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I plan to discuss some of the many problems which interested me in the last few
decades of my long life. My choice is essentially subjective-I shall state and discuss
some of the older problems which I particularly like and which I hope can be solved
if more mathematicians paid attention to them . I shall also state some new problems ;
here, of course, there is some risk that the problems are trivial .)r not stated cor-
rectly . I shall start by discussing some recent problems .

SECTION 1

F'ajtlowicz and I conjectured that, for sufficiently small e > 0, there is no graph
G(n) satisfying v(x) < en for every vertex x of G(a), where G(n) has no triangle, aid,
for every three independent vertices .x t , X2, X3 of G(n), there is a fourth vertex
joined to all three of them . Shechan conjectured that r can be taken as _9L G(n) de-
notes a graph of n vertices and v(x) the valence or degree of the vertex x .

We could not even prove the following very much weaker result : Assume that
G(n) satisfies the following very niucli stronger condition : Let ,y be any independent
set of vertices . Then there is a vertex which is joined to all vertices of :~' . Perhaps
such a graph does not exist even if we drop the condition that G has do trian,g - le,
as long as we maintain the condition v(x) < en .

All we could prove is that no graph exists if we assume that G has no triangle
and v(x) < &h/log n--but perhaps we have overlooked a simple argument .

Recently I have learned that this problem was nearly completely settled by J . P ;t ch .
The conjecture in the first paragraph is faise and the one in the second, correct .
However, if "three" is replaced by "four" in the first paragraph, the problem is still
open .

SECTION 2

Fajtlowiez and I ask : Let f (n) be the largest integer for which there is a graph
G[ f (n)] of diameter two and ii(x) <_ n . Determine or estimate f (n) as accurately as
possible . This problem of course is not new . Trivially f(n) c n2 + 1, and Hoffman
and Singleton [1] have proved that for n > n o , f (n) < n 2 . We have proved that
f(n) <n 2,forn>n o ,andifn=p' .f(n)?(n-1)`-4-n4-1 .

Perhaps the reader will forgive me for telling the sad story of our third problem .
Let G(n) be a graph of n vertices and diameter two . We conjectured that the
dominance number d[G(n)) is less than c In (i .e ., there are vertices t,, . . . . xk ,
k < e-,/n such that every • vertex of G is joined to one of the x i 's) . We only could
prove d[G(n)) < c In log n. When I mentioned this problem in my talk at Rwgers,
Mate pointed out that, in a triple paper [2], we prove that d[G(n)] < c, ; 'n log n is, in
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fact, the best possible result . There are many current jokes (usually slightly off
color) about the symptoms of senility-surely a very sad symptom is that one for-
gets one's own theorems (the worst one is that one no longer can find new ones!) .

SECTION 3

In a very recent paper Plesnik [3] states the following pretty conjecture . Denote
by ,{(G) the chromatic number of G. Decompose the complete graph K„ into n
graphs G,, . . ., G, . Ther

AGf)<_p+

	

(I)
f=1

PiMiik: proves (1) with 2') instead of

	

~. I first thought that I would prove

(4) quickly, but I was certainly wrong, since I havee not yet done it, but perhaps we
both have overlooked a simple argument .

Let G be a graph of chromatic number p which does not contain K i, and
G, : = 1, . . ., n a decomposition of G into n edge-disjoint graphs . Then perhaps
(l) never holds for all such decomposition, but I did not yet have time to look into
this problem carefully .

SECTION 4

Let t . t =: n ; f (n ; r) is the largest integer for which there is a famüv F of subsets
of ', IFC = .f(n ; r), and, if A, e F, A z e F, then 1A, n A z t r . Trivially,/ (n ; 0) ---
w p "' . Determine or estimate f (n ; r). An older conjecture of mine states : To every r„
0 < n, < there i., an _. .: E(q) > 0, such that, for every rln < r < (' -- rl)n,

f(n ; r) < (2 - E)'

	

p )

Denote by f (n ; k, r) the largest integer for which there i s a family F of subsets
of
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V. T. S6, and 1 proved f (n : 3, 4) n, with equality if and only if n = 0 (mod 4) .
We conjectured that

f (n : k, 1) _ (k - Z

	

> na(kl

	

(3)

Equation 3 was proved lbv Katona for k = 4 (unpublished) and by Franks [5) in the
general case .

