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§1. Asymptotic estimates for the number of partitions of the integer n into
summands chosen from an arithmetic progression have been derived by several
authors, see for example Meinardus [3]. In this note we investigate a natural
extension which has not previosusly appeared in the literature. We shall

study the asymptotic behaviour of the numbers pu(n) and qa(n), the number
of partitions of n into summands and distinct summands, respectively, chosen
from the sequence [ma], m = 1,2,... where a > 1 1is an irrational number and
[x] denotes the largest integer < x. If y = a - [a¢] then for almost all

v € (0,1) in the Lebesgue sense we shall obtain asymptotic formulae (given in
Theorem 2 below) for pa(n) and qa(n). However, when vy is of finite class,

that is, there does not exist a number <y such that as & + =

(1.1) f.l+A+€1sin E‘Y“I Seren

for every positive ¢, we can only deduce

log p,(n) = Trf—i::— + 0@
log qa(n) = WJ%% + O(na)

for every positive &. This is closely connected with the well known fact
the larger the class of vy, defined to be the largest vy satisfying equation
(1.1), the less evenly distributed is ma - [me]. It is worth noting that if
a = [a] + p/q + Eq with eq very small, then for a long stretch the sequence
[mx] is the union of arithmetic progressions whose difference is small
compared to their length.

Finally we point out that no significant difference arises if we consider

partitions into the sequence [ma+B]

§2. In this section we first apply the results of Roth and Szekeres [4].
Their results hold subject to the conditions:
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the distance of 6 to the nearest integer and %uk <a<k ., Itis clear
in our case that (I) holds. Roth and Szekeres [4,p.254] show that (II) is
satisfied when the § in (I) is < % and there exist constants k0 and c
such that, for all integers k, q satisfying k > ky and 1 <gq < 18[ke]/k,
at least cq2 logzk of the numbers [a],[2a],...,[ka] are not divisible by
q. In our case, q < 18« and since it is well known [2,p.307] that the
sequence [ma] is uniformly distributed in the integers this last condition
holds. Thus condition (II) also holds and from the Roth-Szekeres results

we have the following theorem.

THEOREM 1.
a () = [2n § [ma)?eX ™) qqexImedy=27
m=1
exp| E {__ElEEi___+ log (1+E—x[mu])}]
e L
[140(a 7))

where & is any constant > 0 and x determined from

n= ] sjee®ioly=l

m=1

Furthermore -
p (@) = [2n [ [ma)%e Pl (¥ Ima)_gy=2y7
m=1

exp| E {_XiEEl__ - log (l—e—y[ma])}]

m=1 eY[ma]-l

[1+0(n~ % %))
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where & 1is any constant > 0 and y is determined from

o

n= § o™l
m=1

It will be convenient for the proof of our final results to have the

following lemma.

o

LEMMA. Let ga(s) = 2 i = Let A denote the class of a - [a],
m=1 [ma]

ga(s) the Riemann zeta function and {x} = x - [x] - % 4if x # [x] and

{m} = 0 for integral m. Then

g s v f{om} s
L) =< ale) +—g ] T+ —g t(stl) + sh(s)
o o m=1l m 200
where h(s) is analytic in R(s) > =1 + ¢ . Furthermore the only
singularity of Cu(S) in the region R(s) = - X%I + ¢ is a simple pole at

s =1 and |;a(s)[ = 0([5!4) uniformly in this region as |[s| + = .

Finally £ (0) = (u"l—l)fz if X is finite.

Proof. Let S be any positive real number. Let s = ¢ + it. Suppose
[s] « S and m=M= Sz.
Then -5 log (1- iﬂﬁliﬁ_
1 _ e ™
[me] msas
. {ma }-+s + 32 ({moa]'+1)2
T Tss ' F s+l s+2 2
moo (ma) s (ma)
3
S S
+ 0( 3+G) + UG—E:E)
m m
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where for fixed S the O-terms are independent of s and m = M. Hence

to ot ] et ¥ if;}J'Shl(s)
m>M [ma] a m>Mm o wM m

where hlts) is apalytic, being the sum of a uniformly convergent series
of analytic functions, for Rs = -1 + ¢ and, moreover, |h1(s)l = 0(]3[3)
uniformly in Rs > -1+ ¢, |s| < 8. Now

1

= | < M0w) = o(|s|®
m<M [me]

uniformly in Rs > -1, |s| < S. Since S was arbitrary we have the first
part of the lemma and moreover, |h(s)| = 0(]s|3) uniformly in Rs > -1 + €.
Hardy and Littlewood [1] show that t{am}”® converges for
Rs = 1(1+1)_1 + e. It is well known that if Ilann"B converges for
-1
l

s = 0, ¢ real, then lZann_ = 0(|s|) uniformly in Rs > « + ¢. Hence

sltaate ™% 43 0{|s|} uniformly in Rs = —(1+A)"1 + e¢. This, with our
estimates for h(s), gives the second part of the lemma. Fimally, since

£(0) = -} and cz(s+l) = s 1 4y + ... wehave the third part.

