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COLORFUL PARTITIONS OF CARDINAL NUMBERS
J. BAUMGARTNER, P. ERDUS, F. GALVIN AND J. LARSON

1. Introduction. Use the two element subsets of «, denoted by [«]?, as the
edge set for the complete graph on « points. Write CP (k, g, v) if there is an
edge coloring R: [«]? — u with u colors so that for every proper v element set
X C k, there is a point x £ x ~ X so that the edges between x and X receive at
least the minimum of u and » colors. Write CP#(«, u, ») if the coloring is one-
to-one on the edges between x and elements of X.

Peter W. Harley III [5] introduced CP and proved that for x Z o,
CP(x™, , k) holds to solve a topological problem, since the fact that CP (X;, X,
Nu) holds implies the existence of a symmetrizable space on R, points in which
no point is a Gs.

G. McNulty showed that CP(k, g, ») holds for ¥ = xand » 2 p 2 0. We
heard about the problem from him and from Trotter. The paper owes its title
to MeNulty. We would like to thank the referee for several useful suggestions.

Many people have worked on the problem of determining for which finite m
and & withm = k + 1 = 3 these relations hold. The following list summarizes
the known results and is based on notes from W. T. Trotter, Jr.

1. CP(k + 1, k, k) if and only if % is odd (many people)

2. not CP(3, 2, 2) (from 1) CP (m, 2, 2) for m = 4 (Gauter, McNulty,
Sumner, Trotter)

3. CP(4, 3, 3) (from 1) not CP(5, 3, 3) (many people) not CP(8, 3, 3)
CP(7, 3, 3) (Sumner and Trotter) CP(10, 3, 3) and CP(11, 3, 3) (Weese)
CP(19, 3, 3) (Gauter and Rosa)

4. CP (m, k, k) if B = 3 and m = k¥2* (Erdés)

. For every ¢ > 0 there is a ky so that if 24+ 2 < m < k1% <«* and
kg then not CP (m, &, k) (Erdés and Spencer).

For the last two results, Erdés and Spencer use the **probabilistic’’ method.
It would be desirable to obtain an asymptotic formula for CP (m, &, k) but this
does not seem to be easy. Sumner and Trotter, and Gauter and Rosa construct
the colorings for CP(7, 3, 3) and CP(19, 3, 3) respectively. Not much else has
been done to construct colorings in the other cases for which the relation is
known to hold.

In this paper, we consider only infinite parameters. We shall prove in Lemma
5.1 that if u is regular and « = p, then CP(k, u, 1), and if up < «, then CP («, u,
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y¥). In Theorem 5.2 we characterize CP under the assumption of GCH, by
proving that for x, p, » with ¥ = u, ¥ = », the relation CP(x, u, ») fails only if
k> pu=v>cly =clk. In Theorem 5.3, we characterize CP# under the
assumption of GCH, by proving that for x, u, v with x = p = v, the relation
CP#(k, u,») fails only if k > u = » = cf &.

To prove the theorems about CP> and CP#, we introduce two related rela-
tions BP and BP#. Write BP (k, A, g, ») if there is a coloring of the complete
bipartite «, A graph, R: ¢ X A — u, with p colors, so that for every » element
subset X C «, there is a point x € X, so that the edges from elements of X to
x receive at least the minimum of g and » colors. That is, |[R"X X {x}| =
min (g, v). Write BP#(k, A, p, v) if R restricted to X X {x} is one-to-one.

In Section 2, we reduce problems about CP and CP# to problems about BP
and BP#. In Section 3, we study BP#, giving a complete characterization under
GCH. In Section 4, we study BP. Here we get a complete characterization only
with the assumption of I = L. With GCH), there is still an open problem which
is formulated in terms of the existence of a tree together with a family of its
branches satisfying certain properties. In Section 5, we draw the conclusions
for CP and CP# from the results of the previous sections.

The set theoretic terminology is standard. The letters &, A, u, », &, n, are
reserved for cardinal numbers, while «, 8, v, 8, ¢, b are used for ordinals. Each
ordinal number is identified with the set of its predecessors. Since the axiom of
choice is assumed throughout, cardinals are identified with initial ordinals.
Therefore, in particular, if @ is an ordinal and X is a cardinal, then e < A if and
only if &« € \. The set of natural numbers is denoted by w.

If 4 is a set, then |4] is the cardinality of 4. The cardinal successor of x is
denoted by «. The nth cardinal successor of « is denoted by ™™, Let »~ be the
immediate predecessor if » is a successor cardinal, and let v~ = » otherwise.

If @ is an ordinal, then cf « is the least ordinal which can be mapped onto a
cofinal subset of «.

A cardinal « is regular if cf x = «. It is well known that for any ordinal «,
cfe is regular, and that any successor cardinal is regular. Cardinals which are
not successor cardinals are ltmit cardinals. Cardinals which are not regular are
singular.

Cardinal arithmetic plays an important role here. At points the Generalized
Continuum Hypothesis, or GCH, is used, which says that for every cardinal
x, 2% = xt.

We denote by [k]” the family of all v element subsets of x. We have already
used this notation for » = 2. We write %¢ for the set of all functions of domain
a and range a subset of ¢, Write R”4 = {R(a): ¢ € A} for the image of a set
A under a function R.

In the following, various sets of appropriate cardinality will be used as the
basis for the graphs and the sets of colors. The colorings themselves will be
considered as functions from the set of edges into the set of colors, and thus
may also be thought of as labelings of the edges or as partitions.
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2. Write BP (x, A, &, ») if there is a coloring R: k X A — u, of ¥ X A with u
colors, so that for every v element subset X C «, there is a point x € X so that
X X {x} has min(u, ») colors, that is, |R"”X X {x}| = min(u, »). Write
BP#(k, \, g, ») if in addition, every edge gets a different color, namely if R is
one-to-one on X X |x}.

LemMMa 2.1. If « = v and « = u, then CP(x, u, v) tf and only if BP (k, «, g, v).

