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1 . An arithmetic function f(n) is said to be additive if it satisfies the
relation f(ob) = f(a)+f(b) for every pair of coprime positive integers a, b .

In this paper we establish two results to the effect that an additive
function which is not too large on many integers cannot often be large on
the primes .

If a l <a,< . . . is a sequence of positive integers, let A(x) denote ttie
number of such integers which do not exceed x .

THEOREM 1 . Let the additive arithmetic function f(n) satisfy

cl C
I f(a,)

C- g(a,) - 2

on a sequence of positive integers a,-_a,< . . . which satisfies A(x) ~- a x for
all x-c3 . Here % ::- I/2, cl , c2 and c3 are positive constants, the function g(x) is
positive non-decreasing, defined for all real x~- 2 .

Then there are further constants B and c so that

(i) g(x2) ~ Bg(x) ,

(ii)

	

1

	

f(p) 2 c
5a. p g(x)

uniformly for all x ~-_ 2 . Here

llyll =
I

	

if

	

Iyl-I ,
ly if Iyl - I .
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Note that by simple inductive argument g(x) = O((logx)c4) for some
constant c 4 >O, and (ü) then asserts that f(p) is usually O((logx)c4) so long
as p does not exceed x .

The following variant of Theorem 1 has a weaker hypothesis but a
weaker conclusion .

THEOREM 2 . Let the definitions of theorem I be in force save that hypoth-
esis (I) is to be replaced by

(2)

	

I f (a;) I =~g(a,)

Then conclusion (i) need not be valid, but there are constants c, f4> I
so that the inequality

I f(p)
2 ce

p g(XI)

holds for all x=2 .

In particular if
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g(x) _ s+max If(n)O
nsx

then inequality (iii) shows that

	 f(p)12 t cg(xl)2 '
P5x p

and letting ---

71,
	 If(p)I2 cmaxi f(n)I 2

P5x

	

p

	

n~xa

uniformly for xá-2. Replacing x by x' P we see that so long
have
	 If(p)i 2 . - max i f(n) 1 2 (c + Z

	

I
-) .

Psx

	

p

	

nsx

	

x l ffl<P5x p

as x > 2P we

For 2~x<20 we obtain a similar result with the sum of the p - 1 on the
right-hand side taken over the range p :n~-20 . In either case we reach the

COROLLARY . There is a positive constant A so that every additive arith-
meticfunction f(n) satisfies

7	 If(p)I 2 ~A max If(n)I 2 .
Psx

	

p

	

nsx

We shall show that the constant A in this corollary may in fact be
given an absolute value .

The function f(n) = log n shows that apart from the value of A this
result is best possible .



P
p5x

ADDITIVE ARITHMETRIC FUNCTIONS

~dn-1 ~,dn
nsx

	

p n5x
pi ln

2
~C;x

	

Idn l2

n5X

99

By taking for g(x) a suitable constant function we obtain from theo-
rem 2 a new proof of the proposition that if an additive function is bounded
on a sequence of positive lower density then the series

71
	 1

	

7,
f2(p)

f(P)I > 1 P

	

f(p) 1~5I

	

P
both converge .

By setting g(x) = e>0 and then letting e approach zero we see that
if an additive function vanishes on a sequence of positive lower density
then the series

1

f(p)#o P

converges. For other proofs of these two propositions, see for example,
ELLIOTT [5] .

As a further result we show that theorem 1 does not continue to hold
if one assumes only that A(x) ;~E_- xx where a< 1/2 is allowed .

THEOREM 3 . Let a real number 7j be given, 0<,l<1j2 . Then there is an
additive function f(n), a positive non-decreasing function g(x), two positive
numbers d l and d2 and a sequence of positive integers a l <a2 < . . ., so that

(iv)
dl
< I f(a,)1 < d2 ,

g(a;)

(v) A(x)=(lj2-,q)x

holds for all values of x 2,

(vi) lim sup
g(X2)

= ~ .
X__ g(x)

In fact we shall show that one may arrange that on a suitable unbounded se-
quence of x-values the ratio g(x 2)/g(x) may increase at least as rapidly as any
prescribed rate .

