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1. An arithmetic function f(n) is said to be additive if it satisfies the
relation f(ab) = f(a)+ f(b) for every pair of coprime positive integers a, b.

In this paper we establish two results to the effect that an additive
function which is not too large on many integers cannot often be large on
the primes.

If a,<a,=... is a sequence of positive integers, let A(x) denote the
number of such integers which do not exceed x.

THEOREM 1. Let the additive arithmetic function f(n) satisfy

|f(a))l
(1) (=—t=a
g(aj)
on a sequence of positive infegers a,<a,< ... which satisfies A(Xy=wax for

all x=¢;. Here a=1(2, ¢,, ¢, and ¢, are positive constants, the function g(x) is
positive non-decreasing, defined for all real x =2.
Then there are further constants B and ¢ so that

(i) g(x*)=Bg(x),

¥ 1] @I}ﬁ
& éx P ‘ g | ‘

uniformly for all x=2. Here

1
Iy = {
v

if lyl=1,
if lylsl.

* Partially supported by N. §. F. Contract Number MCS 78 - 04374,

7 ANNALES — Sectio Mathematica — Tomus XXII1-XXII1.



g8 ELLIOTT, P. D. T. A. AND ERDGS, P.

Note that by simple inductive argument g(x) = O((log x)*) for some
constant ¢,>0, and (i) then asserts that f(p) is usually O((log x)*) so long
as p does not exceed x.

The following variant of Theorem 1 has a weaker hypothesis but a
weaker conclusion.

THEOREM 2. Let the definitions of theorem 1 be in force save that hypoth-
esis (1) is fo be replaced by

(2) f(a)]=g(a).

Then conctusion (i) need not be valid, buf there are constants ¢, f=1
so that the inequa!it‘v

" (p) |2
(iii) ‘

el
holds for all x=2.

In particular if

g2(x) = e+max | f(n)|=0
n=x

then inequality (iii) shows that

1f(p)®
27, p

p=x

> M-_\:_c max | f(n)(?

p=x P n=x

=cg(),

and letting e—~07,

uniformly for x=2. Replacing x by x'# we see that so long as x=2% we
have

1@ _ : 1
b » maxif(n)[ (c-l— 2 ]

p=x xW<p=x P

For 2=x<27 we obtain a similar result with the sum of the p~! on the
right-hand side taken over the range p=2%. In either case we reach the

CoroLLARY. There is a positive constant A so that every additive arith-
metic function f(n) satisfies

2
> MOF _ 4 max | f(n)2.
p=x p n=x

We shall show that the constant A in this corollary may in fact be
given an absolute value.

The function f(n) = log n shows that apart from the value of A this
result is best possible.
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By taking for g(x) a suitable constant function we obtain from theo-
rem 2 a new proof of the proposition that if an additive function isbounded
on a sequence of positive lower density then the series

1 I*(p)
=1 P =1 P
both converge.

By setting g(x) = e=0 and then letting ¢ approach zero we see that
if an additive function vanishes on a sequence of positive lower density
then the series

1

fipy=0 P

converges. For other proofs of these two propositions, see for example,
ErLiorr [5].

As a further result we show that theorem 1 does not continue to hold
if one assumes only that A(x)=a«x where x<1/2 is allowed.

THEOREM 3. Let a real number w be given, 0<xn=<1/2. Then there is an
additive function f(n), a positive non-decreasing function g(x), two positive
numbers d, and d, and a sequence of positive integers a,<da,=..., so that

(i\’) dl <g—'“‘:d2 ¥
(V) A)=(1/2—n)x
holds for all vatues of x=2,

(vi) lim sup === 8%) _

G

In fact we shall show that one may arrange that on a suitable unbounded se-
quence of x-values the ratio g(x?)/g(x) may increase af least as rapidly as any
prescribed rate.

2. For the proof of theorem 1 we need two preliminary results.

Lemma 1. The inequality

P

p=x

> d, —-——Zd ﬁcsxz |d,|*

n=x n=x n=x
plin

holds for all complex numbers d,, and real numbers x=2. Here p|\n means
that p divides n but p? does not.

Proor. See ELLioTT [4], [5].

T*
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LEmmA 2. Lef r, x be real numbers, 2=r=x. Define the (strongly-)
additive function

L= 2 f(p,

pln, p=r

and independent random variables Y,, one for each prime p not exceeding

r, so that
f(p) with probability L8
P

Y=
IO with probability 1 S
p

Then the number of integers n, not exceeding x, for which the inequality
J(ny=z is satisfied may be estimated by

xP [Z Y, £2]+O[xexp [—cﬂ logx]]'

p=r Iogr

Here ¢, and the constant implied in the error term are positive and absolute,
and the result holds uniformly in all real z.