Proof. If R: k — uis a coloring which attests to CP(«, u, »), then S: « X « —
w defined by S(x, v) = R({x, y})if x = v, S(x, x) = 0 attests to BP(x, , g, »).

Suppose S: & X & — p attests to BP (k, «, u, »). Without loss of generality we
may assume |S"'x X {x}| = uforallx € k. We may also assume S is symmetric
(otherwise replace S by .S, where

S'(x, ) = {S(x, ¥), S(y, x)})-
Now define R: [« X k]* — u X u by

R{(x1, 31), (%2, y2)} = (S(x1, %2), S(31, 32))-

Suppose X C « X «, |X| = v, X is proper. Let X, = {x: J¥(x, y) € X} and
Xs = {y: Ix(x, y) € X}. If X, = x or X» = « we are done, so suppose not.
Either |[X,| = » or |X;| = ». Say |X;| = ». Choose x € « so that [S"X; X {x}|
= u and choose y € k — X Then |R"X X {(x, y)}| = u. The case |X,| = »
is symmetric.

Lemma 2.2. For all k, u, v with k 2 u = »,1f CP#([«]2, 2, v), then BP#(k, k, u, v).

Proof. We prove the contrapositive. So assume not BP#(x, «, u, ), and
suppose R: [k]* — u is a coloring. Define S: k X « — u by S(x, v) = R({x, »})
if x % yand S(x, v) = 0if x = y. Choose X T « with |X| = » so that for all
x € k, Srestricted to X X {x} is not one-to-one. Then X has the corresponding
property for R, so the lemma follows.

LEMMA 2.3. For all k, p, vwithe = u

I

v, if BP#(x, k, u, v), then CP#(x, p, v).

Proof. If v = &, then we have x = p = », So every coloring which is one-to-
one on [«]? attests to CP#(x, y, »), thus for » = « the lemma holds.

So assume v < k. Let R: k¥ X x — p attest to BP#(k, «, u, »). Since » < «, we
have »* < x. Write x as the disjoint union of »* subsets each of power &,
k = \J{Ad.: a <»t]. For each a < »t, let {2.(8): B < x} enumerate A4, in
order type x. Then

£k = {a.(8): a« < v™ and B < «}.

Define S: [k]* — u by
S({aa(B), av(8)}) = R(as(8), 8) if « < v and
S({aa(8), ay(8)}) = 0if e = 4.
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Suppose X € xand |X| = ». Findy < »*so that X © U{4.: a < v}, Find
6 € x so that R restricted to X X {8} is one-to-one. Then a,(8) ¢ X and S
restricted to

{{22(8), ay(8)}: aa(B) € X}

is one-to-one. So the lemma holds for » < «.

3. BP#. In this section we discuss BP#(k, A, u, »). Since the relation makes
no sense if » > « and cannot hold if » > pu, in discussing BP#(x, A, u, ») we
always assume « = » and u = ». First we give arguments showing no coloring
exists. Then we construct colorings under various assumptions. We show how
to use the assumption of the relation in some cases to prove it in others.
Finally, we discuss the relation under the assumption of GCH.

LEmMA 3.1, If k > pand v = X\, then the relation BP#(x, \, u, v) fails to hold.

Proof. Let R: k X A — u be a coloring. For each ¥ € \, R¥:x — u is defined
by R¥(x) = R(x,y). Using the fact that « > g, for each & < A choose two
PoInts g, %, so that R, (u,) = R.(v.). Let ¥V be any set of power v having all the
ite's and v,'s as elements. Then ¥V works for R.

Lemma 3.2, If v = cfN and for all p < N, p? < «, then the relation
BP#(x, N\, u, v) fails to hold.

Proof. Let R: k X A — p be a coloring. Divide
A= U{da: a < cfr}

into cfAx disjoint sets cach of power less than A. For each a < cf A, since
|44 = p < N, also u? < k. So there are fewer than « functions from 4, into .
For each @ < cf X choose two points u,, o, € « so that R restricted to {u.} X 4,
induces the same function on A4, as R restricted to {v,} X 4.. Let Y be a set
of power » having all the #,'s and #,'s as elements. Then ¥ works for R.

Lemma 3.3, If p* < &, then the relation BP#(x, \, y, v) fails to hold.

Proof. Let R: k X A — u be a coloring. For each & € «, R,: A — u is defined
by R.(v) = R(x, v¥). There are at most p* < « functions from X into p. So for
some S: A — g and some X C «of power v, we have R, = Sforallx € X. Then
X works for R.

Lemma 3.4, If uw 1s singular, (cf p)* < cof x, and of p < v < u, then
BP#(x, \, u, v) holds if and only if for some p with v = p < u, the relation
BP#(k, \, p, v) holds.

Proof. One direction follows from the definition. We prove the contrapositive
of the other direction. Assume for all p with » < p < u, the relation
BP#(x, \, p, ) fails to hold. Let R: x X A\ — u be a coloring. Divide p =
\J{A4.: @ < cf u} into the disjoint union of cf u sets each of power between cf u
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and p. Define R: « X N —cfu by R(x,y) = « where R(x,y) € A,. Since
cfe > (cfu)?, there is a set X C « of power « and a function S: A — cfyu so that
for all (x,y) € X X A, R(x,¥) = S(3). Now S induces a partition of A =
\U{B.: e < cf p}, where B, = {y: S(y) = a}. Foreacha < cf u, Rrestricted to
X X B maps into 4.. So for each @ < cf u, let ¥, € X be a set attesting to
not BP#(x, \,|4.], ») for R restricted to X X B,. Then V = U{V,: & < cf p}
works for R.

LevMMa 3.5, If N 45 singular and cf N £ v, then BP#(A\F, \, u, v) if and only if
for some v < X\, BP#(NF, 7, i, ).

