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SOME SOLVED AND UNSOLVED PROBLEMS IN
COMBINATORIAL NUMBER THEORY

PALl ERDOS—ANDRAS SARKOZY

This paper contains mostly joint problems of the two authors. Also, some
problems of the second author are involved (which have arisen mostly starting out
from problems of the first author). Finaly, a paper of this title would not be
complete without some famous unsolved problems (like Problems 1, 6 and 11),
which are due mostly to the first author; for further details concerning these
problems, see P. Erdos, Problems and results on combinatorial number theory, 111,
Lectures Notes Math., vol. 626, Springer 1977 ; we shdl refer to this paper as [ 1]]

Throughout this paper, c, ¢ij ¢c24 . . . will denote absolute constants, ¢(a) 8, . ..).
xola, Bl . .). xi(alB,..). .. .. ko(a]B] . ..). ... constants depending only on the

parameters a, 8, . ... The counting function of a sequence & of non-negative
integers a, <a, <. .. will be denoted by A(x) :
AX= D L

a=x
acdd

1. Additive problems

Problem 1

Show the existence of an jnfinite Sequence & of positive integers a) <a,<|, ,
such that al the sums a, + g; are distinct and

cooL A
ul—lsrpﬂ inf Tﬁjg?i!:‘ S
(This problem is due essentialy to Sidon and it is more than 40 years old. For the

background of this problem, see [1].)
We remark that for finite sequences the situation is different : it is well-known

that for £ >0, N> Ny(¢), there exists a sequence of = {1, 2, ..., N} for which all the
sums g, + g are distinct and
A(N)>(1—-¢)N"?
holds.
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Problem 2
Let of =l {ai, a,4. ... an) be a sequence of positive integers for which
(1) (0<)a<a.<...<aj

holds and for # and & fixed let f(N| &, t) and g(N] ] t, k)| denote the number of
the solutions of

M

£ ='| (where g, =0orlfori=1,2,...,N)

£

and
N N
Ee,-a,:tj ZEe:kl (whereg;=0or ! fori=1,2,..,N)]
= =

respectively.
P. Erd6s and L. Moser proved that

(2) fIN] ]t) <y A%I(Iog N

(for dl NJ o] ¢) and they conjectured that
2N
@) FNY o, 1y <ed ]

Furthermore, they conjectured that

2N
(4) g(N, ﬂ,r,k)<c3h?
(for dl NJ &, « K).
A.Sarkozy and E. Szemerédi proved that for a >0, N > Ny(¢), (3) holds with

c:2=(1+.s)\/i.|1 even in the more generd case when a,, @y . . ., an ae red numbers
T

(not necessarily integers) satisfying (1) (Actal Arithm. 11 (1965), pp. 205-208).

J. L. Nicolas improved on the value of the constant ¢, (C. R. Acad! Sci. Paris
Sér. A. 282 (1976), pp. 9—12)]

G. Hald s z investigated an n-dimensional generalization of the problems above
(Estimates for the concentration function of combinatorial number theory and
probability, Periodica Math. Hung. 8 (1978)] pp. 197-211; his results involve
both estimates (3) and (4) as special cases.

Finally, J. Beck sharpened (3) for sequences satisfying certain restrictions, e.g.

and
Q;-Hl<a3_az<...<aN-aN_lJ
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respectively. (His first paper on this subject will appear in Coll. Math. Soc! J.
Bolyai.) However, he has not investigated, e.g. the important case when the
differences a, — g, are digtinct.

The first problem is to find the best possible value of the constant ¢. in (3). The
second problem is to estimate f(N| | ¢) in the case when the differences a, — q) are
diginct :

a,—a#Haj~a 1 f 1=i<j=N, 1Su<v=EN| i#u] j#+v|

Haldsz's paper suggests further problems. E.g., in the n-dimensional case, his
upper estimate contains a constant C = C(n) (corresponding to ¢, and c,) ; it would
be worth to investigate the behaviour of this constant as n — + o

Problem 3
It can be shown easily that if N is a positive integer, a, a., ..., ay ae red

numbers such that |a,|=1fori=1,2,...|N, and we form al the sums Ej £a;4 where
i=1

g=—1or+1(fori=1)2,....N); then at |least (f\f?) of these sums satisfy
) 1 551

(This theorem is best possible in the sense that the number of the sums satisfying
(5) need not exceed QNTQJ asthesequencea, = ay=...= ay = +1shows.)