Proor. This result forms the fundament of the Erpos—Kac—Ku-
piLius method of treating additive arithmetic functions. A proof may be
found in Kusirius [10].

In order to establish theorem 2 we shall need, besides Lemma 2,
the following result.

LEmma 3. Let gy<g,<...<q,=x be a sel of prime numbers, and let
ny<ny=...<n.=Xx be a sequence of positive integers, none of which is di-
visible by the square of any prime q;. Define

S 5 !
fZl q; .

Suppose that there is no relation of the form n, = j.n; where the integer J. is
made up entirely of primes chosen from amongst the q,.
Then there is a positive absolute constant ¢, so that the bound
ko1
S22 _—=c,logx, x=2
rZ[ n,. 0108

is satisfied.

Proor. A result of this type plays an important role in Behrend’s
treatment of primitive sequences of integers [1], and Erdas’ treatment of
certain distributional problems concerning additive functions ([8], see
also Erpds and WINTNER [9]). A proof of lemma 3 may be obtained by
modifying that of lemma 5 of ELLiorT [6].
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In theorems 1 and 2 neither the hypotheses nor the conclusions
are affected by replacing f(n) and g(x) simultaneously with @ f(n) and
Og(x) for some real @. Without loss of generality we shall therefore as-
sume that g(2)=2.

We begin the proof of part (i) of theorem 1, (cf. ELLioTT [4], [T]).

3. Let x be a real number, x=2. Let b,<b,= ..., run through the
integers 1 not exceeding x for which one of the inequalities (1) with n in
place of a; fails. Let &, 0<¢,<1/2 be a positive number.

We apply lemma 1 with

d, = (1 if n=b, forsome j ex<n=x,
10 otherwise
Then
| 1 ‘2
3) B D A== T 1| =ear,
p=x  bj=x p bj=x
|pllo l

Let 6 be a positive number, to be specified presently, and let A = A(x)
denote the set of primes p not exceeding x for which the inequality

| | & x
| % Rt 1‘}_
‘b{ﬁx P bi=x | P
.p|f‘-‘j |

is satisfied. Then according to (3)
_":C5 072,
p=x, pet P

Consider now a prime p, not exceeding x2, which does not belong to
4. Then

> 1= 3 1—2lz[-’f—]—[-"]_[ﬁX]_J_Zi_g.;,

”

£ X<a;=X U X<=RA=X bi=x P P P obi=x p
pllg; piln plib
5 l l -
- 1——_-———El—(1-—0(—81)—(§J>i(oc—£2)
P Vx p p

for any (fixed) e,=0 provided only that we choose ¢, and § to be suffi-
ciently small, x sufficiently large, and p to exceed a certain number de-
pending only upon &, Moreover, the numbers p-*a, where plla, lie in the
interval (e, xp—,* xp—1].

The number of a; not exceeding p—1x is

A [E-]axl
P P
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provided that x =c2. Since a4 (% —e,) =1 if &, is fixed at a sufficiently small
value (here we make use of the hypothesis a=1/2) then p~'a, = a; must
hold for some pair of values i and j, where ¢ x<=a,=Xx.

In view of the additive property of f(n), and the fact that by con-
struction (p, a;) = 1,

4 f(p) = f(a;))—f(ay) .
In particular
©) | F(p)| =2¢,8(x) -

We have now shown that an equation of type (4) holds for all primes
p not exceeding x'/2 save for a set of primes ¢ which may be estimated by

=
Z_ q =C;.
g=xV?

We can carry out a similar procedure with x replaced by x2, and obtain
(6) fp) = f(a)—f(a)

where &, x?<a;=x?, for all primes p not exceeding x save possibly for a
set of primes ¢’ which satisfy

2 (@) t=c.
g=x¥?
Choose a number y=0 so small that

=lcagl

x?lrz<p§x”2 ¥

+0(1)=2c,.

Then there is a prime p lying in the range x"2<p=x"2 so that both the
equations (4) and (6) hold. Eliminating f(p) from such a pair of equations

yields

f@)—flay = fa)—f(a),
or, in a more convenient arrangement,

J(@) = f(a)+f(a)—1f(a).
Bearing in mind the property (1) of function f(n),

¢ 8(a)) =, (g(a)) +£(a)) +£(ay)),
and since g( ) is non-decreasing
€1 g(e1 X7) =3¢, g(x*~ 1)

8(x)=¢; g(x!~419)
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uniformly for x=¢,. We apply this last inequality k times where the (fixed)
integer k is chosen so that (1 —(y/6))¢<1/2, to obtain the inequality

g0 =cig(x'?), x=cy.