Proof. One direction follows from the definition. We prove the contrapositive
of the other direction. Suppose for all < ), the relation BP#( (A, 7, u, ») fails
to hold. Let R: A X A — p be a coloring. Divide A = \U{4,: a < cf \} into
cf A disjoint sets each of power less than A, For each o < cf A, let X, € \* be
a set of power » attesting to not BP#(\*, |4.|, ¢, »), for R restricted to
At X Aq. Then X = \U{A4,: @ < cf A} works for R.

LeEvmMma 3.6, If u = k, then BP#(k, \, g, »).
Proof. Define R: «k X X — u by R(x,y) = x.

v

Lemma 3.7. If there is a family F C [k]” covering all subsets of x of power v,
(that is, if A € [x]*, then there is B € F with A C B), then the relation
BP#(x, | F|, u, ») holds.

Proof. Let R: k X F— u be any coloring with the property that for each
B € F, R restricted to B X {B} is one-to-one.

Given a disjoint family of sets {4.: @ < p}, a transversal of the family is a
set B such that for every a < p, [B M A,| = 1. Two transversals are almost
disjoint if their intersection has cardinality < p.

LemMma 3.8. (TRANSVERSAL LEMMA) Let p be a cardinal, let { Ay a < p} be a dis-
joint family of sets, and let D be a family of almost disjoint transversals. Let
p < cf p,and let F C Uac,[Ao)* be a collection of sets so that every member of
Ua<plAal” is a subset of some member of F. Then BP#(|D|, |F|, g, »).

Proof. For each x € F, letf,: x — p be a bijection. Define R: D X F — pso
that R(B, x) = fo(x N\ B) if x N\ B # 0.

Suppose X € [D]*. Choose « so thatif B,C € X and B # C, then
BN A, #= CM Aa Let

x=\U[BN 4. B € X},

and choose y € F so that x € 4. Then for all B, C € X, if B # C, then
R(B,y) # R(C, y).

CoRrOLLARY 3.9. Forallnwith(0 < n < w, the relation BP#(ut 01 u+ 4 y)
holds.
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This corollary is derived using two lemmas which are proved by induction.

LemyMa 3.10. For all n < o, there is a covering family F C [ut®™]* of power
ut™ so that for all x € [ut]e, thereisy € Fwithx C y.

Lemya 3.11. If for all @« < N, |4a| = N, then there is a family D of almost
disjoint transversals with |D| = \t.

Lemma 3.11 is proved in (3, Lemma 4.1].

CoROLLARY 3.12. If 280 < N, and 280 < 21 then for all N £ 2%
BP# (hv Rll x')l NU)'

Proof. Start with a disjoint family of X, sets each of power &X;. Lemma 3.10
guarantees the existence of the required covering family. To obtain the required
set of transversals, employ the techniques of [1] which were used there to con
struct almost disjoint families of subsets of a given set.

CoroLLARY 3.13. For any cardinals o, 7, v, if v < cf 7, then the relation
BP#(o™, 7, 0%, ») holds.

Proof. Let T be a complete o-branching tree of height 7. Then |T"| = o, and
|B| = o7 where B is the set of branches of T of length 7. Define R: B X r— T
by R(f,a@) = fla = f restricted to a. Suppose X C B and |X| = ». Then for
some a, if f and g are in X and f # g, then f(a) # g(a). So R restricted to
X X {a 4+ 1} is one-to-one.

CoroLLARY 3.14. (GCH) For all v < cf p, the relation BP#(u", cf p, p, »)
holds.

Proof. With GCH, #** = p* and u% = ..
CoRrOLLARY 3.15. Assume p < cf 7. Then BP# (o7, o2, u, »).

Proof. Fora < 7, let A. = “c be the collection of all functions from « into ¢.
Let D be the collection of branches of length r through the tree 77 = ., %0,
Let F = anr E‘zﬂ']“.

CoroLLARY 3.16. (GCH) For all u < cf X\, the relation BP#(\*, A, u, v)
holds.

Proof. With GCH, M = A®™ and \ = A&

CoroLLARY 3.17. If N is sirongly inaccessible, then for all p < \, the relation
BP#(W, A, u, v) holds.

Proof. Here X2 = A,

LemMA 3.18. For all n with 0 < n < w, #f BP#(x, \, u™™, u) holds, then
BP# (K! A .u+(n}' My ru') holds.

Proof. The proof is by induction on n. Suppose BP#(x, A, u+%+1, 4) holds,
and S: « X N — pt*FY attests to the fact. For each o < pt+0 let fo,: a —
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pT® be a one-to-one function. Define
R: e X (;\ X p+(k+1)) -—>p,+(“
so that

Ria, (8, 7)) = f,(S(, 8)) if S(e, B) < .

Suppose X € xand |X| = u. Then for some 8 < \, Sisone-to-one on X X {8}.
Choose v so large that S(X X {8}) € v. Then (8, v) works for X and R.

LeEmMmA 3.19. If BP#(o, 7, 1, v) and BP#(x, \, o, v) holds, then BP#(x, -\, i, »)
holds.

Proof. Let S: ¢ X r—p and T: x X N\ — ¢ attest to BP#(s, 7, g, ») and
BP#(x, \, o, v) respectively. Define R: « X (A X 7) = u by Ria, (8,7)) =
S(T(a, 8), 7).

Suppose X € [«]*. Then there is 8 < X so that 7' is one-to-one on X X {a}.
So T"X X {B} € [¢]*. Thus there is v < 7, so that S is one-to-one on
(T"X X {8}) X {v¥}. Therefore R is one-to-oneon X X {(8, v)}.

The following corollary gives some insight into the uses of this lemma.

CoroLLARY 3.20. If BP#(2Re, Xy, No, No) holds, then BP#(281 N, Xo, NXo)
also holds.

Proof. From Corollary 3.13 to the Transversal Lemma, it follows that
BP#(2%:, Ky, 2%0, Ro) holds. Set

c=Mo, 7 =% =Ry, p=v»=NKand x = Iy
to derive the above statement from the previous lemma.