2. For the proof of theorem 1 we need two preliminary results .

LEMMA 1 . The inequality

holds for all complex numbers dn , and real numbers x ;i--2 . Here plI n means
that p divides n but p2 does not .

PROOF . See ELLIOTT [4], [5] .

7*
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LEMMA 2. Let r, x be real numbers, 2 rsx . Define the (strongly-)
additive function

fr (l7) _

	

f(p)
P1n, Ps_r

and independent random variables Y., one for each prime p not exceeding
r, so that

1
with probability

p

with probability 1 -1p
Then the number of integers n, not exceeding x, for which the inequality

fr (n)-_f~z is satisfied may be estimated by

xP ~ I YP~ zI + 0 (x exp - cs
log x l l

P=r

	

log J J
r

Here c, and the constant implied in the error term are positive and absolute,
and the result holds uniformly in all real z .

PROOF . This result forms the fundament of the ERDŐS-KAC-KU-
BILIUS method of treating additive arithmetic functions . A proof may be
found in KvsILIUS [10] .

In order to establish theorem 2 we shall need, besides Lemma 2,
the following result .

LEMMA 3. Let ql < q2 < , , , < qr x be a set of prime numbers, and let
11 1 -< [12-z:: . . . <nk :!~x be a sequence of positive integers, none of which is di-
visible by the square of any prime q ; . Define

S=~
r=1 qj

Suppose that there is no relation of the form n ; = 7. n i where the integer 7 is
made up entirely of primes chosen from amongst the q, .

Then there is a positive absolute constant co so that the bound

k

	

1
S 1 j 2

	

- 	Cp log X, x > 2
r=1 nr

is satisfied .

PROOF . A result of this type plays an important rőle in Behrend's
treatment of primitive sequences of integers [1], and Erdös' treatment of
certain distributional problems concerning additive functions ([8], see
also ERDÖS and WINTNER [9]) . A proof of lemma 3 may be obtained by
modifying that of lemma 5 of ELLIOTT [6] .



In theorems 1 and 2 neither the hypotheses nor the conclusions
are affected by replacing f(n) and g(x) simultaneously with O f(n) and
Og(x) for some real O . Without loss of generality we shall therefore as-
sume that g(2)==~: 2 .

We begin the proof of part (i) of theorem 1, (cf . ELLIOTT [4], [7]) .

3. Let x be a real number, x~2 . Let bl <b2< . . ., run through the
integers n not exceeding x for which one of the inequalities (1) with n in
place of aj fails. Let e l, 0<El < 1/2 be a positive number .

We apply lemma 1 with

-
Ct

(1 if n = bj for some j, e l x < ii s x ,
n -

10 otherwise .
Then

(3)

	

p!

	

1 -
1

	

1 ~CS x'- .
P=x 'bj~x

	

p bj-x
PI Ibj

	

I
Let S be a positive number, to be specified presently, and let A = A(x)
denote the set of primes p not exceeding x for which the inequality

7,1_1

	

1

	

Sx
b jsx

	

p

	

p
P~jbj

is satisfied . Then according to (3)

1
< C 5

	

2 .

Consider now a prime p, not exceeding x 112 , which does not belong to
A. Then
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10 1

1 =

	

1-

	

x
11

	 x] rEl xl 1

IL

	

J

	

1
e,x<ai~x

	

e t x<n-x

	

b i <x

	

p

	

p'

	

p

	

p bi-x
P Iai

	

P In

	

P!lbi

X (1 -1--- 1 -E1 - (1 -a-E1)-b~>x (a-EZ)
P

	

~x p

	

p

for any (fixed) e2 >0 provided only that we choose E 1 and b to be suffi-
ciently small, x sufficiently large, and p to exceed a certain number de-
pending only upon E 2 . Moreover, the numbers p-I a, where pjla, lie in the
interval (e l xp - , 1 xp-1] .

The number of aj not exceeding p-Ix is

xA(l~_ x
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provided that x~_ c3 . Since a+(x- E2)> 1 if E, is fixed at a sufficiently small
value (here we make use of the hypothesis x > 1/2) then p -1 a i = aj must
hold for some pair of values i and j, where El x-a;~x.