The validity of inequality (1) in theorem 1 is now clear, with a con-
stant B which depends upon ¢, ¢,, «, ¢; and the supremum of g(x%)/g(x)
for 2=x=cli2.

4. Returning to the inequality (5) in the previous section we note the
estimate

1
(7) — =ty
5;2 P 3
[ f(p)|>2¢ag(x)
which we shall need to establish part (ii) of theorem 1.

Let ¢ run through the primes not exceeding x'2 for which the ine-
quality |f(q)] =2¢c,g(x) is satisfied, and which are therefore counted in
(7). Let u be a positive number, 0<u<1, to be chosen presently.

For any positive integer m,,

3 3 o=

m=t (" <gallD” 9

so that if m, is fixed at a value so large that ¢;/m, < «/4, then there will be
an integer m, 1 =m=m,, and a number y = (¥x)*" ", so that

(8) b i{i_

yh<g=y q 4

Note that whatever the value of x=2, m, is fixed and y exceeds a certain
fixed (positive) power of x.

Consider those integers a; not exceeding y for which the inequalities

(1) are valid. The number of these which are divisible by the square of a
prime [=>1; is at most

S l].:.ﬂ
s L2 8
provided that we fix /, at a sufficiently large value. The number of g,

which are divisible by a prime-power /5 where {=/, and s=s, (=2) is not
motre than

Y i @y
e c 2 5=
Z[I’]ﬁ nY 8

s=>85; 1=l
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provided that s, is fixed at a sufficiently large value. The number of g,
which are divisible by one of the primes ¢ which are counted in (8) is

at most
yﬂ{qﬁy [ ]

Altogether, therefore, there are at least «y/2 of the a; (=y) remaining
on which

% f(p)} =2¢, g(X) + €12 =13 8(%)

p=y# i

where the constant ¢,, depends only upon the value of f(£) with [=/,
s=8,. Note that in this part of the argument we only need the lower bound for
f(a;) which is given in (1) in so far as it is embodied in the estimate (8).

Let the random variables ¥V, be defined as in Lemma 2 with x re-
placed by y and r by y# Let p be fixed at a value so that the term
O(exp (—¢; u)) is less than x/4. Then we have the lower bound

9) P[: > ypjgclag(x)]>%.

p=y# |

Let ¢(f) = ¢(x, t) denote the characteristic function of the distribution
function

(10) Pleor 3 ¥,=2).
p=yt
A straightforward calculation shows that it is
I [l +— {exp ztf(p)] 1})
Nt P g(x)

Here, for 3=p=y#, a typical term in the product is
oo} o () oo
p g(x) p
so that

() (0 Ecuexp[ 3 < [’2’; ((fc))]]

We now appeal to a relation between a distribution function F(z) and
its characteristic function y(f). According to a formula which appears in

p=y# p
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CrAMER [2] (it may readily be obtained by conveluting F(z) with a normal
law and applying Plancherel’s relation)

h
%f(F(w-{-n)-—F(w—u))du:
[i]

- L [ (s (e
2 t h

uniformly for all real w and real h=0. We apply this equation with F(2)
the distribution function at (10) so that y(f) = ¢(f), h = 2¢,5, 7 where =1,
and w=0.

According to our lower bound (9), F(u)— F(—u)=a/4 for u=cy,,
so that the left-hand side of (12) in the case at hand exceeds «/16; hence

(12)

[T Ge)

dt = o /8 .

Moreover, the contribution of the range |f{| =%, = 32/ to this last integral
is not more than

“_di .

216

41

whilst the range |{| =¢, = «/32 contributes at most

tl!
2 f Vol =,
16
0

et
N 4

ta<it|=ty
Hence there is a value of 7 in the range {,=|7| =t, for which

elre)
el 1287

and so (in view of our upper bound (11))

Z isinﬁ [_.E'_f.(_p_)__]g.l_]og[_l_z_s.&] = Cygs
pzyt p chmg(x) 2 GQ

Altogether
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In view of the inequality

[sin w| =

w| it w|=—,
I 2

we see that on the primes p, for which |f(p))| =zne;2(x)/|t] = ¢158(X)
we have

! 2
> AP =scat gt cly (o7 g(0)?

pi=yt P1

Choose a value of # so that wxney, [v|1>2c, (see (7) and what fol-
lows). Then if the inequality |f(p)| =c,,g(x) fails, for say p = p,, we have

| f(p2)] =2¢, g(x) and so 1

—=c,.
pezyk P2

We have now proved that

2
2 -l-min [1, _L'_f_(ﬂ] =Cyq.
p=yH p ClB g(x)
Here y#=x® for some constant @, 0 <@ <1. Replacing x in this last ine-
quality by x/® gives

b iI'f‘lil'l [l, __|f(P)| ]2551?: (x=X,).

psx P €1 8(x110)

Bearing in mind (from (i)) that g(x"®)=c,,g(x) for some constant ¢, and
all x sufficiently large, we readily obtain the desired inequality (ii).
This completes the proof of theorem 1.