LemMa 3.21. If v 15 singular and for all v' < v, the velation BP#(x, X, u, »™)
holds, then the relation BP# (x, A**, u®'*, v) holds.

Proof. Let {r.: « < cf »} be an increasing sequence cofinal in v. For each
a < cfv, let S;: x X N — u be a coloring attesting to BP#(k, A, u, v.). Define
R:k X ¢\ — Ty by R(B,f) = g where for all @ < cf », g(a) = S.(8, f(a)).

Suppose X € [k]*. Express X = U{X,.: @ < cf »} as the union of a chain of
increasing sets where |X.| = »,. Let f: ¢f v — g be a function so that for each
a < cf », the value f(a) attests to BP#(k, A, u, v.) for X, and S,. If 8 and v are
in X and B8 # v, then choose « so large that 8 and v are both in X,. Since S,
restricted to X, X {f(«)} is one-to-one, it follows that R(8, f) = R(y, f). Thus
R is one-to-one on X X [f}.

Now we use the lemmas already proved to give a characterization of the
relation BP# under the assumption of GCH.
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TueoreM 3.22, (GCH) If « is a limit cardinal, then BP#(k, \, u, v) holds if
and only if w = kor X > kor (\ = kand » < cf k).

Proof. If ¢ = «k, then Lemma 3.6 gives the desired coloring. So assume
k> If N>« or A = kand » < cf k, then GCH implies that A = |[x]’], so
Lemma 3.7 gives the desired coloring.

If 2 < xand A < x, then p* < &, so by Lemma 3.3, the relation BP#(x, \, u, v)
fails. So assume not only that g < &, but also that X = k, and » = cf x. If « is
regular, then our assumptions would give the contradiction » = cf« =
x > p = v. So we may assume & is singular. In this case, by Lemma 3.2, the
relation BP#(x, A, g, ») fails to hold. So the theorem follows.

TaEOREM 3.23. (GCH) If « 15 a successor cardinal, « = p, p = v, then
BP#(k, N, i, v) holds if and only if one of the following conditions holds:

(a) & Z x,

(0) Az«

(€) x = utand N = cf pand v < cf p,

(@) k = Nt and v < cf N

Proof. If 4 = «, then Lemma 3.6 gives the desired coloring. So assume
u <k If A=k then N = k = ¢ = |[x]’|], so Lemma 3.7 gives the desired
coloring. So assume A\ < «.

If k > At and « > pt, then x > u*, so by Lemma 3.3, BP#(x, A, g, ») fails to
hold. So assume either x = u™ or k = A,

First assume « = pt. If N\ < cf g, then « > p*, and Lemma 3.3 gives the
desired result. So assume A = cf u. If » < cf g, then Corollary 3.14 yields
BP#(k, \, u, »). If » = of p and p is regular, then p* =k > A = cf p = g, so
v = cfu=pu = \and Lemma 3.1 yields not BP#(«x, \, g, v). If » = cf pand p
is singular, then we shall show that not BP#(x, \, u, »). Looking at the defini-
tion, we see that it is enough to show that BP#(u*, g, u, cf u) fails. Since u is
singular, by Lemma 3.5, it suffices to show that forall r < g, BP#(u*, 7, u, cf )
fails to hold. If r < g, then (cf x)™ < p*, so by Lemma 3.4, to show that
BP#(u™*, 7, u, cf u) fails, it suffices to show forall p < pwithef p < p < p, that
BP#{ut, 1, p, of u) fails, But if p < p and r < g, then g™ > p7, so Lemma 3.3
yields the desired result.

Now assume « = At and u < A If » < cf ), then by Corollary 3.16,
BP#(\F, X, v, ») holds and BP#(A, A, u, v) holds. If » = cf A, then by Lemma
3.2, BP#(\, A, w, ») fails

This completes the proof of the theorem.

4. BP. Recall that we write BP(x, A, g, ») if there is a coloring R:x X A — u
so that for every » element set X € []”, there is a point x € A so that
|[R"X X {x}| = min (g, »). If » > x, the relation makes no sense, so we
assume that ¥ = ». We discuss the relation first in general, and then under the
assumption of GCH. Even under GCH, we do not have a complete characteri-
zation, but we do have a complete characterization if V = L.
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b

Lemma 4.1. (MonoronNicity) (a) Assume that BP (x, N, u, v) holds, and that
W Sk, N zZ Ny =z Assume also that if v > u, then p = . Then
BP (&', N, u', v) holds.

(b) If BP(k, \, , ») holds and v/ = v = p, then BP (k, \, y, »") holds.

The above lemma and the following one follow straightforwardly from the
definitions,

Lemma 4.2, If BP#(x, N, g, v) holds, then for all v < v, the relation
BP (k, \, u, v") holds.

Thus for BP, attention may be restricted to those cardinals for which the
sharp relation is not settled positively.

LEMMA 4.3. (a) If u* < x and either « is regular or v < «, then BP (x, \, p, »)
fails to hold.

() If £ > > = p > cf &, then BP (k, N, p, v) fails to hold.

(c) If &« > ¢ and « > cfk = p, then BP(k, \, p, «) holds if and only if
BP(cf &, \, g, cf ).

Proof. Let R: x X X\ — p be a coloring. For each x € «, let R;: A\ — p be
defined by R,(y) = R(x, v). There are only u* < « functions from A into u.

For part {a), select aset X € [«]’ so thatforall x,y € X, R, = R,. Then X
works for R.

For parts (b) and {c), express k = Uq,<etx Ao as the disjoint union of cf « sets
each of power a regular cardinal less than k but greater than u* For each
a < cf k, select X, C A4, with |[X.| = |4.] so that for all x, ¥ € X, R, = R,.
Let X = Uscerx Xoo Then | X| = «, and for all x € ), |[R’X X {x}| = cf«. So
(b) is proved.