In fact, this theorem can be proved easily by using the following purely
combinatorial theorem of G. Katona:
Let us denote the number of the elements of a finite set S by |§ || If N = 2M]|

M=1,2,....|A|=N]and B,/ B,, ..., B]are subsets of A such that
(6) |B:nB;|=2 (for 1=si<j=x),

Nﬁz 1 This theorem is best possible as those subsets B, show for

which |BJ|§‘—§+| 1 holds.

(More exactly, Katona investigated the more general case when (6) is replaced
by [B|l nB; | & k ; the theorem referred to by us is only a special case of this
theorem.)

The problem is to investigate the n-dimensional analogue of the result above. In
particular, the twodimensional analogue is the following:

thennéz”“—%(l
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Let N be a positive integer, ) 224 . ... zv complex numbers for which [z, | = 1 for
i=1 2 ..)N. Let usform al the sums

N
(7) 2352:5_‘ where g=—lor+1fori=1,2,...,N.

i=1

It can be shown easily (by induction) that at least one of these sums satisfies

S ) =

im]

(8)

The upper bound V2] is best possible as the following construction shows: let
(91 N:4M'—2J ZJ=ZQ=---=22M-—]=1 and

Lo = Zam+1— oo =Zap—2=1.

The problem is: how many of the sums (7) must satisfy (8) ? We guess that the

number of these sums must be greater than ¢2%/N, and if N =4Ml -2, then,
perhaps, the construction in (9) gives the exact vaue of the extremum. Our
conjecture can be reduced to the following combinatorial problem:

Isit true thatif N=1,2,...,|A|=N, and B/ . .., B,,CJ ..., C, are subsets of A
such that

|BinB;|Z2 (for 1=i<j=x), |GNC|Z2 (for 1Si<j=y)
and |B.NG|Z1 (for 1=isx, 1SjSy),

then
N-1 2N
o0 L (e PSS (s
x+y=2 dN
must hold?

We have not been able to prove this conjecture.

Problem 4

An infinite sequence of of non-negative integers a, < @y <0 . . . is sdd to be a basis
of order k (where k =2,3, ., .)if for n >n, there exig indices x,, x4 . . ., x4 such tha

a,ta,+. .. +ta,=n.

A simple consideration shows that “amost al” the sequences of non negative
integers are bases of finite order. The second author proved . the following
sharpening of this fact (Some metric problems in the additive number theory, II,
Annales Univ. Sci. Budapest. Eotvos, 20 (1977)] pp. 111-129:

For k=2,3, ...]let I} denote the set of those sequences of non-negative integers
which are not bases of order k. Let us map the set I} into the interval [0, 1] in the
following way: for each sequence
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&f:{al, aZ’ ---}erks

q’(-ﬂf)=22_w‘+”,
i=1
and let @(I;) denote the set of these points ¢(sf)] Then

- _log3
dim (P(r;) — log 4°
furthermore,
: ; 1
kl_r_rpx dim @(I.)= 2
(where dim S denotes the Hausdorff-dimension of the set S).
The problem is to determine dim ¢(I'.)] or at least to estimate dim g(I; ) -% for

K = 3. Furthermore, it would be worthwile to decide whether

(10) dim q:(fk)>%{
for each k or
) dim (L) = 5

for k > kol In particular, does (10) or (11) hold for k = 37

Problem 5

The second author proved the following theorem:
If >0/ N>No(e), #={a, a,..}={1]2,....Njand

(12) A(N)>eN|
then there exist indices x, y and a prime number p for which
(13) 0, —a,=p-1|