Inequality (2) would have an interesting application in geometry and graph
theory. Hadwiger, and independently Nelson have raised the following problem
Join two points in n-dimensional Euclidean space if their distance is L .Denote by
f (n) the chromatic number of this graph. It is well-known that 4 < f (?) < 7. It is
now generally believed (?) that f (2) > 4. Let x,,	x, be points in n-dimensional
space. Join two of them if their distance is 1 . Thus we obtain the graph G(x,, . . ., x,).
By a well-known theorem of de Bruijn and myself there is a graph G(x l ,	x,)
that has chromatic'number f (n)-or the determination of the "chromatic number
of n-dimensional space" is a finite problem . Unfortunately (even for the plane) we
can not give an upper bound for t .
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Inequality (2) would imply that f (n) > (1 + PI), •f (n) was studied by Larman
and Rogers [4] and Franks [5] . Currently the best result is that f (n) > n'
for n > n o (k).

That f (2) > 3 was shown by the Moser brothers . I conjectured that if the x i's
are points in the plane and G(x 1 , . . ., x,) contains no triangle, then its chromatic
number is !53. For further problems and results in combinatorial problems in
geometry, see [6] and my paper, Combinatorial Problems in Geometry and Num-
ber Theory, given at the Columbus meeting in March 1978, which will soon be
published .

SECTION 5

Here are two recent conjectures of Franks [7] and Szemerédi : Let L be a set of
nonnegative integers not exceeding n - 1. Let Y be a set of n elements and F(L, n)
a family of subsets of Y for which A„ c F(L, n), A, e F(L, n) implies that
IA N n A,I is in L . They, first of all, conjecture that to every r, > 0 there is a S 0
for which I L I < do implie

IF (L, n) I < 2" .

	

(.4i

They further conjecture that (4) holds if k > k e (r,), rr == 2k', and i_ is the et of
integers lak + b, 0 < a < k, 0 < b < k .

Both conjectures seem very int xesting, Murty and I have c njectu ed and
Berlekamp [8] has proved that if n 2k and L is the set of even numbers, then
F(L, n) = 2"" . but this does not seem to help .

SECTION 6

Now I state some problems and results which Galvin and I have obtained some
time ago and which I hope will soon appear in detailed form, but since I am not
sure of this (and, in fact, they may appear only posthumously), I shah state some
of them here without proof.

There is an absolute constant, c,,, so that if we color the r-tuples of the
integers by k colors in an arbitrary way, there always is an innni' .e sequence
1 < a, < a 2 < . . ., the set of r-tuples of which sett at most 2 - ' colors and for
infinitely many n's :

LV I > C, ,k log, 11 ( 5 )
a ; n

where log,_ ,n denotes. the (r -- I)-times iterated logarithm . .
We further show that _ 1 can not be replaced by a smaller n umber. i t is almost

certain that log,__ I n in (5) is the best possible result, but this depends on the finite
version of Ramsey's theorem, which is not yet completely explored . .Nláté found a
different proof than our originall one .

We also investigated infinite paths-here are some of our results : Given any
coloring of the pairs (i,j) of positive integers by k > 3 colors, there is always an
infinite sequence I < a, < a ; . . . for which the edges la;. a; , 1 ), 2 . . ._ have
only two colors and for infinitely many n,

t - n"'"

	

(6)

We do not know if n"' is the best possible here .
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If we do not insist on a monotone path, we obtain very much sharper results .
We can easily show that if we color the edges of an infinite complete graph with two
colors, there always are two edge-disjoint monochromatic paths which contain all
the vertices . If the vertices are the integers, this immediately gives a monochromatic
infinite path where the upper density of the vertices is >_ We could not decide if
was the best possible value . We have many further results on paths which I hope

will all appear in a finite time .