We continue this argument to prove part (¢). Using R restricted to X X ),
define S: cfk X A\ — u by S(a, y) = R(x, v) for any vy € X.. A set V C cf«
attesting to not BP(cf «, \, u, cf k) gives rise to a set Z = U{X,ia € V]
attesting to not BP (x, A, p, ). So if BP (cf &, N, g, cf ¢) fails to hold, then also
BP (x, \, g, ») fails. Using similar arguments, one can show that a coloring
S: cof «k X A — p which attests to BP(cf «, A, g, cf k) gives rise to a coloring of
R:k X N\—u by setting R(x,y) = S(a, v) for x € 4., and this coloring
attests to BP(k, A, u, ). So part (¢) is proved.

LEmMA 4.4, If « > cf &, then BP (, N, cf «, k) holds.

Proof. Write « = Ua<crc 42 as the disjoint union of cf x sets each of power
less than x. Define R: « X A = cf k by R(x, ¥) = awherex € A,.

LEMMA 4.5. (a) If BP(o, 7, u, ») and BP (x, A, o, #), then BP (k, 7- \, u, v).
(b) If v > cand BP (o, 7, p, ¢) and BP(x, \, o,v), then BP(x, 7 -\, p, »).

The proof of this lemma is essentially the same as the proof of the analogous
lemma for BP#, Lemma 3.19.
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Lemuma 4.6. For all wand v < pt, the relation BP (ut, ut, u, v) holds.
Proof. Use Lemma 4.2, Corollary 3.9, and if » > u, also Lemma 4.1 (b).
LeMMa 4.7, If BP(k, N, ut, v), then BP(x, - u™, p, »).

Proof. By Lemma 4.6, BP(u", u*, n, p) holds, where p = min(y, p*). If
BP (x, A, u*, ») holds, then by Lemma 4.5, BP (k, A- g™, g, ») holds.

LEMMA 4.8. For all n with 0 < n < w, if BP(x, N, p™, ¢) holds, then also
BP(k, N+t ®, p, ) holds.

Proof. Use Lemma 4.7 and induction.
LEMmma 4.9. If BP(k, N, u, ») holds, then also BP (xt, N-x™, u, v) holds.

Proof. By Lemma 4.6, we have BP («*, «*, «, v). If BP(x, A, g, ») holds, then
by Lemma 4.5 (a), BP (", A-&™, u, ) holds.

LeEmma 4.10. If « is a limit cardinal, of v 5 cf « and {p: BP(p, A, i, v)} s
cofinal in «, then BP (k, \-cf &, y, »).

Proof. If u = «, then by Lemmas 4.2 and 3.6, BP(k, M- cf «, y, ») holds. So
assume x > p. Since x = v and cfx # cfv, we have « > v. Express
& = Uacerx Aa as the union of a chain of nested sets where |4,| > g, », and for
each o < cf k, BP(|4.|, \, &, ») holds. For each a, let R,: 4. X (A X {a}) = u
be a function attesting to BP(|4.], A, u, v). Then any extension of Uz<erc Ra to

a function from & X (A X cf «) into u attests to BP(k, A -cf &, u, v).
LEMMA 4.11. If p is regular and p = «, then BP (k, x, u, 1) holds.

Proof. The proof proceeds by induction on x. BP (i, u, g, ) holds by Lemmas
4.2 and 3.6. If BP(\, \, u, u) and « = A, then BP(k, «, g, u) holds by Lemma
4.9, If « is a limit and cf « # cf g, then BP (k, «, g, u) holds by Lemma 4.10.
So suppose « is a limit cardinal, cf ¥ = cf p and for all A with ¥k > A = g,
BP(\, A, u, ) holds. Let {M.: @ < cf ¥} be an increasing sequence of cardinals
cofinal in x with Ag = u. For each @ with 0 < a < cf «, let Ra: Aa X (A X {a})
— u attest to BP(A\a, Moy i1, 1), Let Ag = Xy, and for a > 0, da = Ny —
Us<a M. Then k = Uscers Aa. Define Ro: k X (k X {0}) = u by Ro(x, (,0))
= a where x € 4,. Let R: « X (x X cf x) — u be any function which extends
Ua<ers Ra. Now suppose X € [k]# If X C A, for some a < cf «, then using the
induction hypothesis, we can find (x, o) € A X {a} so that |[R.)"X X {{x, a)}|
= p. Then |R”"X X {(x,a)}| = u. If X is not a subset of A, for any a < cf «,
then X is cofinal in ¢, and |Ry"X X {(0,0)}| = g, so [R"X X {(0,0)}| = .

In either case, the lemma follows.
LeEMMA 4.12. If p < k, then BP (x, &, u, u*) holds.

Proof. Use Lemmas 4.11 and 4.7.
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LevmMa 4.13. For any « and p with p < x, BP(k, &%, u, p) holds. Hence if
k = u = v, BP(k, k", u, v) holds.

Proof. The proof is by induction on « using Lemmas 4.9 and 4.10. The only
difficult case is cf k = cf p. If x = p then BP (k, «*%, u, u) holds by Lemma 3.6.
It also holds if ¢ = cf ¢ by Lemmas 4.11 and 4.1. So suppose « > u > cf p =
cf k and that BP(x, A%, u, u) holds for p £ X < «. Let {ga: @ < cf g} be an
increasing sequence of regular cardinals with limit g.

Write « = \J[Ad.: @ < cf y} as the disjoint union of cfpu sets with
u < |Aa| < x, and for a < cf u put Be = Ug<a 4a. Also, write «®% = U{C,:
a < cf p} as the disjoint union of cf u sets each of power «°*, Let I denote the
set of all ordered pairs, (f, g), of functions f, g with f € **cf«, g € **x and
such that gla) € A, for all & < cf k. Clearly |I| = «*™ and we may assume
without loss of generality that I  C,.