(Unpublished yet.) Furthermore, the assumption (12) can be improved dlightly.
(We remark that this statement is not true if we write p on the right -hand side,

as the sequence o = (4, 8, . . .. 4k, ..} shows)
On the other hand, it can be easily shown that for N=1] 2, . . . . there exists
asequence <= {1, 2, .... N} such that
A(N)>d log N

holds and the equation (13) is not solvable.
The problem is to improve on this lower estimate, i.e. to prove the existence of
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sequences < {1, 2]. . ., N} such that (13) is not solvable and A (N)/log N—l +
aS N— + ]

2. Multiplicative problems

A sequence ol of positive integers ay <l a, <. . .issad to be primitive| if a | g; for
i <j| F. Behrend (J. London Math. Soc. 10 (1935), pp. 42-44) and P. Erdé&s (J.
London Math. Soc! 10 (1935), pp. 126—128) proved that if the sequence & is
primitive, then

1 log x
14 Sl e B
a4) Q,.a; <%oglog )"
and
(15) Z 7 o8 ai<c2.

P. Erdés, A. Sarkozy and E. Szemerédil extended these results in various
directions. In particular, they determined the infimum of those constants ¢, for
which (14) holds. (For further details and references, see Coll. Math. Socl J. Bolyai
2 (1970), pp. 3549; this paper contains also some further unsolved problems.
See also [1].)

Thel most interesting unsolved problems connected with these results are
Problems 6, 7 and 8 below.

Probleml 6
Prove that if £>0] X > Xo(€)] x1) xa4 . . . . xn ae real numbers (not necessarily
integers) such that 1=x,<x,<q ... <xx=X and

51
(16) le—>£ log X,

then there exist indices i} ] (1 =i <j= N) and a positive integer k such that
|kx(-'—x,-|<fl.

This conjecture must be true even with ¢ mﬁgﬁmm the right — hand side of
(16). (Obviously, this sharper form of the conjecture would involve Behrend's
theorem (14).)

Problem 7

For @ >0) let A, denote the set of those primitive sequences & for which
w<a,<a,<... holds. Determine
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lim (sup Z : )
(It is known that this limit is between 1 and e’ ; we guess that it is equal to 1.)

Problem 8
Show that if @ai<a:<... is an infinite sequence of positive integers for which

(17) lim mf(}] 1)/W
then
(18) Jim sup(ﬂ%l)/p + 00,

(It is known that (17) implies that the left — hand side of (18) is >0.)

Problem 9

Stating from a conjecture of G. Haldsz, the second author proved the following
theorem (Studia Sci. Math. Hung. 9 (1974), pp. 161-171):

Let a;<a.<. .. <a beasequence of positive integers such that it contains the
first kI poditive integers.

(19) a=1, a:=2, . . . . ay=k|

There exists an absolute constant ¢ such that if k>l k,| then there exist at least
m- k<"s 8% distinct products of the form agy (i, j=1, 2, ....n).

(We remark that to get “many” distinct products, a condition of the type (19) is
necessary; otherwise, e.g., the sequence ay =1, ¢ =2]a,=2°....4a,=2""1is
a counterexample.)

On the other hand, it can be shown easily that for £ >0 k > k4(¢)] n = K, there
exists a sequence a,<a.<{ . . . <a, of pogitive integers such that it satisfies (19) and
the number of the distinct products of the form aag; is less than enk.

There is a gap between the lower and upper estimates. The upper bound seems
to be more precise ; in fact, we guess that for & >0, k > k,(e) and under the
assumption (19) the number of the distinct products must be grester than nk'~*|

The theorem above suggests the following problem:

Let ay<aj) <. .. <a, be asequence of positive integers for which (19) holds.

What can be asserted about the number of the distinct products of form l'ﬂ af

i=ll

(Wheregg=0or1fori=1,2,.... n)?Isit true that for @ >0] K >l k,(w), the
number of the distinct products must be greater than n?k4 ?
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We guess that for k >t k,, the number of these products must be greater than
n? gs*Me2% On the other hand, it can be shown easily that for k > &, n 2 k, there

exists a sequence a, a.4 . . ., & for which (19) holds and the number of the distinct
products is less than nq ec*"g ¥|

3. Irregularities of distribution of sequences relative
to arithmetic progressions

The results concerning irregularities of distribution of segquences relative to
arithmetic progressions can be divided into two groups.