In view of the additive property of f(n), and the fact that by con-
struction (p, aj) = l ,

(4)

	

f(p) = f(a1) - f(a)

In particular

(5)

	

1 f (p) I 2c2 g(x)

We have now shown that an equation of type (4) holds for all primes
p not exceeding x 1 / 2 save for a set of primes q which may be estimated by

G q-1
- e7

q-x 1%2

We can carry out a similar procedure with x replaced by x 2 , and obtain

(6)

	

.f(p) _ .Í(aí)- .f(aj)

where E l x2 <aí~x2, for all primes p not exceeding x save possibly for a
set of primes q' which satisfy

Z (q')-'--c, .g'sx 1; 2

Choose a number y ::- 0 so small that

= log1 0(1) > 2c, .
X,,,/ 2<p=x 1 12

	

^/

Then there is a prime p lying in the range xyj 2<p :25~;x 1 / 2 so that both the
equations (4) and (6) hold . Eliminating f(p) from such a pair of equations
yields

f(a,)-f(aj) = .Í(aí)- .f(aj),
or, in a more convenient arrangement,

f(ai) = f(ai)+f(aj)-f(aj) .

Bearing in mind the property (1) of function f(n),

c190í) e2(g(ar)+g(aj)+g(aj))

and since g( ) is non-decreasing

el g(E1 x2) 3e2 &2-(Yr2))

&) cs &I -(a 6))
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uniformly for x-c, . We apply this last inequality k times where the (fixed)
integer k is chosen so that (1 -(y/6))k< 1/2, to obtain the inequality

g(x) Cs W"''), X C lo .

The validity of inequality (1) in theorem 1 is now clear, with a con-
stant B which depends upon C l , C2 , a, c3 and the supremum of g(x 2)/g(x)
for 2 ~, X~C1 12 .

4. Returning to the inequality (5) in the previous section we note the
estimate

(7)

	

p C7

p
f(P)

j

>
2c2 9(x)

which we shall need to establish part (ü) of theorem 1 .
Let q run through the primes not exceeding x1/2 for which the ine-

quality f(# ::- 2C 2 g(x) is satisfied, and which are therefore counted in
(7) . Let y be a positive number, 0-:::y--l,

	

.to be chosen presently .
For any positive integer rn,

mo

	

1
-~ C7 .

m=1 (~S)um<gs(~X)um-1 q

103

so that if m o is fixed at a value so large that c7/m,-<x/4, then there will be
an integer m, 1 mem o , and a number y = (yx)l n' , so that

(8)

	

1

	

x

Yu<gsy q

	

4

Note that whatever the value of x~!2, m„ is fixed and y exceeds a certain
fixed (positive) power of x .

Consider those integers a j not exceeding y for which the inequalities
(1) are valid . The number of these which are divisible by the square of a
prime 1 ;:-1 o is at most

Y < xY
I

	

1 2

	

8

provided that we fix 1, at a sufficiently large value . The number of a;
which are divisible by a prime-power 18 where 1 :!:_z:1o and s ::-so ( .-2) is not
more than

2: :~ [Y< C~l Y 2-s
a Y

S >8 O t

	

Is

	

8
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provided that so is fixed at a sufficiently large value . The number of a-
which are divisible by one of the primes q which are counted in (8) Is
at most

(9)
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Altogether, therefore, there are at least xyf2 of the a j (may) remaining
on which

f(p)
Plaj
PSY 1`

where the constant c 12 depends only upon the value of f(is ) with 1,51 0 ,
s ~- so . Note that in this part of the argument we only need the lower bound for
f(a) which is given in (1) in so far as it is embodied in the estimate (8) .

Let the random variables YP be defined as in Lemma 2 with x re-
placed by y and r by y1l . Let y be fixed at a value so that the term
0(exp(-c;µ-1)) is less than xf4 . Then we have the lower bound

Y
ryl, ay

Yu<45Y
L
q

	

4

5 2c2 9(X) + C 12 5 C 13 9(X)

a
YP ~ e13 g(x) ~

4
.

