n
satisfies n((log, n) 2 +4) - ' _ ccl(G) _ n(logz n-d log, log, ?t) -1 . This inequality implies the
statement in the title .

1 . INTRODUCTION

One of the deepest unsolved problems in graph theory is the following conjecture due to
Hadwiger [7] : X(G) = s implies G > K' . In other words, every s-chromatic graph G has a
subcontraction to K', the complete graph of order s . In the case s = 5, this is equivalent to
the four-colour theorem . (For an account of the various results related to Hadwiger's
conjecture the reader is referred to [1, Chapter VII] ; the terminology and notation not
defined here can also be found in [1] .)

The statement in the title would sound rather hollow but for certain recent develop-
ments . Hajós conjectured that every s-chromatic graph contains a TK', a topological
complete subgraph of order s, that is a subdivision of K' . This is clearly stronger than
Hadwiger's conjecture, for a TK' itself has a contraction to K', but a graph sub-
contractible to K' need not contain a TK' . The Hajós conjecture was disproved recently
by Catlin [5], who exhibited counter-examples for X(G) % 7 . Shortly after Catlin's result
Erdős and Fajtlowicz [6] showed that almost every graph is a counter-example to the
Hajós conjecture . More precisely, define the topological clique number of a graph G as

tcl(G) = max{r : G - TK'} .

Erdős and Fajtlowicz showed that for almost every graph G of order n,

tcl(G)_cnz

	

(1)

for some absolute constant c . Since for every e > 0 almost every graph satisfies

X(G) > (2- E)n/loge 11,

we have that

tcl(G) < X(G)

for almost every graph (for sharp results on X(G) see [4]) .
Inequality (1) was extended by Bollobás and Catlin [3], who proved that for every E > 0

almost every graph satisfies

(2- E)n=_ tcl(G) ~, (2+ E)n 2

	

(2)
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exactly the task we shall accomplish in this note . More precisely, we shall prove an
analogue of (2) for the contraction clique number cc)(G) of a graph G, defined as

cc](G) = maxir : G > K') .

2 . RANDOM GRAPHS

Let 0 < p < I be fixed, and let V be a set of n distinguishable vertices . Denote by
~6(n, P(edge) = p) the discrete probability space consisting of all graphs with vertex set V,
in which the probability of a graph of size ni is

P-(1 -p ) (z)-

In other words, the edges of a graph G E (n, P(edge) = p) are chosen independently and
with probability p . (See [2, Chapter VII] for results concerning this model .)

Given a property of graphs we define the probability of 9 as

P(Y) = P({G E 19(n, P(edge) = p) : holds for G}) .

If P( ,-Jl ) - I as n - oo then the property 0 is said to hold for almost every graph .
In order to make the calculations below a little more pleasant, we shall take p _ 2 . The

case p = i is in some sense the most natural, since this is the model one considers implicitly
when one counts the proportion of all graphs having a given property . Indeed, in the model
_ Ifi(n, P(edge) = 2 ) every graph has the same probability, so the probability of a set-

k W is exactly IX'I/~ 1,6'Í . Thus a property 9 holds for almost every graph in W(n, P(edge) _
') iff the number of graphs having is asymptotically equal to the number of all graphs
(with vertex set V) .

3 . THE CONTRACTION CLIQUE NUMBER

Given a graph G and non-empty disjoint subsets V I . V'2 , . . . , V of V = V( G), denote
by Gl { VI , . . . , V) the graph with vertex set i V I , V2 , . . . , V) in which V, is joined to V; iff
G contains a Vi - Vi edge. Put

ecl'(G)=maxi r : G/1 V,, . . . , V}~- K' for some V I , , . . , V,) .

Since the contraction clique number is defined similarly, except with the added restriction
on the Vi that each G[ Vi ] is connected,

cc)(G)-ccl'(G) .

We shall give a lower bound for ccl(G) and an upper bound for ccl'(G) holding for almost
every graph, As customary, log o x denotes the logarithm to base b .

THEOREM . Let d > 2, Then almost every graph G E 16(n, P(edge) = z) satisfies

n((log z n)=+4)- ' --ccl(G)< ecl'(,G)

n(log2 n-d 1092109 2 n)-'--n((log2 n)=-I)- ' .

PROOF, (a) We start with a proof of the upper bound on ccl'(G) . Put s=
[n(log z n - d 10921092 n) - '] . A partition IV,, V2,.,., V,.) of the vertex set V is said to be
permissible for a graph G if G contains a Vi - Vi edge for every pair (i, j), 1= i < j - s- Thus
ccl'(G)=s iff the graph G has a permissible partition . We have to prove that the
probability that a graph has a permissible partition tends to 0 as n - 00 .



partitions of V into s non-empty sets . The number on the left-hand side of (3) is the
number of partitions of V into s non-empty ordered sets .