The papers belonging to the first group investigate short arithmetic progressions ;
e.g. Van der Waerden's well-known theorem is a result of this type. The deepest
result in this field is due to E. Szemerédi (Actal Arithm., 27 (1975), pp.
199-245) ; see Szemerédi’s paper for further details and references. (See also [ 1].)

In this paper, we shall be interested mostly in long arithmetic progressions. The
first results of this type have been proved by K. F. Roth (Acta Arithm., 9 (1964))
pp. 257-260). These results have been extended in various directions by Roth, S.
L/ G. Choi, H. L. Montgomery, M. N. Huxley and A. Sarkozy| A typica
result of K. FI Roth is the following:

Let NI be apostive integer and let s o { 1, 2, . . ., N}. Let us write

_AN)

= N
Dyu(m)= 3 1-n > |
1SasSm IFasSm
a =2 (E:; ql a=H (mod q)

and
=1
Vq(m)=zopg,,,(m)
(where q is a positive integer, h, m are integers). Then for any integer Q,
Q N Q
29" jﬂ%(m)ﬂ] qu(NPcm(l—n)O"NJ

Furthermore, this inequdity (with Q = [N*?]) implies the existence of g, m,
h such that

and Iéqéan
|Dﬂ.h(m)|=‘ E 1—1] Z ]|>62{n(1_n)}ulea‘4.
1=a=m 1Za=m
“"i(:l_l:‘ﬂ a=H (mod q)
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For further details and references, see A. Sarkdzy, Some remarks concerning
irregularities of distribution of sequences of integers in arithmetic progressions, 111
and IV, Periodica Math. Hung. 9 (1978), pp. 127-144 and Acta Math. Acad. Sci.
Hung. 30 (1977), pp. 155-162.

Problem 10
Let NI be a postive integer. Let Ey denote the set of the 2 sequences & = {g,, &
..) en} Where = -1or +1for i=1]2, ..., N. Let

kel
F(N) = min rnax > E,.+.-J .
€< By l:inﬁni.-(ﬂ:'il}qiN 14=0

Roth’s theorem referred to above implies that
(20) F(N) 2l c.N™
On the other hand, P. Erdéd proved that
F(N) = ¢.N'4

(Mat. Lapok 17 (1966), pp. 135-155). J. Spencer improved on this estimate by
showing that

F(N) =cs(Nl log log N)"] (log N)™*

(Canad] Math. Bull. 15 (1972), pp. 43-44). Findly, H. L. Montgomery and
A. Sarkozy proved that

(1) F(N) 2 ¢.N'A (log N)*]

(Unpublished yet.) Montgomery’s and Sarkézy’y construction is the following:
Let p denote the smallest prime number satisfying p >N*?*(log N)™*9 and for
i=12,..,N et

[‘(,ﬁl) for (i,p)=1

8= 1 for pli

(where L) denotes the Legendre symbol ) . It can be easily shown that for this
p

sequence ¢ e

S e i = ¢,N"(log N)*?

i=0

for any integers k| n, q satisfying 1=n =n H (k —1)g =N
There is a gap between (20) and (21). It seems that the lower estimate is more
precise; in fact, we: guess that for a >0] N> Ny(¢)|
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F(N)Sc(e)N'"*
and, perhaps, it will not be very difficult to show this.

Problem 11

A collection of problems of this type would not be complete without mentioning
an old conjecture of the first author:
If €4 & ...isan infinite sequence such that ¢, = = 1or H 1for i=1,2). .., then

sup| FEJ i= +ow.

m=1 2 [i=1
n=1] 1

This conjecture is about 40 years old, however, no advance has been made yet.
The difficulties can be illustrated by the following fact:

There exigs an infinite sequence €, €») . . . (Where = —1or+1for i= 1,2).. .)
such that
max ‘zs,-m =clogN.
m.n i=1
[Z=mEnm=N
In fact, let us define the sequence &,4 €44 . . . in the following way: for i = 1, 2]. ..,

let (i =3%,] where «,(=0)] j.(21) are integers such that (3, 7} = 1, and let

._{ H 1if =1 (mod 3))
9701 0f j=2 -~ 1 (mod 3).