PsY 1'

Let T(t) _ T(x, t) denote the characteristic function of the distribution
function

P (g(x) -1

	

YP I .
P=Y"

A straightforward calculation shows that it is

17 f 1 + 1 exp - ttf(p)

P5 Y"

	

p

	

g(X)

Here, for 3 :f5p :5y", a typical term in the product is

exptP~
exp

( IO) ) -11P
2 J)

so that

(11)

	

4(t)1 áe14 exp ~- 2 2 1 sine tf(P) ~~

P-Y" p

	

2g(x)

We now appeal to a relation between a distribution function F(z) and
its characteristic function V(t) . According to a formula which appears in
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CRAMER [2] (it may readily be obtained by convoluting F(z) with a normal
law and applying Plancherel's relation)

h

2h
1

f (F(w+u)-F(w- u)) du =

0

=
2,-r f (

slft
2

~ . g -2ttw/h .

	

h ) dt

uniformly for all real w and real h>0. We apply this equation with F(z)
the distribution function at (10) so that ip(t) _ T(t), h = 2c1377 where ?1 ::- 1,
and w=0 .

According to our lower bound (9), F(u)-F(-u) ;;-x14 for u ::-c13,
so that the left-hand side of (12) in the case at hand exceeds a/16 ; hence

f
SItt

) 2

	

t13 1I

Moreover, the contribution of the range Itl >tl = 32/a to this last integral
is not more than

2
f

dt a

t 2

	

16 '
ft

whilst the range Itj :5 t o = a/32 contributes at
t„

2 r 1 • dt

	

a
,J

	

16
0

Altogether

dt a -r/8 .

Inost

f

	

(P ( t
lidt>"

.X13

	

4

Hence there is a value of T in the range tom JTJ=-tl for which
T

	

a2
T

` 71C13J > 128 '
and so (in view of our upper bound (11))

2: 1 sin 2	zf(p) l = 1 l0
( 128c14

	

c
p al p

	

2

1 277 c,3g(x))

	

2 g l

	

a2

	

10
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In view of the inequality

jsinwI

	

áw1

	

if

	

Iwj-_ 2 ,

we see that on the primes p l for which I f(p)j ~~ ric 13 g(x)f j Tj = c1óg(x)
we have

1
f(pl)2 C15' yÍ 2 C13 I

Pt=v" pi

Choose a value of p so that Jrgc 13 ITI -1 >2c2 (see (l) and what fol-
lows). Then if the inequality If(p)I :!~cls g(x) fails, for say p = p2, we have
1 ANY >2c 2 g(x) and so

1

	

C 7 .

Pz=v~` P2

We have now proved that

1 min ~1, IAP)i
J
2< C17

P=Y" P

	

C16 g(x)

Here yu ::-xO for some constant 0, 0< O< 1 . Replacing x in this last ine-
quality by x 1 / 19 gives

	 I AP) 1 	2	 1 min l,	, ~ c17,
P

	

cls g(x' 10 ) 1

Bearing in mind (from (i)) that g(x'1O)-5z~c 1S g(x) for some constant c 18 and
all x sufficiently large, we readily obtain the desired inequality (ü) .

This completes the proof of theorem 1 .
PROOF OF THEOREM 2 . We obtain an inequality which is to replace

that of (7) using only the weaker hypothesis a ::_0 rather than awl/2 .

Consider the integers n not exceeding x which are not divisible by the
square of any prime q greater than q o and for which f(n)I :!E~ g(x) . According
to the hypothesis of theorem 2 they are in number at least

X
ax- 1

	

~ax/2,
4>4o 2q ]

provided that q o is fixed at a value sufficiently large with respect to a .
Let us denote these integers by m 1<m2< . . . <mk . Indeed, replacing x by
w, 2 :!~ w :c~_x, in this result, making use of the nondecreasing property of the
function g( ), and integrating by parts, we see that for all x mix„

-2 . g(x) 2 .

k

	

1
C 19 log x .

r=I Mr
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Let q,-<q2 < . . .ql :!!:-::x run through the primes q greater than q o for
which f(q)>2g(x) . If there is any equation of the form m; = Amt where
A is made up entirely from the primes q then we have 2g(x)_J: f(A) :n:_:
nc; Jf(m,)I+If(m,)l-2g(x), which is impossible . The conditions of lemma
3 are therefore satisfied and we see that

I

	

1
7

	

co -c-92 = c 20
m=t qm

Considering those primes on which f(p)< -2g(x) similarly, we deduce that

< 2 [C21+

	

X21
1

f(P) I >2g(x)
21

	

-
P _-X

	

P

	

p o Pl

This inequality then replaces that of (7) . Here c 21 depends at most upon a
and x1 (and so the c3 which appears in the hypothesis involving A(x)) .