SECTION 7

F' . Galvin, M . Krieger, and I have several results which I also hope will be
published in a finite time ; here I state some of them without proof. Let G(n) be a
graph of n vertices and C(n) the complementary graph of G(n) ; let c(G) denote the
number of cliques (i.e ., maximal complete graphs contained in G). Galvin and
Krieger [9] have proved that c(G(n)) +- c(GTn)) >_ n + 1 (this has also been proved by
Hof man sad Milner) . First of all, we obtain the following improvement . Denote by
J(G) the largest integer so that every vertex x of G is contained in at least d(G)
cliques. Then we have c(G(n)) + c((JTn-)) - n -r d(G(n)) + d(nn) -• 1, Let f',(k, n) be
the minimum (if c(G I ) + • + c(G i,), where tom,, . . ., Gk are edge-disjoint spanning
subgraphs

	

K„ (the complete graph oti n vertices) whose union is K,, . Thus the
theor.-tn cf Galvin and Krieger states that j,(7, n) = n + I-

The exact determination of f2 (k, n) for all k and n seems to us to be a difficult
and ineeresting problem. Here are some of our results : f2 (n + 1, n 2 ) > n 2 + n with
equality if and only if n = 1 or there is a projective plane of order n. In fact, if there
is a projective plane of order n then for every m we have

f(nA l,rn+n'-1)Sf (n+l, m)+n Z --1

	

(?)

,,,,;annot decide if, for every k, there is a c k such that

f2 (k; it) <, n '{- ck

	

(g)

Inequality 16) follows from (?) if k .-- p' 4 1 and Graham and Van Lint have proved
(8) for is

	

We further have

4t +-? ifn

	

1 lniod 3)
J'2(3, n) -é

	

(9)
rr + 3 otherwise,

Equality holds in (9) for n ,; 10, perhaps it holds for ail n, but we cannot even prove
17.(3, n) > cn ; c-1 6) can be extended for hypergrapüs and we have some results and
rtiny interesting problems . 1 hope "1 1 this `vil appear soon .

SKI ION 8

Now I shill cfisctss, ;omc older problems un chromatic numbers of hypergraph<- .
A hypergtapi ; a family of sets (A,k called the edges, the elements of Uk Ak arc
called the rertices of the hVpcrgra ph . If all the JA,{ are equal, thee hypc1rgraph is said
to be unif6rm--if ;0l the jA, I are two, wee obtain the ordinary graphs . If ( .-1 ; - A j I <_ 1,
the hypergraph is called simple. and if IA, A E I > 0, for all i and s, the hypergraph
is called a clique, A hypergraph is said to be r-chromatic if the vertex set f' can be
decomposed into r sets Y = 1J;=, Y j , such that none of the . ' ; contain an edge of
the hypergraph, but such a decomposition is impossible for r - 1 . Hajnal and 1 [101
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considered the following problem : Let m(n) be the smallest integer for which there is
an n-uniform 3-chromatic hypergraph . Determine or estimate m(n) ; m(2) = 3 is
trivial, m(3) = 7 is easy, and m(4) is not known . If I remember correctly the current
best results are 19 < m(4) < 23 . The current best results for m(n) are

c l n 113 2" < m(n) < n 22"

	

(10)

The lower bound in (10) is due to Beck and the upper bound to me . Beck has
also proved the following conjecture of Lovász and myself: Let G be a 3-chromatic
(not necessarily uniform) hypergraph. Assume that JA ;l _>_ t for all the edges of G .
Then

>f(t)

	

(11)

where f (t) tends to infinity with t (the summation in (11) is extended over all the
edges of G) . Probably f (t) > t`, but Beck's proof only gives a much weaker result .

Let m*(n) be the smallest integer for which there is a simple it-uniform a-
chromatic hypergraph of m*(n) edges . Lovász and 1 [11] have proved that

c2'4"/n ' < rn*(n) < c 3 4"n 3

	

(12)

In the same paper we estimate m**(n~ the smallest integer for which there is an
it-uniform 3-chromatic clique with m**(n) edges, but here our results are not m ac-
curate as (12) . We do not even prove that Jim"_,,, (nt**(rr)}' " exists :, m* * (!a)
71-

'"
is our sharpest result .

We further prove that a 3-chromatic n-uniform hypergraph always has a vertex
which is contained in at least 2" - '/4n edges . In view of (10), this is not very far
from being the best possible result . Perhaps it is not quite hopeless to t, y to obtaíri
a best possible result .