It can be easily shown that this sequence satisfies (22).

Comparing (22) with (20) in Problem 10, we see that the situation is different
here ; the best possible lower bound for the left-hand side of (22) is much smaller
than the one for F(N).

Problem 12

In Roth's referred results, the moduli of the quantities D,.,(m) are estimated 1
these results are nearly best possible. On the other hand, it is much more difficult
to deduce one-sided estimates ; the known results of this type seem to be far from
the best possible.

K. F. Roth proved the following theorem (Math. Ann. 169 (1967), pp. 1-25):

Let A= 1 and let k be an integer satisfying k >(10°A)*| Then there exists
anumber N, = N;(A] k) such that the following statement is true.

If N>Njand the set 5,5, . .., s\ Of real numbers satisfies

1=5]5|=A
and
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(23] S,+Sz+...+.§‘~=0,|
then there exist integers n, q satisfying 1 =n <n H (k -~ 1)g =N such that

k=1 k—1 1/2
23,,+.‘,>{10"‘A‘2 Zsfw} :
i=0 i=0

The weskness of this theorem is that the function N.(A] k) is not expligtly given.

Improving on Roth's method, S. L. Gl Choi showed that the statement of this
theorem is valid with N,(A, k) = 2{2(A7's)***}°] where s =2A((2k%)!)*k"
(Math. Ann. 205 (1973)] pp. 1-8). This value of Ni(A| k) is extremely large. In
fact, for A fixed and k large, N > N implies that k = O((log log log N/log log log
log N)'*)| However, the assertion of Roth’s theorem should be valid also with
Ni(A] K) = c¢(A)kT (like the case when we estimate the modufi of the sums
concerned). ol

A. S drkdzy| edimated the large postive values of the sums E Sa4id IN terms of g

i=0
instead of k:
Let A =1 andlet Q] N be any positive integers for which
o l _Ilr 25
4) Q=3 (A) .
If theset 5,)524. .., sa Of read numbers satisfies (23) and
1=]s,|=A forj=1,2/....N

then there exist postive integers n, k, g such that 1=¢=Q)] 1=nd

n+(k-1)q=N| and
N 1/2
1( Zsi)
n=1
Zﬁ"*‘qwo N/ -

This theorem is best possible (except the value of the constant on the right) for
any Q satisfying (24) and it gives a much greater lower bound (in terms of N) for
k-1

max %snﬁ.,:
&

M

max

noq.h §

s, +d A C(A)N'?]

1}
=

However, the statement of the theorem should be true also for Q in a greater
range ; in fact, we guess that (24) can be replaced by Q <1 ¢(A)N'?| This would
imply

=~

ax ZJ'SAMG(AUN”‘J

ng k=
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(Again, this would correspond to the estimates for the moduli except that the
dependence on A must be different.)

Problem 13

Letf = {a,, a ...} be an infinite sequence of positive integers for which
a;<a,<...| Let us write

E.w(m)5 21 —a7'Alm),
a=hl (mgl qll

where g, m are positive integers, A is an integer.
The second author of this paper proved that

(25) NILTM P ( :E;J 1)/N"2= +

aesd a1 éad

implies that
(26) sup |E, (m)| =+ .
q.h.m

Furthermore, let logwy denote the k-fold iterated logarithm (i.e. logx = log
(log.-,x)), and for x >e let us define the positive integer L(x) by
l()gu,“.].ﬂ d Iglog[,(xyq .
A. S arkoz y constructed also an infinite sequence & for which

27) Jirn inf ( 3] 1)/ LN)=0

aes,a—1é
and, on the other hand,
|E,.»(m)| =3

for any poditive integers g, £, m. (See Some remarks concerning irregularities of
distribution of sequences of integers in arithmetic progressions, | and 1I, Colll
Math. Soc. J. Bolyai 13 (1974)) 287-303, and Studia Sci. Math. Hung., to

appear. )
This construction shows that to obtain (26) it is not sufficient to assume that

(28) 152:« 1— +ce,

aed.a-1¢tsd
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(We remark that to obtain (26) we need an assumption involving rather the
function on the left — hand side of (28) than the function A(N).)