The proof of theorem 2 is now readily completed along the lines of
the proof of theorem 1, save that in place of the last step, (i) not being
available, we set 0 -1 = ~ .

Concerning the corollary we note that the constant c 12 which occurs
in the proof of theorem 1 can be given the value

cl2 = 7, 1 I f(ls ) I 1, so max I .f(n) Í 1o So g(x)
i=1o 8--so

	

n=Y

in this (particular) case . This establishes the inequality

	 If(P)12 -Ao max I f(n)I2
P_x

	

p

	

nsx

with some absolute constant A o, for all x absolutely large : we may choose
x = 3/4. For the remaining values of x such an inequality is trivially valid .

REMARK. It is perhaps worthwhile to mention here that if an additive
arithmetic function f(n) satisfies If(p)I = h(p) where the real function h(x)
is a slowly-oscillating function of logx, that is h(xy)/h(x) 1 as x-- for
each fixed y>0, then for any b, 0-<b-< 1,

If(P)I2
~5n

q 27f(q)~2 = 2 B(P)2
pó

so that
1 - 112

lim sup lf(p)j B(p) -1, log

Letting 8-•0+ we see that f(p) = o(B(p)), p-• ~ . It is now easy to check
that the function f(n) belongs to the class H of KUSILIUS ([10] p . 47) and
indeed that for any e>0
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Hence, defining

one obtains the result
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I 	~,

	

.f(p)2 0 (N
B(N)2 p_N

	

p
1 f(p)~ >e B(N)

U(N) _

	

.f(p)

p=N p

l

	

7-

	

1

f
e_U2!2 du (N-

N

	

n5N
f(n)- U(N) -- zB(N)

see, for example, KUBILIUS [10] Theorem (4 .2), p . 61 ; or SHAPIRO [111 .
This remark would apply to the case when f(p) = exp (Vlog log p ) .

If lf(p)s ~logp then this remark is no longer applicable, but theorems
l and 2 can still be useful .

PROOF of THEOREM 3 . Let 111-<r12- . . . be a sequence of real num-
bers, which for the moment are only restricted by the requirements n l ~:
~2 and n, .l>-exp(n), for all i~1 .

Let B, 1 be positive numbers, which will be fixed presently in terms of
7I, and which may be thought of as "large ." We write b for e-1/2 .

We define the sequence a j by induction, it is to consist of all positive
integers up to and including nl, and in the interval n,<a, -n l_1 it is to
consist of those integers which have at least one but not more than I prime
divisors p in the range n, <p :5nP, but no prime divisor q in the range
ná+1<q--7-:n,+1 • These prime divisors need not be distinct .

It is clear that the estimate A(x)~x/2 x(1/2-al) holds for I _-!E~x2c~n,
We assume that it holds for all values of x up to n ;, and prove that it also
holds for rz,<x :!E~;n1_1 .

Case 1 .

If b 1 ::-B then for any fixed y, b -: I -ft-- 1,

A(x) -A(n,-")?x-n~- -1-Z 1 1
msx

where Z1 counts those integers m, which have no prime
divisor p in the range ns<p~nB . For, if an integer m ::!~ x -z~ nB possesses at
least 1 prime divisors which are greater than n,' then nór~m :!S~ nB, b1 ::s; B,
which is false .