Now for 0 < a < cf u it follows from the induction hypothesis that there is
a coloring S,: B, X C, — p which attests to BP(|B.|, |Cal, u, 1). Also, by
Lemma 4.11, BP(|4.|, |4a], s, #3) holds for «, 8 < cf u. Let To5: Ao X Aa
— ug be a coloring which attests to this fact. Now define a coloring
So: k X I —p by setting Silx, (f, 2)) = Tape(x, gle)) for x € 4, and
a < cf p. The required coloring R: x X x®'* — u is any extension of Ua<ety Sa.

To see that P works, let X € [x]* If for some a, 0 < o < cf u, we have
|X M\ B,| = p, then there is ¥ € C, such that [S./ (X M B,) X {3}| = p.
Suppose |X M B,| < u for all @ < cf . Then there is an increasing sequence
{a(8): B < cf u} of ordinals less than cf u such that |4, M X| = us. Let f:
cf 4 — cf & be any function which satisfies f(«(8)) = 8 (8 < cf 1). Choose
g: cf p — xso that, for each 8 < cf p, g(@(8)) € A and

| Ta@s” (Aam M X) X {gla@)}] = ps
Then

R X X {(f, ©)}| = lim ps = p.

LEMMA 4.14. Assume A>cfhN=cfpy, p 2 v >cfv, and for all p <A,
p? < k. Then BP(k, A, u, v) fails to hold.

Proof. Let R: « X X — u be a coloring. Express A = Ua<on Ae as the union
of a chain of nested sets each of power less than A. Pick {r.: « < cf v} a sequence
of cardinals cofinal in ». For each a < cf X, since if p = |4.|, then p < A, so
p? < k. So there are fewer than « functions from A, into p. Choose a set
X. C « of power v, so that for every x, y € X,, R restricted to {x} X 4. and
R restricted to {y} X A, are the same function. Then X = \cen Xa works
for R.

Tueorem 4.15. (GCH). Assume X
only if it is not frue that A = x and p

k > u. Then BP (k, N, ¢, v) holds if and

=
Zv>cfk=cfr
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Proof. If N > k, then BP(x, A\, u, ») holds by Lemmas 4.1 and 4.13. So
suppose N = k. If v > u, then by Lemma 4.12, BP(k, «, u, 4¥) holds, so
BP(k, k, u, v) holds. So suppose v < u. If cf v # cf k, then an easy induction
on « using Lemmas 4.6, 4.9, 4.10, and 4.13 shows BP(x, «, v, v), so BP (k, «, g, v)
holds. So suppose cf v = cf x. If v = cf «, then by Lemma 4.11, BP(k, «, cf «,
cf k) holds, so BP (k, «, i, ») holds. The only remaining caseis u = v > cf x =
cf », and in this case BP (k, «, g, ») fails by Lemma 4.14.

LEmMmA 4.16. (a) If k > prand p = v = cf v = of A, then not BP (x, \, u, v).
(b) If w s singular, p = v, cf N =cfu =cfv, « is regular, and o™ < «
whenever o < u, T < \, then not BP (k, \, u, »).

Proof. First we prove part (a). Let {ra: @ < cf A} be cofinal in . Let R:
k X A\—p be a coloring. For a« € ¥« and 8 € cf \, define g.(8) € "su by
2:(B)(y) = R(a,v). There are fewer than (ud)* functions of the form g,|3.
Since k = (u2)*, there isa € «ksuch that for all 8 < ef X,

o' € x: gw|B = 2B} = (W)™

Let {»5: 8 < cf A} be cofinal in » if » is singular; otherwise let vs = 1 for all 8.
Choose A5 € « for each 8 < cf X so that |4s] = vg and for all &' € Ay g[8 =
2|8 Then X = Upgcon A works.

Next we prove part (b). The proof is analogous to the proof of part (a). Let
{ga: @ < cf A} and {r.: @ < cf A} be cofinal in u and X\ respectively. Let
R: x X N — ubeacoloring. Foreach « € xand 8 € ¢f A, define g,{(8) € U8 (g3)
by setting ga(8)(y) = R(e,v) if R(a,v) < 05, and setting g.(8)(y) =0
otherwise. Since « is regular and for all ¢ < g, 7 < X\, we have k > ¢7, there are
fewer than « functions of the form g.|3. Hence there is & € « such that for all
8 < cfh,

[{a’ € k: g|B = galB}| = «.

Letting {vs: 8 < cf A} be as in part (a), choose 43 € « for each 8 < cf A s0
that |4g| = vsand foralla’ € Ay, g./|8 = ga|B. Then Us<en 45 works.

LEmMma 4.17. If 2* = At and p = M, then BP (A, X, u, M)

Proof. The proof follows from Lemma 14.1 (p. 222) of [4] which says the
following:

There is a function f: [A*]2 — A\* so that whenever X, ¥ C At with | X]| = A
and | ¥| = A*, then there isx € X so that the edges between x and members of
¥ receive all A colors.

LeEMMA 4.18. Suppose p is singular.

(a) If «x 1s regular and for all p < u, p* < k, them for all v > cf p with
cf v = cf pu, not BP(x, A, p, v).

BYIfk Z v > pandcfv > (cf p)*, then not BP (x, \, u, »).

(c) Suppose p =2 N = cf u, v = cf u and either
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(2) for all p < p, p» = por
(i) N =, p" S pforallp < pando < \,» < p,and cfv 5 cf p.
Then BP (ut, N, u, ») if and only if BP (ut, cf u, u, v).

Proof. First we prove part (a). Let R: x X A\ — u be a coloring. Divide
i = Uacen 4o into the disjoint union of cf u sets each of power less than u. Let
{va: @ < cf u} be a sequence of cardinals cofinal in ». Define R: xk X A —cf
by R(x,¥) = a where R(x, y) € A,. Since (cf u)* < «, we can find UC «, a
set of power k, and S: A — cf g, a function, so that for all x € UV and y € A,
R(x,vy) = S(y). Now S induces a partition of \, A\ = Ua<euBa. For each
x € U, let R,: X — u be defined by R,(y) = R(x, y). For # € U, the function
R, maps Ugza Bs into Usgads. There are at most p* < « functions from
UgseBs into Ugs<aAds where p = |Ug<ads| < p. So for each a < cf y, choose
X, C Usothatforall u, u’ € X,

Ruy|UpaBs = Ru|\UpzaBs.