There is a considerable gap between (25) and (27) ; the problem is to tighten this
gap. In particular, is it true that if only

lim sup ( > 1)/N‘ >0
N—ogm I1Za=N

acsf.a—1¢ed

is assumed (for any & > 0), then (26) must hold ?

Problem 14

Using the same notations as in the previous problem, A. Sirkézy| showed the
existence of an infinite sequence & such that for any &> 0 and positive integers ¢
h] m)

(29) | Eq.n(m)| <ce*

On the other hand, such a sequence does not exist if we write gg'? on the right
— hand side. (See the papers referred to in the previous problem.) The problem is
again to tighten the gap. (The lower bound egq "* seems to be more precise ;
perhaps, the right — hand side of (29) can be replaced by ¢ '2*¢.)

4. Distances near integers

Throughout this section, the distance between some points P, Q in the
n-dimensional Euclidean space will be denoted by g (P, Q). We shall denote the
distance from the real number x to the nearest integer by ||x|, i.e. ||x|| =minl
{x —[x], [X] + 1 —x}!Let 6 be some fixed real number satisfying 0<d <1/2!

For X(>0) and d fixed, let P,, P,, . .., P, be pointsin the n-dimensiona sphere
of radius X, such that

le(P.] P)IZ6 for 1Si<j=n

(i.e. each of the distances between the given points is further from any integer than
0)| Let us denote the maxima number of points with these properties by Fy(X] 6).
Startingfromaproblemof P.Erdés, A. Sarkozy proved that for X > X(8),

4108 X
(30) (X4 )< 5 s los X

and, on the other hand, for 0<d=1/6-8% and X > X,(5),
Fy(X,8)>Xx"28"
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(On distances near integers, | and Il, Studia Sci. Math. Hung., to appear).
It can be easily shown that (30) implies that for X > X,(5/ n),

F.(X) 8)<c(d] n}o;fr—;gx |

Furthermore, the authors showed that if § >0 m =2 is an integer, X>
X3(6) m), k is an integer satisfying

X
k>c(6) m) —Iog log X
ad P, P,).... P, ae points in the circle of radius X, then these points contain
a “near integer m-tuple’, i.e. there exist indices iy} iy, - - ., i,, SUchthat 1=, <i, <

. <i.=k and
leP,.P)ll<é for 1=Su<v=m)]

(This result has not been published yet.) However, our proof yields only the
existence of “degenerated” m-tuples, i.e. m-tuples such that their vertices are
“near” a fixed line.

These results suggest the following problems:

Problem 15

How rapidly does F] (X, &) increase for m —» H =% Does there exist a positive
integer m such that

i LD ],

N—otoe

for some 6 >0 ? (in view of (30), this would imply

. F(X,8)_ . _°
ool 76 3 | i )

Problem 16

Show that there exists a postive number a satisfying the following conditions :
Let >0, w>0] X>Xu(é]w), and let P,| P,|. .., P, be pointsin the Cartesian
plane in the square 0=x=X,0=y =X, such thatif 0Su<X-w,0=Sv<X-w)|
then the square
(31) u=x<u+o, vSy<x+a
contains at least one of these points. Then these points contain a “non degenerated
near integer triangle’, i.e. there exist indices iy, i, i; such that 1 =ij <ij <i; 3 kK,
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each angle of the triangle P,P,P.| is greater than a, and
llo(®, P <) lle(P., Pl[<d and [[o(P,, Pl <d.
(This conjecture should be true even replacing the squares in (31) by the squares

u=x<u+ovx| v=Ey<v+oVr)

Probl enl7

Show that if §>0]w > 0, X >X(é)w) and the points P.J P,| . . ., P{ satisfy the
condition in Problem 16, then these points contain an “amost equilateral trian-
gle’, ie. there exist indices j,/ jz, j; such that 1=j| <j,<j,= k and

|Q(PJ|J Prz) - Q(R‘l’l Pls)l <6 ’ IQ(‘PHJ 'Piz) - Q(Ph’l P]:)l <d
and

lQ(Pn’l Pn] - Q(‘P?'p PJ':)I < 6 *

Received February 15, 1977
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