Proor oF THEOREM 2. We obtain an inequality which is to replace
that of (7) using only the weaker hypothesis =0 rather than a=1/2.

Consider the integers n not exceeding x which are not divisible by the
square of any prime ¢ greater than g, and for which | f(n)| =g(x). According
to the hypothesis of theorem 2 they are in number at least

b
X — —|=ax/2,
‘?bzl‘.'o[qz]

provided that g, is fixed at a value sufficiently large with respect to «.
Let us denote these integers by m;<m,<...<m,. Indeed, replacing x by
w, 2=w=x, in this result, making use of the nondecreasing property of the
function g( ), and integrating by parts, we see that for all x=x;,,

k

2

r=1 1,

=e,logx.
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Let g, <=¢,<...¢,=x run through the primes ¢ greater than g, for
which f(g)=2g(x). If there is any equation of the form m, = Am, where
4 is made up entirely from the primes ¢ then we have 2g(x)=<f(1)=
= |f(m)| + |f(m;)| =2g(x), which is impossible. The conditions of lemma
3 are therefore satisfied and we see that

1
—— =y C1y" = Cp -
m=1 4

Considering those primes on which f(p)<= —2g(x) similarly, we deduce that

i l-_;.-z[czﬁ > l] = Cy; .

p=x p=go P
(P} >28 (x)

This inequality then replaces that of (7). Here ¢, depends at most upon «
and x, (and so the ¢; which appears in the hypothesis involving A(x)).
The proof of theorem 2 is now readily completed along the lines of
the proof of theorem 1, save that in place of the last step, (i) not being
available, we set @1 = 4.
Concerning the corollary we note that the constant ¢, which occurs
in the proof of theorem 1 can be given the value

C1g = 2 Z |f()] 5[0501}33;’,{ |f(n)| =1, 8, 8(x)

I=ly s=5,

in this (particular) case. This establishes the inequality

2 Lﬁ)'z = Ay max | /(n)]?

p=x

with some absolute constant A,, for all x absolutely large: we may choose
« = 3/4. For the remaining values of x such an inequality is trivially valid.

REMARK. It is perhaps worthwhile to mention here that if an additive
arithmetic function f(n) satisfies | f(p)| = h(p) where the real function fi(x)
is a slowly-oscillating function of logx, that is A(x¥)/h(x) -1 as x -« for
each fixed y=0, then for any §, 0<=6<1,

11> > i522ﬁ(—t‘;”ﬂﬂ—=2,3(,9)2

pPeg=p 9 9=p
so that

; 1y-u2
im sup /(7) B() = og - |
P oo
Letting 4 ~01 we see that f(p) = o( B(p)), p— . It is now easy to check

that the function f(n) belongs to the class H of Kusirius ([10] p. 47) and
indeed that for any e=0
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1

fo) L
BNy 2, p o (=)

=N
[f(p)>e B(N)

Hence, defining

. p=N P
one obtains the result

z

_Rf Z "“"};.‘21—::“ \/»E_“g-adll. (N*m);

n=N
f(n)— U(N)=2B(N) i

see, for example, Kusirius [10] Theorem (4.2), p. 61; or SHAPIRO [I1].
This remark would apply to the case when f(p) = exp (]/loglogp).

If |f(p)| =log p then this remark is no longer applicable, but theorems
I and 2 can still be useful.

Proor oF THEOREM 3. Let n,<n,<... be a sequence of real num-
bers, which for the moment are only restricted by the requirements n, =
=2 and n,.,=exp (1), for all i=1.

Let B, I be positive numbers, which will be fixed presently in terms of
#, and which may be thought of as “large.” We write 6 for ¢~1/2,

We define the sequence a; by induction, it is to consist of all positive
integers up to and including 7, and in the interval n,<a,=n,., it is to
consist of those integers which have at least one but not more than ! prime
divisors p in the range n!<p=nf, but no prime divisor ¢ in the range
nf .y <q=m;.;. These prime divisors need not be distinct.

It is clear that the estimate A(x)=x/2=x(1/2—%) holds for | =x=n,.
We assume that it holds for all values of x up to 7, and prove that it also
holds for m,<x=n,.,.