Lovász, Shelah, and I [12] have investigated the following question : Is it true that
a 3-chromatic n-uniform clique contains two edges having n -- 3 elements in co :n-
mon? We have only proved this with cn/log n instead of n - 3 ; n - 3 is perhaps to,)
optimistic, but en certainly should hold .

Let G be a 3-chromatic n-uniform clique and {A ;} its set of edges . We conjectured
that the number of distinct values of JA ; r -, Aj J tends to infinity with it, but only
show that it is at least 3 .

Denote by M(n) the maximum number of edges in an n-uniform 3-chromatic
clique . Lovász and I proved that

n! (c -- 1) < M(n) < n"

	

(13)

Perhaps the lower bound is best possible in (13).
Lovász and Woodall have proved that if G is a hypergraph with the property

that every G' c G has fewer edges than vertices, then G is 2-chromatic . A surprising
example of Woodall [13] shows that this is the best possible result in the followin !
strong sense : For every n there is an n-uniform 3-chromatic hypergraph G so that
every proper subf*rapli of it has fewer edges than vertices . Woodail's example has
,'I + o(1))n! edges . Lovász and I conjectured that the number of edges in the example
of Woodall is minimal (or nearly so) .

Shelah and I have investigated the following problem : Let G be an n-uniform
hypergraph of chromatic number 3 . Assume that I A ; n A j J < m for any two edges of
G ; f (n ; m) is the largest integer so that every such G has at least f (n ; m) independent
(i.e., pa irwise disjoint) edges . We conjectured that f (n ; 1) > 2`", for every c < ], but
only could prove a very much weaker result .
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We have proved the following conjecture of Heckler: Let (A s}, (A,J _ No be the
edges ofa 3-chromatic hypergraph satisfying I Aa 1 n A,, ( < ; , . Then our graph con-
tains two disjoint edges, but we show that it does not have to contain three disjoint
edges. For some of the older results on the chromatic numbers of graphs and
hypergraphs, see [15, 16, 17] .

SECTION 9

Now I state four of my favorite older conjectures . First of all an old conjecture
of Rado and myself [18] : Define,fk(n) to be the smallest integer with the following
property : Let JA ;f _ r,, 1 , i < fk(n). Then there are always k A's, say A,,, . . ., A rk ,
which paírwise have the same intersection . Our old conjecture states :

.fk(n) < C„k n

	

(14)

for some absolute constant c . I offer 500 dollars for a proof or disproof of (IQ)-in
fact, I would be satisfied with a proof of (14) for k 3 (this almost certainly con-
tains the main difficulty) .

A more recent problem of Rado and myself is : Determine or estimate the largest
integer g(n) for which there are sets Í Ak I = n, 1 E k _< g(n), such that, for every three
bf them, there are two whose union contains the third. I have observed g(n)"„ -- 1
and P. Frank] has improved this to g(n) <c`°„ . J . Larson has shown that g(2n)
(n -r • 1) 2 . Perhaps for every k, lim, g(n)/n' = co (see [19, 20]).

Faber, Lovász, and I conjectured that if I Ak = 1, 1 < k < n and I A k , n A k , c 1,
1 < k, < k 2 _< n, then the elements of IJk = 1 Ak can be colored by n colors such that
every A,,, k = 1, . . ., n contains an element of each color . An equivalent graph
theoretic: formulation states : Define a graph G(A 1 , . . ., A n ) as follows : The vertices
arce the elements of

ilk=,
A, Two vertices are joined if they belong to the same

A k. . Prove that the chromatic number of G(A l , . . ., A„) is n . I offer 250 dollars
for a proof or disproof .

Lovász and 1 [ 11] have investigated the following problem : Let t„ he the smallest
integer for which there is a family of seas A k , i < k < i n , ` A k I = n, IA k , n A k2 > 1,
for I < k, < k 2 < n, and for every Í .x j ` r --- I there is an Ak for which Ak _ 0.
fi ; other words, t o is the smallest integer for which there is an n-uniform hypergraph
which is a clique and which can not be represented by n - 1 elements. We prove
that t„ < n3/21 `, and very likely our proof can be improved to give t„ < cn log n .

The teal mystery is that we cannot decidee if i„ < cn is true . I offer 100 dollars for a
proof or disproof and 250 dollars for an asymptotic formula for t„ .