Consider now a fixed partition _ { Vt , V,	VJ into non-empty sets . What is the
probability that this partition 91 is permissible? Let n,, n 2 , . . . , ns be the number of
vertices in the classes . Then the probability that a graph contains no V; - V, edge is
Hence

P(9 is permissible) =II(1-2-"'"%) _e `2

	

(4)

where both the product and the sum are taken over all pairs (i, j) with 1 -- i < j -- s. We have
the following string of elementary inequalities .

12-",",~
sl , (III -J
2

The reader may note that 1n i n; is exactly the number of edges in the complete s-partite
graph with vertex classes V,, V 2 , . . . , V,.. The Turán graph T(n) is the unique s-partite
graph with maximal number of edges, and

e(T 00)=1s2s1+o(1)I n2

	

(see [2,P-71]) •

From (4) and (5) we have

P(9 is permissible)--e _"

	

(6)

and (3) and (6) imply

P(G has a permissible partition = P(ccl'(G) > s) _ n" e C)2

= Py..

	

(T)

Clearly

IogPs =nlogn-( Sl Z - " -1,2 ~n logn-	 1	2 d1, g,1 . g' n
~- n(log>n)``-'~-ac .

`.21

	

~

	

3 log, n

Hence P, - 0, proving the required upper bound on ccl'(G) .
(b) We turn to the proof of the lower bound on ccl(G) . Put k = ((log n)-+z] , s =

fn/(k s/2)] and t= [n/(k +2)] . We shall prove in two steps that G > K' for almost every
graph G .

Step 1 . Fix a set T of t vertices and put W = V - T. Then almostevery graph G contains
t vertex disjoint stars of order k + 1 whose centres are the t vertices in T.

Indeed, by a slight extension of Hall's theorem (see [2, p. 56]) if G does not contain such
stars then there is a set A c T for which the vertices in A have less than k JAS neighbours in
W. Given a set A with a = JAI elements, the probability that a vertex in W is joined to no
vertex in A is 2-o . Hence- the probability that the vertices in A have less than ka
neighbours in W is at most

Yu ka

l n
-

t`
2
-a(n-t-ui < n"2-a(n-i-kaj

'`

	

j
'

u

—,1 2n ka2 --" < 2
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To start with, note rather crudely that there are at most

n!

	

n
--~

	

~ < n (3)
S! s-1
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Consequently the probability that G fails to contain the desired t stars is at most

t )2 -° '2_

	

(t2- r12 ) ° , 2t2-/2 ,
a r a

	

a t

and this tends to 0 .
Step 2 . Let V,, V2 , . . . , V, be the vertex sets of the stars constructed in Step 1 in

almost every graph . Then for almost every graph G there are V"„ V,2,. . . , V,,, such that
G/{V"„ Vp„ . . . , V",} ~- Ks . The assertions in these two steps clearly imply the first
inequality of our theorem .

Note that the sets V1 , V2, . . . , V, depend only on the T- W edges of the graph. Thus
the edges joining the vertices of W are chosen independently with probability 2. Put
W = V; - T. We say that (Wi. Wr ), i 54- j, is good if there is a W, - Wi edge. Since W, C: W
and IW;I = k, clearly

P(the pair (Wi, W,) is bad) =2 -k-

and so the expected number of bad pairs is
zt) 2-ka < n	2 -1"""-(1"g2 ") 4 =	n 2-pog2")' .

2

	

to 92 n

	

loge n

At this stage we have several options . We may appeal either to the classical De
Moivre-Laplace theorem (see [2 ; p . 134]) or to the even simpler Chebyshev inequality (see
[2, p . 134]) or to the trivial inequality P(+XI -- Icl) -- E(X{)/Icl to deduce that almost every
graph has few bad pairs . For example, the last inequality implies that the probability that a
graph has more than

-
n

- 2-3o"g2
1092 n

bad pairs is at most 2 - ' °ogz ")- . In particular, since

t-
n

2-' (1-92 „)~ >
S

1092 n

for almost every graph we can find sets W,,,, K , . . . , W„, such that every pair (W";, W,) is
good. Then we have GI{V"„ . . . , VJ-Ks and since each G[ V;] is connected, ccl(G)--s,
as claimed .
The proof of our theorem is complete .
With a little more effort the lower bound can be improved to n((log 2 n)'+1)-t .

Furthermore, the calculations can easily be carried over to the general case . If 0 < p < 1 is
fixed then almost every graph in 16(n, P(edge) = p) satisfies the inequality in the Theorem,
with log e n replaced by log o n, where ó = 1/q .
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