SOME MORE PROBLEMS ON ELEMENTARY GEOMETRY
P. ErDGs

In the May 1975 issue of this Gazette I published a paper on geometric
problems. I here solve one of them and state a few new ones.

I stated in my previous paper the following problem: Is it true that to
every k there is an nk so that if there are given L points in the plane in general
position (i.e. mno three on a line no four on a circle) one can always find X of them

so that all the [g} triples determine circles of different radii.

I overlooked at that time that a simple and straightforward argument gives
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To prove (1) let x cesZ o, M= k + Z[k—JJ(k_ZJ be m points in general
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determine cirlces of different radii. If 2 > k there is nothing to prove. Thus
assume £ < k and we will arrive at a contradiction. Denote by P]”"’r(l) the radii
3

of the circles determined by {xi,xj,xk}, 1<i<gJ<kz<f. It follows from the
maximality property of xl,...,x2 that for every u,% < u < m the radius of one of the

circles

{xi,xj,xu}, 1<i<j<l<usm

equals one of the r's. Observe that there are at most two circles of radius r passing

through two points . and x.. Thus the 7 - % points z s 2 < u < m must lie on at most
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at most one of these points. Thus finally (% <k)
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2[ J (;] circles and since they are in general position each of these circles contains

which proves (1).
Probably (1) is very far from being best possible.

A few days ago in conversation with J. Hammer we asked the following question:
Let f(n) be the largest integer so that any set of n points in the plane - no three on
a line contains at least f(n) convex subsets. Determine or estimate f(n). It seems
unlikely that an exact formula can be found for f(n). I proved that there are two
constants ¢, and ¢, so that
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n < f(n) <n (2)

An o0ld question of E. Klein (Mrs. Szekeres) states: Let mk be the smallest
integer so that if m, points are given, no three on a line, then one can always select

k of them which form the vertices of a convex k-gon. Szekeres and I proved
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Szekeres conjectured that there is equality on the left of (3). (3) implies
(2) without much trouble. The upper bound of (2) is an immediate consequence. Con-
sider a set of n points so that no subset of more than [:%gg%% + 1 = t points is convex.
The existence of such a set is guaranteed by (3). Thus clearly

fm) < § [Z] < nezlogn.
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The proof of the lower bound in (2) is a little more complicated. Let
LosenesZ, be any n points in the plane no three on a line. Put [v#] =T. By (3)
every subset of size T of our 7 points has a convex subset of size r where
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these r sets are not necessarily distinct. The same convex set xi ,...,xi occurs
n-r n-r 1 z
at most [T r] times (since there are LT r] sets of size T containing Ly seeesly ).
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which completes the proof of (2).
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Thus our set xl,...,xn contains at least [ ] convex subsets of size r but

Thus

Probably there is a constant ¢ so that

Lim Tog fn)/(logn)> = e
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I then somewhat modified our 6riginal question: Let h(n) be the smallest
integer so that any set of #n points no three of them on a line determine at least
h(n) convex subsets which have no z, in their interior. I have no satisfactory bounds
for h(n). E. Klein's original proof easily gives that every set of n > 5 points
contains a convex quadrilateral with no point in its interior. I can not prove a
similar theorem for a convex pentagon and perhaps one can give for every 7, #n points

so that every convex pentagon determined by these points contains at least one of the
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n points in its interior¥.

It is a curious fact in combinatorics that finite problems are often very
much more difficult than infinite ones. For example I proved that every subset C of
E% (the n dimensional Euclidéan space), () =m 2 NO contains a subset CJ’ (CZ) =m
so that all the distances between points of CZ are distinct. The analogous finite
problem is very difficult. Let m be a finite number and denote by gn(m) the largest
integer so that every set & ,...,Z in En contains a subset of gnﬁw) points all

whose distances are distinct. I can not even determine glﬁw).

Ulam and I to call attention to this situation made the following joke:
During the second world war the U.S. navy had the slogan: The difficult we do right
away the impossible takes some time. We say: The infinite we do right away, the

finite may take some time.
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* Ehrenfeucht has recently proved that for sufficiently large »n there is a convex
pentagon which contains no points of the set in its interior.

AUSTRALIAN MATHEMATICAL SOCIETY

19TH SUMMER RESEARCH INSTITUTE

Location: Macquarie University, North Ryde, N.S.W. 2113
Dates: 15th January - 9th February, 1979.

As announced in the first circular this S.R.I. is being planned to permit a
large amount of interaction between mathematicians in different fields. Series of
expository lectures are being arranged for the morning sessions, while afternoons are
given over to more specialized sectionms.

Distinguished visitors will include Jacques Loutis Lions of the Collége de
France who will speak on Control Theory and P.D.E.'s, and Tosio Kato of the University
of California at Berkeley, both for the second and third weeks, and Cathleen Synge
Morawetz of the Courant Institute for the third week.

At present 17 specialized sections are being planned. Further details can
be obtained by writing to the section organisers.
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