Franks has the following very interesting problem : Let {A, ;, IAk f =n be a :-
chromatic clique and let f(n) be the smallest integer for which there always is a
subset S c_ JSJ <f(n), S n Ak # (~, S Ak for every k . Franks has proved
that f(n) < cn` log n, but only has f(n) > n +- c ., n as a lower bound. Determine or
estimatef (n) as well as possible- In particular, does f (.n) < en hold'?

A special case of an old problem of Hajnal and myself [21j is stated as follows :
Prove that for every cardinal number n there is a graph G n which contains no K,
but if' you color the edges by n colors in an arbitrary way, there is always a
monochromatic triangle .

Nothing seems to be known if n ? :N,, but for finite n the problem has been
solved by Folkman and Nesetfil-Roll . The only trouble is that the graph G, given
by them is of exorbitant size, and bath Hajnal and I believe that graphs G„ of
reasonable size exist .
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To fix our ideas I offer 100 dollars for a graph G, having fewer than 10' vertices
which contains no K,, and for every coloring of the edges by two colors there is a
monochromatic triangle. I also offer 100 dollars for a proof that such a graph does
not exist .

I also offer 100 dollars for a proof or disproof that for every n No , an ap-
propriate G„ exists . Perhaps such a G„ exists for which the power of the vertex set is
(2")' .

Finally I state a few older problems which seem interesting to me and which
perhaps were neglected .

Let G(n; l) denote a graph of n vertices and l edges. Sauer and I have the fol-
lowing problem : Letfk(n) be the smallest integer for which every G(n ; f,,(n)) contains
a regular subgraph of degree k (i .e ., each vertex has degree or valence k) . Triviaüy
f2 (n) = n i , but the determination or estimation of f3 (n) seems difficult . Is it true that
f3(n) < cn? We cannot even prove thatf3 (n) < ni+ ` for every e > 0 and n > no (s) . Is
it true that every G(n ; fn"']) contains a maximal planar graph on < C, vertices
(i.e ., a triangulation of < C e vertices)?

Assume that every induced (or spanned) subgraph of G(10n) having 5n vertices
has more than 2n 2 edges. Then I conjecture thai our G(10n) contains a triangle .
It is easy to see that this, if true, is the best possible conjecture. Clearly malty
generalizations and extensions are possible .

Let G be a graph of 5n vertices that has no triangle . Is it true that one can always
omit <n 2 edges so that the resulting graph should be bipartite? Again, if true, it is
easy to see that it is the best possible case and that many generalizations are possible .

Another old conjecture of mine states : if G(5n) contains more than n s pentagons .
then it contains a triangle . Here too it is easy to see that, if true, this is the best
possible conjecture and, again, many generalizations are possible .

Bruce Rothschild and 1 have the following problem : Let G(n) bee graph -4. ~t

labeled vertices. Denote by F(n) the number of distinct colorings by tw .o colc .-?s süc;h
that neither color contains a monochromatic triangle . We conjecture that

F(n) =

	

for n > n,
with equality only for the complete bipartite graph having [n/2] black and
[(n + 1)/2] white vertices . Let 191 1 = 2n, A k c Y, 1 <_ k < T" . Assume that the number
of pairs (i, j) satisfying A i n A f = 0 is >2 2 n . Then T" > (I + 0(1))2"+ i . Observe
that the order of magnitude is the best possible. Let the A's be the 2' ' ' - I
subsets of y'i and J' 2 , where 1Y, 1 = 1,v;2 Í = n, Y i v Y2 = ~ . Clearly there are,
more than 2 2 n pairs A; n Al = 0 .

Perhaps the proof of T" > (1 + 0(1.))2" +i will not be difficult, but at the moment
I do not see how to do it . Again, many generalizations are possible .

The following problem is due to Graham and myself : Decompose a K 2.,, into P7

graphs. Clearly at least one of them must have chromatic number >_ 3 . Determine
or estimate the length of the least monochromatic cycle one of these graphs must
contain. More precisely : Denote by c(n) the smallest integer such that if we color
the edges of a K2-11 with n + 1 colors there always is a monochromatic odd cycle of
length <c(n). Determine or estimate c(n) .