THEOREM 2. Let a - [a] be of class A < = . Then
1-3a
3 ’n 1
20 =  § e + €
4
qa(n) = 2 n e =0 [1+ D(n2(1+x) )].
4/3a
JE; G_l—l b/
1 w3 - (ﬂﬂi—— Ylog {wJEE )+;a(0)
p,(0) = — e
20" Voo
1
-smar e
[+ 0t 20 7y

If o - [a] 4is of infinite class then
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log q () = B+ o)

log pu(n) - f%% s O(ne).

(For almost all a - [o] € (03y1) in the Lebesgue sense X = 0.)

Proof. Let us consider qu(n) and suppose o-[a] is of class A. If we

let s =0 + it we may rewrite the sums in Theorem 1 as follows.

It

1 we may

T 1o (ueeXlmaly 7 (-19.3”"rl ] extimal

m=1 i=1 m=1
@ £+l ol o+im
NG Vil W I r(s) (xtlmal) %ds
- [ 27 Weat )
L g—iw
3 otim e g
- T J r(s) x "(1-2° )g(s+l)g (s)ds. (o > 1) (2.1)
ni e o
-dz g+i=
- dul "El—i J r(s)x'ﬂu-zl"*};(s)c“(s-l)ds. (0 > 2)
- (2.2)
2 g+i=
-d Iy 1 -s=1 1-s
= 5 = TI T(s+l)x (1-27 T)z(s)g_(s-1)ds. (o > 2)
ni o
dx g=ie (2.3)
is well known that
% %1t| o=
I(o+it) = (e [t]"™ as |t| >« hence in view of Lemma

shift the contour of integration in equation (2.1) to the line

Rs = -(1+A)“l + ¢ and upon calculating the residue (note (1-2 °)z(s+l) is
analytic everywhere) we obtain
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1

2 T+ ¢
_ =1 1+
El = x 170 + ;u(D) log 2 + 0(x )
1
2 -l + =+ ¢
-2 7 1+ )
= = +
n EZ X 120 0(x
A 2
2 -2+ —+ ¢
s 1+A
23 =x TEE—+ p(x ) .
From 2.5 we obtain
i -1 - ——l———-+ €
x =—— (1 + 0(n 2(142) )

v12on

(2.4)

(2.5)

If we now insert this expression for x into equations (2.4), (2.5) and

(2.6), we obtain the first result stated for qa{u) in Theorem 2.

The case

@ - [a#] of infinite class may be treated in the same way. Since it is well

known [2,p.130] that A = 0 for almost all numbers between zero and one we

have all our results for q (n).
a

The results for pa(n) follow in basically the same way. One slight

difference arises since

—y [ma ] 1 e -s
-Z log (1L - e ) = Ty J T(s)y ;(s+1)§a(s)ds.
g+i=
. _ -1 = i
and since T(s) =5 = - y+..., (st+l) = = + y+ ... the residue at

dY_Scu(O)

= 1 '
ds = ;a(O) log . + La(D) .

=
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We close with the following remarks. Hardy and Littlewood [1] show that
if A > 0, then the line Rs = A/(M1) is a natural boundary of t{ma} % .

They also conjecture, and it still seems open, that Rs = 0 is a natural
boundard if X = 0, unless a is a quadratic irrational (in this case the
series may be continued to the entire plane). The presence of a natural
boundary limits the accuracy of our estimates of the transcendental sums in
Theorem 1 in a way that cannot be overcome by the calculus of residues. If
one considers the number pA(n) of partitions of an integer n into
summands chosen from A, our method leads us to consider the Dirichlet series

£,(s) = ] a® . Likely the line Rs = 1 is a natural boundary of
acA

fA(s) for almost all A. That is, if Y, = Z 2™®  then the set of Yy
acA
for which Rs = 1 is not a natural boundary is of Lebesgue measure zero.
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