Case 1. ny<x=np.

If 6{=B then for any fixed u, 6<1—pu=<1,
AR — Al =x—nf F=1—3. 1

m=x

where 3, counts those integers m, n; “<m=x, which have no prime

divisor p in the range nf<p=nP. For, if an integer m=x=np possesses at
least ! prime divisors which are greater than n? then n¥'=m=n2, §(= B,
which is false.

For 0=pg<1 let y(x, x%) denote the number of integers not exceeding
x which are made up of primes not exceeding x, In the range 1/2<g<1
there is the estimate

w(x, ) = [x]—- 3 [%} = (1+log B +o(1))x

x<p=x
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as x - oo. Hence, for any fixed £=0,

S T=wp(x, x)—p(ni ™, n 79, 5, (1—p) =6,

m=x

=(1+logd+e)x—(1+logd,—e)n "=
=(1/24+e)(x—n Y +O0((u+e)ni )=
=(1/2+26) (x—ni ™",

l—n

since x—n; “=n,—n “=(n)/2 provided that n, is sufficiently large.
Hence

A(X)— A(ni ") ==(1/2 - 3e) (x—ni ")

and A(x)=(1/2—n)x if 3e=mn, and n, is sufficiently large in terms of e.
Case 2. nP<x=nj,,.

In this case
A(X)— A(nP¥)=x—nP2-2—-3,1- 3,1

m=x m=x
where 3, counts those integers m, n82<m=x, which have no prime fac-
tor p in the range nf<p=n?, and 3, counts those integers in the same
range which have more than / such factors.

Let w,(m) denote the number of distinct prime factors p of m which
satisfy nd=p=np'4, and let w,(m) denote the number which lie in the
larger range nf<p=np.

The well-known method of TurAN [I1] allows one to prove that

> (we(m)— S = O((x—nPi2)S)

nBi2ams=x
where

S = P L:log£+0[ . ]
46 log n;

nf<p=nBi4 P
If m is counted in >, then w,(m) =0, and so

__ B2
3,1 = 0[ X <ete—np)
m=x IOgB

if B has a sufficiently large value, depending upon e.
From the readily obtained estimate

> wy(m) = O((x—nP)log B)

nB2em=x

we see that those integers m which have at least (/+ 1) distinct prime divi-
sors in the interval (ng, nP] are at most



110 ELLIOTT, P. D. T. A. AND ERDGS, P.

082 (rnpm) < et )

in number, Those m which have a divisor p? with p in the same range are
also

_ pnBf2 B
O[ 5 2o ]+0[ 4 ]-:e(x—n?fﬂ)
pon P log n;
in number.
Altogether, therefore

A(x)— A(nf)= (1 —3e) (x — n )
and A(x)=(1/2—#)x once again.
Case 3. nf ,=x=mn,.,.

We estimate A(x)— A(n{2) from below. Everything proceeds as in
case 2 save that we must now remove those integers m, ni?, <m=x,
which have a prime divisor ¢ in the range n{.,<g¢g=n,.,. They are in
number at most

x—ng2, I 1
> [—+O(l)] <(x —ni2) [10g—+0[7]]+
q 0 log 71,14

X

+o[
log x

]{(u2+e)(x—n?ffl)
since x<2(x—nd'%).
Hence

A(X) — A(n2,) = (1/2 — de) (x — ni’2,)

and once again A(x)=(1/2—n)x, this time if de=y.

We fix e = 5/4, B in terms of ¢, [ in terms of B, and n, in terms of
e, B, [ and s0 &, so that the finitely many conditions of the type nf<nf?,
are satisfied, and our argument works in every case.

The proof of theorem 3 is now readily completed. The additive func-
tion f(n) is defined to be logn if n=n; by f(p) =logp if né<=p<nf for
some [, and to be zero otherwise.

The function g(x) is defined to be logn; when ,<=x=rm,,,.

An integer a; which lies in the range n,<a;=n,;,,, i=2, has between
I and ! prime factors in the range (n?, n?], and none greater than nf. Hence

logm=|f(a)|=Blogn+ > Blegp—i—lognls(28+l)logn;

p=n;
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provided that n, is sufficiently large in terms of n;_,. This will follow from
the condition n,,,=exp(n,) if n, is sufficiently large in terms of B. For
such integers a; we have

|f(ay)|
st T AR
g(a;
Finally, if x; = n,,,—1=4, then we have x}>n,.,, and
£(x7) = log miyy
gx;)  logn

é =2B+1,

¥ {—»oo,

which establishes (vi).
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