Then X = Ua<etnXa works for R.

Next we prove part (b). Let R: x X X\ — pbe acoloring. Let {pq: o < cf u} be
cofinal in p, and for &« € «, define go: A — cf u by g.(8) = least v such that
Ra, B) < p,. Choose X € [k]* so that for all a, 8 € X, the functions g, and g
are equal, g, = gg. Then X works.

Next we prove part {¢) (7). Lemma 4.1 guarantees that if BP (ut, cf g, u, »),
then BP (ut, X\, g, v). So assume BP (u™, A, u, ») holds, and let R: uy™ X A\ —=u
attest to the fact. Let {ga: @ < cf ¢} be cofinal in u. Define R: u* X N\ —cf u
by R(x,y) = the least y with R(x, ¥) < p,. Since (cf u)* £ u < u*, thereisa
set U € p* of cardinality u*, and a function f: X — cf p so that forall # € U,
for all y € X\, R(u,y) = f(y). Then f induces a partition of X\ = U<cotx La
where L. = {a}. Let

I= Ua{cfu{hjﬂf (e)+

Since for all @ < cf p, the set =y, has power |pse|/*e < p, the set I has
power = u, Define S: U X cf u— I by

S(x’a) = h E (La}ﬂf(u}v

where k(y) = R(x,¥). Now S works. For suppose X € [U]*. Let y € A be
such that R”X X {y} has cardinality at least min (g, »). Now y € L, for
some a, 50 §”"X X {a} has cardinality at least min (u, »).

Finally we prove part (¢) (7). As in the previous part, only one direction
presents any difficulty to prove. Here A = u. So suppose BP (ut, u, u, v) holds,
and let R: y* X p— p be a witness. Define S on ut X cf u by

S, y) = k€ ®(n,)

where h(y) = R(x,y) if R(x,y) < u, and h(y) = 0 otherwise. Then S is a
coloring showing BP (u+, cf u, u, »). For if X € [u7]*, then there is ¥y < A such
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that [{R(a, ¥): « € X}| = ». Since cf » # cf u, there is 8 such that [{R(«, v) <
pg: o € X}| = vandy < pg. But then |{S(a, 8): « € X}| = ».

LeEmMA 4.19. (TRANSVERSAL LEMMA) Let [ A ¢ € I} be a family of disjoint
sets. Let T be a set of transversals of {4 ;: 1 € I} such that for every X € [T)" there
151 € I such that |[{t M At € X}| = p = min(u,»), Let C T U eq[d )= be
such that for all i € I, for all x € [A4 )%, there is y € C with |x M\ y| = p. Then
BP(|T], [C], &, »).

Proof. For each v € C, let f,: v— u be a one-to-one function. Let R:
T X C— p be any function with R, ¥) = f,(x) whenever t My = {x} # 0.
Then R attests to BP (|7, |C|, u, ¥). For suppose X € [T]*. Find 7 £ I so that

HeM A te X} = p
Choose y € C so that

lfx € y:x € tMAY| = p
Then |[R"X X {y}| = min (g, »).

LeMMA 4.20. (TREE EQUIVALENCE). Assume u2 = max (u, A) and x = (u2)+.
Then BP (x, A, u, v) if and only if there is a < u-branching tree T of height \ and
a set B of branches of length )\ such that |B| = « and for all B' ¢ [B]", there 1s
some o < X\ such that {t € T: level (1) = « and ¢ occurs in some elemeni of B’}
has cardinality = min (u, v).

Proof. (=) Suppose R:« X N\ — u witnesses BDP(k, )\, g, v). For each
a € k, let R,: A — u be defined by R.(8) = R(a, 8). Let T = {R.IB: a € &,
@ € A}, ordered by inclusion. Then 7" is £ p-branching and of height M. Let
B = [{R.B: B € A: a € «}. Bis certainly a family of « branches of length \.
If B’ € [B]*, then X = {a: {R.8: 8 € \] € B’} has power at least ». Find
¥y € NAso that [R”X X {y}| = min (g, »). Choose 8 = y. Then

[{RalB: o € X}| 2 min (g, ),
s0
{t € T: level () = B and f occurs in some element of B’}

has cardinality = min (g, »). So B works.
(<) We use Lemma 4.19. The ath level of the tree is 4,. Each branchisa
transversal. All we need exhibit is C of cardinality X. If u = A, then

[4a|l = |2u| = w2 = g,
so that
EeliomE &
Suppose g < A. Let p = min (g, »). Then

|[Ao:]ﬂ] é |“.u,|P —_ ”|¢|’p é Paé i R,
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so let
= Uaeh[Aa]pt

LemMa 4.21. (GCH) Assume u2 < p* = k,v <«,cf v # cf Nand cf v— 5 cf A
Then BP (k, \, u, v) holds.

Proof. Our first proof used a theorem of E. C. Milner [6] which characterizes
the cardinals possible for families of almost disjoint transversals. We give a
direct proof.

We wish to apply Lemma 4.20. Let the tree T be the set \U.«x®g, ordered by
inclusion, and let the set of branches be

B = {{flg: B8 € \}: f € *u}.
Everything is clear except the assertion about B’ € [B]*. Let
F={fec :{fl:BEN € B} ={Ub:be€ B}

Then |B’| = |F|. For each f, g € F with f # g, let 0(f, g) be the least y with
f(y) # g(y). Note that if § = 0(f, g), then f(8) # g(8). If v < cf A, then

a=sup{0(f,g):f,g € Fandf # g}

shows B’ satisfies the conditions of Lemma 4.20. Thus we may assume
v = cf A. Since cf v # cf A, this inequality must be strict, namely we are
assuming v > cf A. Let A C \ be a cofinal set of power cf A. Let

B" = {{fla: @ € A}: f € F}.