For 0-1-: 1 let y)(x, xj3) denote the number of integers not exceeding
x which are made up of primes not exceeding x¢. In the range 1/2<~3<1
there is the estimate

w(x,x) =[x]-

	

IxJ =(I+log(+o(I})xx~ <p=x
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as x-- . Hence, for any fixed - ::-0,

Z, 1 ~w(x X I ) - V01!-/
n~'-"~6'), 8r

0
-,u)

= b
MIX

~(1+Iogb+E)x-(I +log S 1 -e)nt - "~

s(1/2+F)(x-n;-")+0((µ+E)n;-")~

x(1/2+2s)(x-n;- ),

since

	

provided that n l is sufficiently large .
Hence

A(x)-A(nt-")_(1/2-3e)(x-nt-f`)

and A(x)-(I/2-,q)x if 3e -n~ ip, and n r is sufficiently large in terms of e .

Case 2 . nB<x :!~ nő+I

In this case

A(x)-A(nBl 2)-x-nPf 2-2-57 2 1 -Zs 1
m-x

	

m5x

where Z2 counts those integers m, nB/2 <m~x, which have no prime fac-
tor p in the range nő< p :!z~nB, and G3 counts those integers in the same
range which have more than 1 such factors .

Let W2 (m) denote the number of distinct prime factors p of m which
satisfy nő<p :c~_:nB/4, and let w3 (m) denote the number which lie in the
larger range nő<p :n~nB .

The well-known method of TURÁN [I I ] allows one to prove that

(w2 (m) - S)2 = 0((x - 012) S)
n .B/2<m=x

where

S=

	

21 1 = log B +0
l

	 1
1

.
ni b <p_n,B/4 p

	

46

	

log n~

If m is counted in Z2 then tiv2 (m) = 0, and so

2
0(x- 'Ii '1 =	)'<6(X_tj Bf 2 )

,,,_x

	

log B

if B has a sufficiently large value, depending upon e .

From the readily obtained estimate

W3 (m) = 0((x-nP/ 2 ) log B)
n,B ,~ 2<m_x

we see that those integers m which have at least ((+ 1) distinct prime divi-
sors in the interval (nb, nB] are at most

109
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0 log B (x-0 11 ) l < e(x -- nBf2 )
JI

in number. Those m which have a divisor p2 with p in the same range are
also

0

	

x-nP12

	

nB

	

a 2+0	 <e(x-n t i)
p .a

	

p 2

	

log n 1

in number .
Altogether, therefore

A(x) - A(nBf2) > (1 - 3e) (x - ns/2)

and A(x)~(1/2-n)x once again .

Case 3. nő+1<x<n,_L1 .

We estimate A(x)-A(n; 12 1 ) from below. Everything proceeds as in
case 2 save that we must now remove those integers m, nó+1<m~x,
which have a prime divisor q in the range nő-1<qmcsn,+1 • They are in
number at most

x-nő+i +0(1)1<(x-nő12 1)(log-+ 0	~~+

n,_ 1 <q~x

	

q

	

log ,+1

+0x <(1/2+e)(x-nő+1)
log x

since x<2(x-nó+1) •
Hence

A(x) - A(nőJ21 ) > ( 1 /2 - 48) (x - n812 1 )

and once again A(x)~-(1/2-?7)x, this time if 4e-!~?j .
We fix e = 71/4, B in terms of e, I in terms of B, and n l in terms of

e, B, I and so e, so that the finitely many conditions of the type nB<nő+1
are satisfied, and our argument works in every case .

The proof of theorem 3 is now readily completed . The additive func-
tion f(n) is defined to be logn if n~nl ; by f(p) =logp if nő<p<nB for
some i, and to be zero otherwise .

The function g(x) is defined to be logn Í when n,<x :!!~n ;+1 •
An integer a~ which lies in the range n,<a .-n iT1 , 1. 2, has between

1 and I prime factors in the range (nő, nB], and none greater than nB . Hence

6logn, _-!~ If(aj)j ~- Blogn,+ 7, log p+lognl ~- (2B+1)logn,
psn._1B



provided that nt is sufficiently large in terms of n,_ 1 . This will follow from
the condition n;+1 ::-exp (n) if n l is sufficiently large in terms of B . For
such integers a J we have

SC
Jf(a) I <2B+I .
g(a)

Finally, if x; = n1+1 -I L-4, then we have x2 ::_n,_ 1i and

g(x?)

	

log n,+,
g(x,)

	

log n Í

which establishes (vi) .
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