The following further questions can be posed : Let fk (n) be the largest integer for
which Kf,(") can be decomposed into n graphs, all of whose odd cycles are longer
than k, and Fk(n) is the largest integer for which K r ,," ) can be decomposed into n
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graphs, all of whose odd cycles are shorter than k . Determine or estimate fk (n) and
Fk(n).

Clearly K 3, is the union of n 3-chromatic graphs . One could try to study the 4-
chromatic graphs which must occur in the decomposition of the edges of K3.+, into
n graphs, but we have no results .

Let there be given n 2 points in the plane . Is it true that one can always find
2n - 2 of them which do not determine a right angle? The lattice points (x, y)
0 5 x, y < n - I show that if true this conjecture is the best possible . In 3-space l do not
even know the maximum number of lattice points (x„ y,, z,), 0 x;, y,, z, < n,
which do not determine a right-angled triangle .

Define a graph whose vertices are the integers as follows . i and j are joined if
i +j is a square . Silverman and I conjecture that this graph has chromatic number
No . The same seems to hold if the square is replaced by the kth power . We have
not succeeded in formulating a reasonable general conjecture. The following seems
to us to be true : Let i < a, < . . . < ak < n be a sequence of integers so that a, + aj is
never a square. Then max k n/3 + o(n). The integers -. I (mod 3) show that, if true,
this is the best possible result .

The following conjecture is due to Woodall : Let G(n) be a graph of n vertices .
Let 19'1 = t be a subset of the set of vertices ; Y, is the set of those vertices of G(n)
which are joined (by an edge) to some vertex of Y . Assume I 'V, f > min (3 JY f /2, n),
for every t and every choice of the vertices of Y . I aen G contains a triangle . I first
thought that this must be easy but certainly did not succeed in settling it . I find this
conjecture very attractive and challenging.

Chvátal has the following beautiful conjecture : Let f be a finite family of
finite sets having the property that if A e Y and B c A, then B s 9 . Then there is a
subfamily A,, . . ., A4, satisfying A, n A j 0 0; for all 1 < i < j < k, with k maximal
which also has n,_, Ai t 0 .

Another conjecture of Chvátal which generalizes and sharpens one of my con-
jectures states as follows : Let I Y I = n. An (it, k}set is a set. F of distinct subsets of
. . It is said to be m-interesting if X, . . . X„, is nonempty whenever X, a F . An
(n, k, m)-s:.t is an (n, k)-set F such that every m-intersecting subset of F is neces-
sarily (m + I)-intersecting.f (n, k, m) is the largest card inality of an (n, k, m)-set . A well-
known theorem of Ko, Rado, and myself states : f (it, k, whenever
n 2k. I conjectured f (n, k, 2) _ Q`,) for k >_ 3, n 3k/2 . Chvátal (24J proves this
Cork =_. 3 . More precisely he proves f(n, k. k - i) _ Q_- ,) if n >_ k + 2 and k 3. He
conieciures : f (n, k, rn) - (k=, ~ whenever I m < k and n (m A- 1)k/m .

Denote by r(n, m) the smallest integer for which every graph of r(n, m) vertices
contains either a K" or an independent set of m points :

c, n2n,2 <, r(n, n) <
(2n -- 2 c 2 log log n
n - 1

	

log n

are we'll-known . I offered (and still offer) 100 dollars for the following problems :
Prove that lim"_ . . p r(n, n) 1" exists . This is perhaps not difficult . Evaluate its value,
and finally give a constructive proof for r(n, n) > (1 + c)" .

Burr and I conjectured

r(n + 1, n + 1) > (I -t- c)r(m n), r(n + 1, n) > ( 1 + c)r(n, n)

	

(15)

The second conjecture is of course stronger . Trivially,

r(n + 1, n) - r(n, n)

	

n - 1

	

(16)
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We noticed to our annoyance that we cannot improve (16). 1 offer 25 dollars for
any improvement of (16) (we expect that this will not be difficult) and 100 dollars
for a proof of (15) (we feel that this may not be quite simple) .