Since each branch {fla: « € A} of T is uniquely determined by {fla: a € A},
we know that |B"| = |B’| = ». For each « £ )\ let

Ae = |{fle: f € FY|.

Since T"isatree,¢ < Bimplies A, £ M. If some A, = », we are done, so suppose
not, that is, suppose A, < vforall @ € A. Since cf » # cf X, sup A» < ». Now

v = |B'| = |B"| =] ]aea da £ (sup \o)°® = max ((cf M)*, (sup Aa)H).

Since we have assumed cf A < v and (sup A.) < », we may conclude that
» = max ({cf M)+, (sup Aa)t).

Since » = (cf N\)* is ruled out by the hypothesis cf »— # cf N\, we must have
v = (sup A1, Also cf (sup A.) # cf A\. Hence there are « < \ and 8 so that
forall B = a, \s = p. So» = ptand p** = ».Socf p < cf A < p. Let T’ be the
tree

{fIB: f€ Fand g € A}
ordered by inclusion. Then

IT| = |\ {{fIB: F€ Fl: B € A} = Daca da = p.
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Enumerate the elements of 77 in order type p, 7 = {#:: £ < p}. Now B" is
a set of branches through 77, so for each b € B, let £, be the least £ < psuch
that b M {£;: 7 < &} is cofinal in b. Since [B”| = v = p™ > p, we can find £ so
that

{6 € B": & = £}| = ».

But since 2/¥ £ p < v and |B"| = », there must be b and ' in B such that
b # b': but b and &’ have identical cofinal subsets, a contradiction.

TaeorEM 4.22, (GCH). Assume x > N\, g, k = w* (s0 x = max (u+, A7)).

(a) Assume pb = «.
(2) If N\ = pand v = « then BP(x, A\, u, »).
(1) if N = pand cf v = cf u then not BP(k, \, g, »).
(141) in all other cases, BP (k, \, u, v) if and only if BP (x, cf p, u, v).

(b) Assume pb < «x,
(2) if cf v = cf X and etther (v = xand p = N\) or (v < k and cf v= 5 cf 1),
then BP(x, \, u, v).
(12) ifctv = cf horifctv # cf N\, v = kand A < p, then not BP (x, \, u, v),
(142} otherwise, t.e., if cfv # cf N\, v <« and cf v = cf \, then assuming
V= L, BP(k, \, p, ») holds.

Proof. (a) Note that p? = « implies xk = p* and A = (cf u)* so u is singular.

(#) holds by Lemma 4.17.

(77) holds by Lemma 4.16 (b).

If v=cfp then (44) holds by Lemma 4.18(c). If » < cfpu then
BP (x, cf u, p, ») holds by Lemma 4.21. See case (b) () below. (Note that this
case is reduced to part (b).)

(b) If ut < k, then either x = yt and A = ef g, or k = A\,

(1) Suppose cf v # cf N\, v = x, and g = X\. Then BP(x, A\, ¢, ») by Lemma
4.17. Now suppose cfv = cf N\, v < «, cf v~ # c¢f \. Then BP(«x, A\, g, ») by
Lemma 4.21.

(12) Assume cf v = c¢f \. Then not BP(k, X\, , v) by Lemma 4.16(a).
Assume cfv # cf N, v = k, A <, (so A\ = cf ). Then not BP(k, \, g, ») by
Lemma 4.18(D).

(122) The result if V = L follows from unpublished work of Prikry [7].

It may also be derived from the gap-1 two-cardinal theorem in L using the
methods of Litman [Theorem 3.4 of 2].

Theorem 2 completes our discussion of the BP property under GCH. For
if k = g then BP(k, A, g, ») by Lemma 4.2. So assume & > p. If «x > p*, then
Lemma 4.3 either settles the problem or reduces it to the remaining cases. So
assume k < p*. If « < A\, then Theorem 4.15 applies, and if « > X, then
Theorem 4.22.
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Unfortunately, in Theorem 4.15(b) (i77), all we can say under GCH is that
BP is equivalent to the proposition about trees given in Lemma 4.20. The
situation of Theorem 4.15(b) (44¢) can occur in two ways: Let p be singular,
» < u, cf p # cf y, cf v~ = cf p. Then the open questions are BP (u™, cf y, p, v)
and BP (u*, u, p, v), where p < g is arbitrary.

Next we observe that BP either holds or fails for both situations together.

Lemma 4.23. (GCH) Suppose p is singular, v < u, cfpg # cfv and cfv— =
cf p. Then BP(ut, cf p, u, v) if and only if BP(u", u, p, v) where p < u is
arbitrary.

Proof. Assume BP (pt, cf 4, i, »). By Theorem 4.15, BP (g, u, p, ») holds, so
by Lemma 4.5, BP(u*, u, p, »). Now assume BP(uf, u, p, ). Then
BP (u*, u, p, ), so by Lemma 4.18(c), BP (ut, cf p, , »).

5. In this section, we use the equivalence of CP(x, g, ) with BP(k, «, u, »)
and CP#(k, u, v) with BP#(k, «, g, v) together with the results of the previous
sections to draw some conclusions about CP and CP#.

Lemma 5.1, (a) If x = pand u is regular, then CP (k, i, p).

() If x > p, then CP (x, p, ut).
Proof. For (a), use Lemmas 2.1 and 4.11. For (b), use Lemmas 2.1 and 4.12.

TueoREM 5.2. (GCH) For all k, p, vwithk = u,x = v, the relation CP{x, u,»)
fails to hold if and only if

k> uzv>clr=clix

Proof. Use Lemma 2.1 and Theorem 4.15 if x > p. If x = y, then any one-
to-one coloring works.

TrEOREM 5.3. (GCH) For all k, u, v with x = p = v, the relation CP# fails to
hold if and only if

k>p=v=c

Proof. If k = yu, then any one-to-one coloring works. If x > g, then use
Lemma 2.3 and Theorem 3.23.
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