Faudree, Rousseau, Schelp, and I have several papers (most of which are not yet
published and some of which are joint papers with Burr) ; here I only state one of
our favorite problems : Denote by t(p.) the smallest integer for which there is a graph
of P(pn ) edges so that, if we color the edges with two colors, there always is a
monochromatic path of length n . Is it true that

r(P.)- M r(P.)- 0`'

	

(17)
n

	

nz

I offer 100 dollars for a proof or disproof of (17) .
Let G `I (n ; k) be an r-uniform hypergraph of n vertices and k edges (i .e .,

r-tuples) . An old result of mine states that, for every e > 0 and any t, if n > %(e, t),
then every C`(n . (e, n']) contains K;`t(t, . . ., t) ; i .e ., a complete r-chromatic graph
with t vertices. An even older result of Stone, Simonovits, and myself states that,
for every e > 0 and for any t, if n > n o (e, t), then every G«"(n ; 3(1 -- (1/t -- 1) e))
contains a K ;z) (t, ., ., t), i .e ., a complete r-chromatic ordinary (r 2) graph with r
vertices of each color .

These theorems lead me to the following problem (I offer 500 dollar :N for a
solution or clarification) : Let G" ) (n, ; is ;) be a sequence of r-unifor.n hypergraphs,
We define its edge density to be a if x is the largest number for which there is a
sequence mi -+ co such that for infinitely many i our Gl' ) (n, ; k i) has a suhgraph
G"~(ni, ; (a + 0(1))('"-)). My conjecture states that for each r the set of possible e-ige
densities is a nowhere dense set S, . For r = 2, S Z is, by the theorem of Stone,
Simonovits, and myself, the set {i - 1 /r), r = 1, 2, . . ., co . For the general case, my
theorem gives the smallest possible positive value of the edge density of rt r-graphs
which is r !/r' .

The first unsolved problem states +.hat if the edge density is greater than r1Y .
then it is greater than (r!/r') 4 e„ for some positive er independent of the n i, I would
guess that our graphs must contain some canonical subgraphs and there will only
be countably many choices for these graphs and their densities will form a discrete
set . Brown, Simonovits, and I have some more general conjectures for multiple r-
graphs, but here even the case r - 2 presents enormous difficulties . I tried to obtain
a theorem of this typee for the set of all subsets of the integers, but there is a u ivíai
and devastating counterexample. Let 0 < a < 1 and 1 < a r < oz < -- • be a sequence
of integers of density a . Let Y be the family of subsets having a, elements, i = : l, 2, . . . .
Clearly on every set of ni integers Y` induces a hypergraph of (a -t- 0(1))2'°' edges .

It is easy to see that if G(n) bas no circuit of length <C log n (C sufficiently
large), then the chromatic number of G(n) is at most three . Gallai constructed a
graph of chromatic nutnber 4 whose smallest odd circuit has length rt' ' . L .oeas z
and 1, by a slight modification of Gallai's construction, gave a G(n) of chromatic
number k + 2 whose smallest odd circuit has length >nt " . Gailai and Í conjectured
that these results are best possible, In other words, if G(n) has no odd circuit of
length <Cri ", then the chromatic number of G(n) is less than k + 2 .

I claimed that I could prove this butt could never reconstruct my proof . not even
for k ='--perhaps my "proof" was not correct . In any case the conjecture has to be
considered as open, and 1. offer ?0 dollars for a proof or disproof .

Let K, be a complete graph of n vertices . Two players color the edges alternately
white and black . The first player wins if the largest white clique is larger than the
largest black clique . The second player wins if this does not happen . I guess that
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for all (or most) n, the second player has a win . What is the largest f (n) so that
the first player can be sure to get a white clique of size f (n)? I am sure this problem
is not new. It would be nice to know the relation of f (n) to the Ramsey function .
Many generalizations are possible .

Finally I state an old and forgotten problem of Sárközi, SzemerédL and myself.
Let x .91'1 = n, A; c ,9°, 1 i <_ r, B; c Y, 1 5 s, where the A's and B's are all
distinct. Assume that, for all i and),

(A,nA i ~~2,1B,nBJ I?2,1A,nB;I>1

We conjecture that

It is easy to see that, apart from the value of c, (18), if true, is best possible choice .
We observed that (18) would have the following consequence : Let jz i < 1, 1 <_ i c n,

be complex numbers . Then the number of sums
n

i = 1

r+s<2" -t -- c—

	

(18)
n
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